Simultaneous Effects of the Environment and the Tropism
tothe Growth of aTree

Ladidav Kovacs
e-mail : Ladidav.Kovacs@st.fmph.uniba.sk

Department of Computer Graphics and Image Processng
Faaulty of Mathematics and Physics
Comenius University
Bratidava/ Slovakia

Abstract

The goal of this work is to extend Lindenmayer systems in a manner suitable for simulating the
interadion between adeveloping plant and its environment. Our treelike model will consider two
kind of interadions. atreés response, growing outside or inside of a sphere, to the wllision with
the sphere and atropism which will cause that the branches tend to grow on the surface of the
sphere. The extension of the environment is also presented as a generalization of the dgorithm.
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1. Introduction

Since abiologist, Aristid Lindenmayer, has proposed the formalizm of Lindenmayer systems, in
short L-systems, as ageneral framework for plant development, avarious kind of extension of
L-systems has been arisen. Some of these, such as table L-systems, are &le to model environmental
fadors and others, for example environmentally-sensitive L-systems and open L-systems, are
cgpable of bi-dirediona smulation of interadion between a plant and its environment as it is
showed in [5].

In our model environment will be represented as a sphere, so information exchange will consists
of the receotion of information about this phere and the generation of the response in the form of
growth changes, e.g. changes the diredion of branches. In addition to this, our sphere is considered
asaspedad solid, which ads asfollows::

» If the treegrows inside of the sphere then the whole surfaceof the sphere is considered to
be made of glass so branches tend to grow out of the sphere in order to obtain the utmost
light. Thisresponseto light is also cdled phototropism.

» If the tree grows outside of the treg the sphere ads as athermo-light-source, therefore
branches try to wreahe the whole sphere. This phenomenon is known as thermotropism.

2. Basic Notions and Branching Structures

2.1 L-systems
We will use L-systems to generate our treelike structures. There ae known alot of books about



these systems, see[1] for more information and exad definitions, so let us just briefly introduce
them through some frequently used expressons.

The central notion of L-systems is the ancept of rewriting. The basic strength of rewriting lies
in the aility to define complex objed by successvely repladng perts of asimple initial objed
using aset of rewriting rules or productions. Productions are gplied in parallel, with all letters
being rewritten simultaneoudly in agiven word, since development of plants takes place
simultaneoudly in all parts of an organism.

A production consists of two strings - the predecessor and successor. When the production is
applied to the string, the predecessor is compared against ead symbol of the string. The successor
replaces the symbol in the string if the symbol matches the predecessor.

In the processof string rewriting the string kegps growing in length and all the patterns of the old
strings are preserved in some way. The number of times a string is rewritten is cdled depth or
derivation step. The first derivation starts by applying the production rules to the axiom as the
current string. The successve strings are generated with the previous grings as the input, and then
productions rewrite the strings. Simple aioms and rules produce strings with more and more
complicated petterns, even complicated enough to mimic nature's growing process

2.2 Turtle Graphics

Strings generated by L-systems may be interpreted geometricdly in many ways. We use an
interpretation introduced by Szilard and Quinton and extended by Prusinkiewicz and Hanan which
is based on the LOGO-style turtle, where the movements of the turtle is controlled in accordance
with the meanings of generated string.

2.2.1 3D Turtle Graphics

After astring has been generated by an L-system, it is $anned sequentialy form left to right,
and the conseautive symbols are interpreted in acordance with their geometric meanings. In 3D the
state of the turtle is defined by its position and its heading vedor. Let us consider letters which are
interpreted by the turtle in 3D:

F : move forward a step of length defined during the interpretation and draw a defined objed
from the original to the new position of the turtle.

f : move forward a step of length defined during the interpretation without drawing an objed.
The turtle ads as in the previous case, but there won't be drawn an objed between the new and the
original positions.

+ : Turnright by angle defined in advance

- . Turn left by angle given in advance

[ : Pushthe arrent state of the turtle (position, orientation, width and length of objeds being
drawn, as well as other attributes, such as color ) onto a pushdown stad.

] : Pop astate from the stack and make it the aurrent state of the turtle. No objed is drawn,
although in general the position and orientation of the turtle ae changed.

We have to take into acount, that trees are perhaps the strongest structures in living nature, so
our models have to be @mntinue enough at any branching point. In order to achieve the wntinuity of
diredion at fixed point, an interpolating cubic spline will be used to draw the branches of atree



According to the notations given in the figure below we can define the following expressons:

Figure 2.1: Notations in referenceto the nth branch

» Branch —an objed represented by the symbol F, which causes the turtle draw;
» Base (starting) point of the nth branch (Bb) —adtate of the turtle just before the symbol F starts

to draw the nth branch;
» Top (end) point of the n-the branch (Tb) — a state of the turtle dter the interpretation of the nth

branch;

* Orientation of the nth branch (6b) — the orientation of the turtle during the interpretation of the

nth branch;

» Length of the nth branch (I) — the distance between the start and top points of the nth branch;

» Width of the nth branch (r) — a positive red number;

» Child branch(es) of the nth branch (child) — branch(es) which starting point(s) is (are) the same
asthetop point of the nth branch;

e Parent branch of the nth branch (parent) — the branch which child branch is the nth branch;

e Parent direction of the nth branch (6p) — the orientation of the turtle during the interpretation
of aparent branch; it is used in spacemodel along with a divergence angle.

Our symbols are useful to describe the representation of abranch with aspline. All branches,
except the first one being creaed, is represented as acubic spline segment of aform:

Q(u)=a+bOu+clu?+d0u®, ud(0l), ab,c,dOR3. For the nth branch the spline segment

setisfies the following symbolic conditions: Q(0)=B,, Q()=T,, Q'(0)= 6p and Q'(1)=0, . By
means of these formulas parameters a, b, ¢ and d of the aubic spline segment Q could be expressed
asfollows a=B,, b=0,, c=3* (T, ~S,)-200,-0p and d = 20(S, ~Ty)+ O+ Oy .

Let c(C, r,§, V) is a parametric form of acircle having its centre in the point C with aradius r and

being locaed in a normal plane of a s vedor. A wire-frame model of a branch will be represented
by solid M (u,v)=clQ(u),Q'(u),r Du+{-u)Cr,,v), where u0(01), vO(0,2m) and rpis the



width of the parent branch. This solid could be imagined as a sequence of consecutive circles which

are located in anormal plane of avector (':) with their centres passing along the spline defined
above and whose radii are changed according to the value r Cu + (1- u)Drp :

3. Adding Variation to the M odel

2.2 Stochastic L-systems

To avoid the artificia regularity of models generated by deterministic L-system, variation of
turtle interpretation and/or randomization of L-productions are needed.
Randomization of the interpretation alone has alimited effect: it changes only geometric aspects of
aplant, such as the stem length and branching angles, but the topology remains unchanged. In
contrast, the stochastic application of production may affect both the topology and the geometry of
the plant.

In this system there could be several rules with the same matching condition. The choice of a
specific rule to apply string rewriting is determined by a probability distribution as a parameter of
this set of rules. The interesting effect of a stochastic L-system is that it will produce different
output every time, or in other words, the growth is not predictable or reproducible with the same
axiom and rules.

4. Botanical Rules and their Application in the Trees Development

The growth of atree in the nature takes place in accordance with a couple of botanical rules. In
our models we also try to take into account some of these rules.

First of al it is well known that the leaves of the branches are often arranged in such away that
leaves above do not hide leaves below. This means that each gets a good share of the sunlight and
catches the most rain to channel down to the roots as it runs down the leaf to the stem. This attribute
of the leaves can be used to the arrangement of the branches as well and has avery interesting
connection with the mathematics as it is showed in the chapter 4.1.

Natural factors, such as the gravitation force or wind, could also affect the growth of the
branches. These outer forces are called the tropism.

Just as in the nature, in our model we have to take into account avery essential fact that the
length of the branches as well as their radii are becoming shorter and shorter as atree grows. This
natural phenomenon can be captured by a contraction.

4.1 TheDivergence Angle

The pattern formed in the stem by the aternation of branches is affected by the phyllotaxis, i.e.
arrangement of the leaves, because branches originate in the axils of the leaves, so phyllotaxis, give
us information about the arragement of the branches as well.

Leaves succeed one after another along a so-called genetic spiral (or helix). The genetic spira
passes through the leaves in their numerical order, that is, the order of their production. In order to
describe the arragement of the branches on the stem, it is needed to know the angular divergence of

the leaves. The divergence angle between the leaves is given as (T/L)[360°. By finding two
superimposed leaves we can count the number of leaves (= L —1) and the number of turns (=T)

around the axis between these two superimposed leaves. The fractions most frequently belong to the
Fibonacci summation series, 1/2, 1/3, 2/5,3/8, 5/13, 8/21, etc., in which each value of the
numenator and the denominator is a sum of the two corresponding Fibonacci values that precede it.



This fad was discovered at the end of the nineteenth century and is often cdled Schimper-Braun’s
law. The anazng thing is that this sngle angle enables to produce the the whole treeno matter how
big the plant grows. This principle of the divergence angle was only proved mathematicdly by two
French mathematicians Douady and Couder in 1993

4.2 Contractions

4.2.1. Contradion of aBranch’s Length

Contradion of the branches' length is computed as the mntradion ratio of the dild branch to its
mother branch. This parameter is not affeded by any values and our only restriction is that a child
branch is need to be shorter than its mother branch. In order to achieve randomness and natural
looking of our model, the length’s contradion reed to be munted with adisperson from
arelatively big interval. We assume that the contradion of a branch’s length to be ¢ (0,1], length
of aparent branch to be |(H), length of its child branch to be I(h), and a random dispersion to be
dispD[O,l). To the length of the dild branch the following relation can be ealy obtained:

I(h) < cO(1-disp) Ol (H)..

4.2.2. Contradion of a Branch's Radius

Contradion of the branches radius is given as the @ntradion ratio of the dild branch to its
mother radius. Before setting the radius of a child branch, we need to take into acaunt one natural
rule which says that a dild branch is thinner then its mother branch, i.e. radius never expands.
Keeping this principle we can use the same formula used in the previous dion.

4.3 Tropism

A charaderigtic feaure of turtle interpretation is that diredions are spedfied relative to the
current orientation. However, absolute diredions play an important role in the development of
plants. For example, branches may bend dwe to the dfed of wind, sunlight or gravity. These
movements can occur as a consequences of tropism.

Tropism is defined as a response or orientation of a plant to a stimulus that ads with greaer
intensity from one diredion than another. It may be adieved by structural ateration. Forms of
tropism used in our model include phototropism (response to light) and thermotropism (response to
thermag.

Tropism can be dassfied from the point of view of mathematics into two groups:
1) acoording to itskind of effea we distinguish:

a) point controllers (an effed to aplant from one point, such as phototropism: the plant tends

to bend towards the source of light);

b) vector controllers (a plant make its movements in aspedfied dredion, for example

geotropism: adive movement along the gravitational force)
2) acording to its orientation:
a) attractors (attradion forces - warmth and light);
b) inhibitors (repulsive forces - wind).

Vedor controller has an important role inour model, therefore let us describe its
mathematicad model. If we refer to the vedor controller as aquadruple (vs,vx,wy,vz), the new top

coordinate, denoted as (x,,Y,,z ), of abranch is described as $own below, where vs denotes the
controller’s grength, (vx,vy,vz) is the antroller’s vedor (it is assumed to be an unit vedor),



BranchLength is the length of the branch, (Dirx,Diry,Dirz) is the diredion of the branch and
(%, y,2) isthe origina top coordinate of the branch.

X1 = x+ BranchLengh [((1- vs) ODirx + vs[vx)

y; =y + BranchLengh 0((1 - vs) ODiry + vslvy)

z; = z+ BranchLenth [)((1 - vs) ODirz + vsvz) .

Whether acontroller is an attrador or an inhibitor is determined by the sign of the strength; if
vs> 0 it is an attrador, consequently the tip moves along the vedor (vx,vy,vz), otherwise it is an

inhibitor. In our mathematicd model we assume that vsD(O,l}, so we have an attrador. This

method is based on the rotation of the diredion of the branch, so the length of the branch is kept
under any circumstances.

5. The Algorithm

Now we describe the dgorithm which is used in the generation of atree ©nsidering the
bi-diredional information exchange a well as the tropism. Before the representation of the drawing
symbol F in the string generated by L-system, we have to examine the branch position, becaise &
first there have to be deteded the possble obstade (the sphere) and in ac@rdance with this the
position and orientation of the turtle should be aljusted. We dso have to take into acount the dfed
of the tropism to the branches at the same time. To summarize, our task is to read anew position
and orientation of a branch.

5.1 TheGrowth of a Plant Outside of the Sphere

At first we mnsider the situation when atreeis growing outside of the sphere. For the sake of
simplicity we can assume that all branches are represented as a line segment. The location and the
radius of the sphere, representing the environment and noted as S, = S, (S,R) , where Sis the center
and R is the radius of this here, is given as an input data. The following notation refers to the
child branch: B — the start point, T — the top point, T — the new position of the top point. It is
asumed that the new position of the top point of the parent branch haes aready counted by the
algorithm described below.

We can state two rules which determine the computation of the new top position of the branch:

» If any point of the branch is in the sphere then the relocaion is acamplished as follows: It can
be distinguished two cases in this stuation acwording to the distance between points B and
TangPoint, where the TangPoint is such atangent point of the sphere S; from the point B which
is closer to the point T (seefigure 5.1).

TargPolnt

Figure 5.1: A smpletest of the re-location.



If d(B,T)<d(B,TangPant)then we aede asphere S,=S,(B,d(B,T)) and compute the
intersedion circle, let us denote IC, of the spheres S, and S,, IC =S n S,. Inthiscircle we find

such apoint T" which is in the dosest distance from the top of the branch. , which hes to be re-
located. The point T' is the new position of the top of the branch, becaise d(B,T') =d(B,T) and T’

is on the surfaceof the sphere.

Figure 5.2: Improper re-locaion. Figure 5.3: Finding the tangent point.

If d(B,T)=d(B,TangPant)then we cawnot use the method described above, because it can be
happen that after the relocation of the top point of the branch some points of the re-located branch is
gill in the sphere (see figure 5.2). In this case we have to crede a new sphere
S, =S,(B+1/20(S-B),d(S,B)/2) and reped al the steps as above. In this case we find the

spedal tangent point of the sphere from the point B which isin the dosest distance from the point T,
seefigure 5.3, which enable us the determination of the new position of the top of the branch.

» If dl points of the line segment is outside of the sphere then we use tropism to re-locate the top
point of the branch. The vedor controller's grength is counted as fv=1-R/L, where

L =d(S,T) and the montroller’svedor isavedor ForceDir := S- B, seeFigure 5.4.

BronchDir

Figure 5.4: The dfed of the tropism

We ould read an interesting phenomenon if we define the following rules:

» The dtradion force of the sphere to the branches is taking into acount after the branches width
is lessthen a certain value

» Any kind of re-locaion is applied only if the zcoordinate of any point of the branch is grater
then the minimum z-coordinate of the sphere. In this case the tree grows fredy in it natura
environment without obstade until its branches doesn’t fulfil the rule. This delayed deviation
causes auch an effed as the sphere gopeas later in the vicinity of the tree then the tree starts

growing.



5.2 TheGrowth of a Plant Inside of the Sphere

If the tree grows inside of the sphere we wuld also use dl the rules written above with some
modification: We have to re-locae the branches if their top points are outside of the sphere and the
tropism is taking into acount when al points of any branch is inside of the sphere. In this case the
vedor controller’s grength is counted as fv=_L/R and the ontroller's vedor is avedor P-B

(see figure 5.4), where the point P is acommon point of the sphere’'s surface ad the vedor
ForceDir.

5.3 Extension of the Environment

Environment represented so far consists only of the sphere which is stuated in the vicinity of
atree This very smple situation could be eaily extended by adding another sphere to the eisting
one. This new sphere has also an affed to thetree & the first one. In this extenson there is
aposshility to set the strengths of the atradion forces of the spheres sparately. These strengths
are combined with the distance between the tree ad the spheres acwrding the formula described
later in this dion. These strengths are denoted as TropismStrength and SecTropismStrength and

are chosen from the interval <0,1>, where 0 denotes that the given sphere has no effed to the tree
and the sphere has a maximum affed to the treewhen 1 is chosen from the interval.

B
Figure 5.5: Re-locaion of the tip of the branch.

At first we describe the whole re-locaion process which can be used in the cae when the
environment is represented with two spheres, if al points of the line segment representing the
branch is outside of the spheres. It is assumed that the two spheres doesn't intersed ead other.

The location and the radius of the first sphereisnoted as S, = S, (S,R) , where Sisthe cetre and

Ris the radius of this phere; S, =S,(SecS$SecR denotes the seaond sphere, where SecSis the

centre and SedR is the radius of this gphere. Spheres are given as an input data. If we refer to the
figure 5.5 the following notations can be written down: B — the base point of abranch, T —the
original top point of abranch, T — the new top of abranch, L=d(ST)-R,
Secl=d(SecST) — SecF.



The first controller’s vedor is avedor ForceDir:=S-T and the second one is the vedor
SecForceDi:=SecS-T . If we take into acount the dfeds of the spheres to the point T, which
has to be re-located, and the distances of the spheres from this point then two points F and Sed- can
be symbolically counted as follows:

F =T +TropismStengthd2 - O(S-T)
SecF=T + SecTropisiBtrengtil2 > [(SecS-T).
Vedors F-T and SecF-T are the new controllers vedors, but we need only points F and

Sed= in this re-locaion process Vaues 27 and 275°% degease with increasing L and Sed-
respedively, so the sphere has as snaller affed to the branch asit islocaed further from the sphere.
The C point is the centroid of the triangle given with the vertexes F, Sed= and T. This point C is
the reference point of the vedor TemDir:=C-B. The origina diredion of the branch is
BranchDir.=T-B. The new diredion of the branch is counted as
NewBranchDr := TemDir+ BranchDir. The new top point of the branch can be easily determined
using this vedor as follows. T':=T + BranchLen@t (ONewBranchDx , where NewBranchDir is

asaumed to be an unit vedor and BranchLength is the length of the branch.

If any point of the branch is in any sphere then at first we determine the sphere with which the
branch hes intersedion and the relocation after that is accomplished as it is fully described in the
part 5.1.

6. Results

In this dion some pictures are presented which were generated using our algorithm.
The extension of the environment is cgptured in the first picture of this capture. The spheres's
locaion, radii and the strengths of their attradion forces are chosen to be different.

Figure 6.1: The extension of the environment

In the figure 6.2 the tropism affeds to the tree from the beginning of the growth of the tree It can
be noticed that due to the tropism the branches of the tree ae dways located nea to the surfaceof
the sphere. Figure 6.3 shows a treewhich grow inside of the sphere. We can seethat the tree starts



to grow outside of the sphere, but after its first branch get into the sphere dl the branches remain
their positions inside of the sphere.

Figure 6.2: Outside of the sphere. Figure 6.3: Inside of the sphere.

7. Conclusion and Future Work

In this paper we presented an algorithm which could be used to the simulation of the tre€s
response, growing outside or inside of a sphere, to the wlli sion with the sphere and the tropism. We
presented the environment with the sphere and we assumed the sphere to be aspedal objed in this
environment which causes the tropism. The treeis tend to read our sphere under any circumstances
because of the tropism, so to spe&k the sphere drags the branches towards itself.

The implementation and the result of this algorithm is the main theme of my diploma thesis. The
future work will include solving the situations when the environment is represented with another
sort of objeds and leaves, flowers and fruits could be dso added to the treemodels generated also
by L-systems.
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