
Real time rendering of heterogenous fog based on the
graphics hardware acceleration

Dorota Zdrojewska∗

Institute of Computer Graphics and Multimedia Systems
Technical University of Szczecin

Szczecin / Poland

Abstract

This paper discusses the subject of synthesis of the fog
phenomenon in real time using computer graphics. The
method of heterogenous fog simulation based on the Perlin
noise and turbulence is presented. Implementation of the
algorithm is done using hardware acceleration in the form
of a GPU with programmable vertex and pixel processing
pipeline.

Keywords: Fog synthesis, Perlin noise, vertex shader,
pixel shader, computer graphics

1 Introduction

Visualization of atmospheric phenomena is an important
use of computer graphics, and of these fog is perhaps most
frequently imaged. Its presence in games, simulators and
virtual reality environments significantly enhances realism
and adds to attractiveness of generated scenes. The si-
mulation in real time is usually limited to depicting a ho-
mogenous fog [2][12], with constant density distribution,
often as a volumetric layered effect [1] [7] [4]. In the na-
tural world the phenomenon is however more complex – it
is a participating medium made of many non-homogenous
layers moving with the wind and undergoing turbulent mo-
tion.

Existing methods of modelling heterogenous participa-
ting media can be classified in two groups. First of them
use physical models of turbulent motion, based on FFT [6]
or Navier-Stokes equations [3] [16]. These methods pro-
duce very realistic images, but require long time of com-
putation. The second group approximates physical pro-
perties of participating medium, enabling its visualization
in real time. Simulation consists on applying for example
periodical or fractal functions [17] [9].

To speed up the simulation graphics hardware could
be used. Modern GPUs (Graphics Processor Unit) offer
more and more effective ways of accelerating graphics-
related calculations. One of recent innovations is an archi-
tecture with programmable 3D pipeline that allows sup-
plementation of standard graphics pipeline with vertex and

∗dzdrojewska@wi.ps.pl

pixel processing routines – so-called vertex and pixel sha-
ders, which run in hardware. With their use it becomes
possible to execute much more sophisticated algorithms in
real time, including algorithms simulating phenomenon of
heterogenous fog.

This paper discusses the problem of fog simulation and
visualization, with special emphasis on real time rende-
ring. Section 2 introduces the basic algorithms of ho-
mogenous fog simulating, including linear and exponen-
tial formulas. A method of modelling and animating a
heterogenous fog based on Perlin turbulence is also de-
scribed. Section 3 presents the general fog synthesis al-
gorithm of which implementation, employing vertex and
pixel shaders, is presented in section 4. The results are de-
monstrated and discussed in section 5. Conclusions and
possible subjects of future work are contained in the last
section 6.

2 Theoretical background

In the real world fog is a participating medium, consisting
of small water droplets not larger than 0.05 in diameter.
According to [17], radiance of light entering such medium
is influenced by four factors:

Figure 1: Absorption, emission, out-scattering and in-
scattering in participating medium

• absorption

• emission

• out-scattering (diffusion)

• in-scattering

Absorption and scattering reduce radiance – part of light
travelling along a rayω is absorbed and refracted by fog
particles. In-scattering is an opposite process – it occurs
when light, after being refracted, starts moving in direc-
tion ω. In this model, particles of fog can also emit light.
Figure 1 illustrates these processes.

The influence of these factors on radiance of ray tra-
velling from point in the scene towards the observer is
expressed by the transport equation, of which derivation
was shown in e.g. [17] [14] [15]. Its simplified form is
frequently used in computer graphics as so-called mixing
equation:

CFinal = (f ∗ CCurrent + ((1− f) ∗ CFog) (1)

The first element of equation (1) represents the loss of
light, while the other its in-scattering and emission. These
processes are mirrored by mixing pixels’ colorsCCurrent

with fog colorCFog based on its intensityf . The goal is
to determine the final pixel colorCFinal.

The final pixel’s color depends on the value of coeffi-
cient f ∈< 0, 1 >, which defines the intensity of fog at
the point of space represented by the pixel. The smaller
the value off , the higher is the influence of fog on the
color of the point in question, and hence – the higher drop
in visibility. f = 0 means total ”fogging” of the point,
thus its final color is the color of fog.f = 1 means no
”fogging”, color of the pixel won’t be changed at all.

Various effects can be obtained depending on the me-
thod used to calculate coefficientf – both homogenous
fog of constant density and more complex, heterogenous
phenomenon as well.

2.1 Synthesis of homogenous fog

To generate homogenous fog, coefficientf is usually com-
puted using one of three basic methods: linear, exponential
and squared exponential [5]. In linear method,f is com-
puted using linear interpolation, depending on the distance
of point from the observer and on its location in relation to
the fogged area:

f =
FogEnd − d

FogEnd − FogStart
(2)

where:

• FogStart – beginning of the area influenced by fog,

• FogEnd – the distance designating the border of vi-
sibility, beyond which nothing can be seen

• d – distance between considered point and the obse-
rver.

In exponential method and its squared variety, coeffi-
cient f depends on distance between observed point and
the observer, and on the density of the fog.

f = e−(d∗g) (3)

f = e−(d∗g)2 (4)

where:

• d – distance of considered point from the observer,

• g – fog density coefficient.

The methods described above, thanks to their simpli-
city and resulting small computational cost, are used in
real time graphics systems. They were implemented in
Direct3D [2] and OpenGL [12] libraries. However, the ef-
fect of homogenous fog obtained with these methods does
not in fact fully reproduce realistic appearance of this phe-
nomenon, as the variable density of fog is not accounted
for.

2.2 Generating heterogenous fog with
Perlin noise

The natural phenomena usually do not change in regular
ways, but are characterized by large degree of randomness.
Such feature is also present in fog, which is a volume ob-
ject of variable density, taking irregular shapes due to wind
and air turbulence. Because of that, random noise function
seems like a good candidate to help simulate it. An argu-
ment to the function are two- or three-dimensional coordi-
nates of a point in space, and the result is a pseudo-random
value of fog’s density at these coordinates.

Noise generated by such function has a high frequency
and hence displays rapid changes between contrasting va-
lues, which is not typical for fog density distribution. The-
refore, it should be rather modelled with smooth noise cre-
ated by interpolation of random value samples sequence.
The method of generating such noise was proposed by Ken
Perlin in [8].

.
.

.
. .

.
.

.

wavelength

amplitude

frequency = 1 / wavelength

Figure 2: Amplitude and frequency of the noise function

noise0(x) noise1(x)

noise2(x) noise3(x)

Figure 3: Textures of Perlin noise octaves [13]

The noise function is characterized by two properties:
amplitude and frequency. As seen in the figure 2, ampli-
tude is the difference between maximum and minimum
noise value. Frequency is reciprocal of the distance be-
tween the noise samples.

The main idea behind simulating the fog phenomenon is
to add several noise functions with various frequencies and
amplitudes together, according to the Perlin’s turbulence
equation 5. In result, distribution of heterogenous fog’s
density is obtained.

turbulence(x) =
N−1∑

i=0

noisei(x)
2i

(5)

In the formula 5 eachnoisei(x) function is representing
the component fog’s density at the space point withx co-
ordinates (2, 3 or more dimensional). All these functions
are known as octaves. The reason for this is that each of
them has double frequency of the previous one.

The numberN of octaves can vary, but for rendering
imagesN does not have to be large. It comes from the
fact that if an octave has too high frequency, it cannot be
displayed with respect to screen and the grey scale resolu-
tions.

3 Algorithm

Modelling the heterogenous fog phenomenon takes place
in three basic steps:

• generating the noise octaves textures

• computing the fog factor

• blending colors of the scene with the fog color

The first step of the algorithm is creating four noise
textures. Their colors are in the grey scale and repre-
sent component values of the heterogenous fog’s density.
Two fundamental parameters have influence on final appe-
arance of turbulent texture of fog: frequency and ampli-
tude of the noise.

Frequency specifies the rate at which colors change
in generated texture. Low frequency noise is changing
gradually, and shifts of contrasting colors are following
slowly. Increase of frequency is causing more rapid chan-
ges, and in result rising amount of perturbations in the
image.

Amplitude is a parameter describing the range of texture
colors. The larger amplitude the larger rate of color change
and more varying image of fog. Decrease of amplitude re-
stricts the range of colors, and in effect fog’s density di-
stribution is becoming smoother.

Figure 3 shows four example Perlin noise textures used
to simulate turbulent fog phenomenon.

The first texture, with the lowest frequency, is descri-
bing general shape of fog. Following textures are repre-
senting the noise with double frequencies, in relation to
preceding ones. They are increasing level of detail in the
image by putting in it the turbulence effect.

After creating textures their colors are mixed together
according to the Perlin’s turbulence formula (5). In re-
sult heterogenous fog’s density distribution texture is ge-
nerated, as shown in the figure 4.

Figure 4: Perlin’s turbulence texture [13]

Having the final fog texture generated, the fog factor
can be calculated. It is done by involving the heterogenous
density distributionturbulence(x) in the exponential fog
equation (3) or (4):

f(x) = e−(d∗g∗turbulence(x)) (6)

f(x) = e−(d∗g∗turbulence(x))2 (7)

Using the exponential formula is aimed at enhancing the
realism of the simulated effect. Since a distance coefficient
is considered, the visibility is lower at the point being far
away from the camera, just like in real world.

The last step of the algorithm is to blend scene colors
with the fog color, depending on the fog’s factorf , with
use of the mixing formula (1).

4 Implementation

Realization of the heterogenous fog algorithm is based on
hardware acceleration in form of vertex and pixel shaders
([11],[10]). The algorithm is implemented in Direct3D 9.0
with NVIDIA’s Cg language.

The noise octaves are represented by the volumetric te-
xtures, defined in three dimensions. Various noise fre-
quencies are obtained by different resolutions of textures.
The largest frequency is represented by the largest resolu-
tion texture and vice versa. Textures are calculated in pre-
processing with use of the rand() function, and then passed
in the pixel shader’s constant registers. Smoothing the no-
ise is realized by setting the linear filtering of the texture.
Before generating textures, the amplitude is set. The ma-
ximum range of colors (the grey scale) is between 0 and
255.

Coordinates of noise textures are calculated for each
vertex of the scene in the vertex shader program. Its main
task is translation of these coordinates, what in result cau-
ses movement of the textures in various directions with
different speeds. In this way animation of turbulent fog is
realized. Calculating of the fog’s factor is done for each
pixel of the screen in the pixel shader program. It is also
mixing base scene colors with the fog color.

4.1 Vertex Shader program

Vertex shader program is making the same computations
for each vertex of the scene separately. Vertex’s positions
and base texture coordinates are passed from the vertex
stream in input data registers (POSITION, TEXCOORD0)
represented by the following structure:

struct VertexInput {
float4 Position : POSITION;
float2 BaseTexCoords : TEXCOORD0;

};

The results of computations are passed in the vertex
shader’s output registers, described by the VertexOutput
structure. It includes vertex’s position in the world-view-
projection space, base texture coordinates, four noise te-
xture coordinates and the distance between considered ver-
tex and the camera.

struct VertexOutput {
float4 Position : POSITION;
float2 BaseTexCoords : TEXCOORD0;
float3 NoiseTexCoords0 : TEXCOORD1;
float3 NoiseTexCoords1 : TEXCOORD2;
float3 NoiseTexCoords3 : TEXCOORD3;
float3 NoiseTexCoords4 : TEXCOORD4;
float4 Distance : TEXCOORD5;

};

Constant registers are set with the data necessary for
calculations. Important to fog simulation is the camera
position (CameraPos) and settings of the noise textures’
animation (Animation). The camera position is used to
calculate the distance between the vertex and observer. It

is necessary for computation of the fog’s factor. The di-
stance is passed in the output TEXCOORD5 register, and
then, after rasterisation, gets in the pixel shader input.

Animation of the fog layers is done by transforming
noise textures coordinates. All textures’ coordinates are
translated according to the coefficient, which is modified
in the main program, and set in the constant ”Animation”
register.

Here is the pseudocode of discussed vertex shader pro-
gram:

VertexOutput main
(VertexInput IN,

// constant registers:
// combined world-view-projection matrix:
uniform float4x4 WorldViewProj,
// world matrix:
uniform float4x4 World,
// camera position:
uniform float4 CameraPos,
// textures animation coefficients:
uniform float4 Animation)

{
// computing the vertex’s world position:
float4 WorldPos = mul (World, IN.Position);
// calculating the world distance
// from vertex to camera:
OUT.Distance = distance(CameraPos, WorldPos);

// calculating the noise textures coordinates:
float3 Coords;
// transformation of the noise textures’ coordinates:
OUT. NoiseTexCoords0 = Coords + Animation.x;
... OUT. NoiseTexCoords3 = Coords + Animation.w;

// passing the base texture coordinates on the output
OUT.MainTexCoords = IN.MainTexCoords;
// computing the vertex’s
// world-view-projection position:
OUT.Position = mul(WorldViewProj, IN.Position);

}

4.2 Pixel Shader program

Pixel shader program is making the same computations for
each pixel of the rasterised scene separately. Input data re-
gisters are almost the same as vertex shader’s output, with
except of POSITION register, which is only used for ra-
sterisation, and is not used in the pixel shader. The input
registers are described by the following structure:

struct PixelInput {
float2 BaseTexCoords : TEXCOORD0;
float3 NoiseTexCoords0 : TEXCOORD1;
float3 NoiseTexCoords1 : TEXCOORD2;
float3 NoiseTexCoords3 : TEXCOORD3;
float3 NoiseTexCoords4 : TEXCOORD4;
float3 Distance : TEXCOORD5;

};

The noise octaves’ textures are placed in the pixel sha-
ders’ constant registers, which also contain the base te-
xture and fog settings. With use of them and input data,
the fog factor is computed. The result of pixel shader’s
calculations is final ”fogged” color of the considered pi-
xel, which is passed in the output described by the follo-
wing structure:

struct PixelOutput {
float4 Color : COLOR;

};

Pseudocode of the pixel shader program is presented be-
low:

PixelOutput main
(PixelInput IN,

// constant registers:
// base texture:
uniform sampler2D BaseTex,
//four octaves of Perlin noise:
uniform sampler3D NoiseTex0,
uniform sampler3D NoiseTex1,
uniform sampler3D NoiseTex2,
uniform sampler3D NoiseTex3,
// homogenous fog settings:
uniform float4 Fog)

{
// setting color of fog
float4 FogColor = float4(0.8f,0.8f,0.8f,1.0f);
// read the base color
float4 BaseColor = tex2D(BaseTex, IN.BaseTexCoords);

// read the noise values
float k0 = tex3D(NoiseTex0, IN.NoiseTexCoords0);
... float k3 = tex3D(NoiseTex3, IN.NoiseTexCoords3);

// computing turbulent fog’s density distribution:
float Turbulence;
Turbulence = (k0 + k1/2.0f + k2/4.0f + k3/8.0f);
// calculating fog’s density according to turbulent
// and homogenous density coefficients:
float Density = Fog.Density * Turbulence;
// calculating the fog factor
float f = exp(-pow(Density * IN.Distance.x,2.0f));

// blending the scene and fog colors:
OUT.Colour = lerp(FogColor, BaseColor, f);

}

5 Results

Application testing was performed on a machine with the
nVidia’s GeForce FX 5200 chipset, which possesses full
DirectX 9 support with vertex and pixel shaders’ 2.0+ ver-
sions. The test scene consists on about 10000 triangles.
For such number, the animation speed is about 20 frames
per second.

Before demonstrating the results of application wor-
king, let’s see the figure 5 presenting the example homo-
genous fog effect. It was simulated with the exponential
equation (3). Generated image looks quite good but not
natural enough. It comes from the fact, that fog’s density
is constant over the whole scene, so only the distance fa-
ding can be observed.

Figure 5: Homogenous exponential fog

The realism of simulated phenomenon may be improved
by differentiation of the fog’s density. It can be achieved
by using the noise textures. The appearance of fog effect
depends on the textures’ settings. Changing their resolu-
tions has influence on the condensation of mist’s layers.
Smoothness of the effect depends on the range of texture
colors.

The results of application working are shown in the fol-
lowing figures. Figure 6 presents the heterogenous fog ef-
fect applied to the scene according to the (7) formula. The
g coefficient is set up on 0.044, and 3D noise textures reso-
lutions are:163, 323, 643, 1283. In figure 7 effect obtained
with the (6) formula can be seen, with the same settings.
Figures 8 and 9 are demonstrating influence of changing
textures resolutions, on the fog’s appearance. The noise
frequency is decreased, what is expressed by the lower
texture resolutions (83, 163, 323, 643). Figure 10 shows
the result of modification of theg coefficient, enlarged to
0.06.

Figure 6: The fog effect applied with the formula (7)
(g=0.044, texture resolutions:163, 323, 643, 1283)

Figure 7: The fog effect applied according to the formula
(6) (g=0.044, texture resolutions:163, 323, 643, 1283)

As seen in the presented pictures, different settings of
fog’s attributes produce various images of simulated phe-
nomenon. The lower the texture resolutions, the larger and
smoother fog’s layers. Controlling the animation settings
provokes different directions and speeds of the fog’s mo-
vement. Thanks to this the wind blows can be simulated.

Figure 8: The fog effect obtained with the formula (7)
(g=0.044, texture resolutions:83, 163, 323, 643)

Figure 9: The fog effect applied with the formula (6)
(g=0.044, texture resolutions:83, 163, 323, 643)

Using of the Perlin noise and turbulence produces much
more realistic looking fog effect than homogenous me-
thods do, it also makes possible the mist movement ani-
mation. However the results show that employing a suita-
ble method of homogenous fog computation also has a big
influence on simulated phenomenon’s appearance. Using
the exponential square (4) formula causes better visibi-
lity near the observer, and covering the objects situated far
away. The exponential (3) equation generates fog, which
more softly decreases the range of visibility. By changing
homogenous fog’s density factorg it is possible to control
the global field of view, which decreases wheng rises, and
vice versa.

6 Conclusions

Applying the Perlin’s turbulence function allows obtaining
realistic fog effects. In connection with homogenous fog
factor computing, Perlin’s turbulence method produces na-
tural looking fog layers with visibility decreasing with the
distance from the observer.

In the presented implementation, noise textures are ge-
nerated in preprocessing, what causes that fog’s layers to
repeat during the animation. To solve this defect, noisy
density distribution could be calculated in real time while
the applications executes.

Figure 10: The fog effect applied with the formula (6)
(g=0.06, texture resolutions:83, 163, 323, 643)

This paper can be the lead into the future works on mo-
delling and animation of natural phenomena, such as clo-
uds or more complex haze. In the future elements of ray-
tracing could be applied to obtain additional atmospheric
effects as the light influence, shadows caused by fog lay-
ers, different hours of a day.

Constant evolution and improvement of modern GPUs
will make possible executing more and more advanced and
mathematically complex algorithms on the graphics har-
dware without large cost in computation time.

References

[1] Dan Baker, Charles Boyd. Volumetric Rendering in
Realtime.

[2] Douglas Rogers. Implementing Fog in Direct3D.
NVIDIA Corporation, 2000.

[3] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen.
Visual simulation of smoke. In Eugene Fiume, editor,
SIGGRAPH 2001, Computer Graphics Proceedings,
pages 15–22. ACM Press / ACM SIGGRAPH, 2001.

[4] Wolfgang Heidrich, Rudiger Westermann, Hans Pe-
ter Seidel, and Thomas Ertl. Applications of pixel
textures in visualization and realistic image synthe-
sis. InSymposium on Interactive 3D Graphics, pages
127–134, 1999.

[5] James D. Foley, Andries van Dam, Steven K. Feiner,
John F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley Publishing Company,
1990.

[6] Jos Stam, Eugene Fiume. Turbulent wind fields for
gaseous phenomena.Computer Graphics, 27(An-
nual Conference Series):369–376, 1993.

[7] Justin Legakis. Fast Multi-Layer Fog.
ACM SIGGRAPH Conference Abstracts and Appli-
cations, Technical Sketch, 1998.

[8] Ken Perlin. An Image Synthesizer.SIGGRAPH, pa-
ges 287–296, 1985.

[9] Kim Pallister. Generating Procedural Clouds in Real
Time on 3D Hardware.Intel Corporation, 2000.

[10] NVIDIA Corporation. NVIDIA nfiniteFX Engine:
Programmable Pixel Shaders.
http://www.nvidia.com.

[11] NVIDIA Corporation. NVIDIA nfiniteFX Engine:
Programmable Vertex Shaders.
http://www.nvidia.com.

[12] OpenGL Architecture Review Board.OpenGL Pro-
gramming Guide. Addison-Wesley, Third edition,
2002.

[13] Paul Bourke. Perlin Noise and Turbulence.
http://astronomy.swin.edu.au/p̃bourke/texture/per-
lin/, 2000.

[14] Philipp Slusallek. From Physics to Rendering. 1996.

[15] Simon Premoze. Light Transport in Participating
Media. Light and Color in the Outdoors, A SIG-
GRAPH Course, 2003.

[16] Jos Stam. Stable fluids. In Alyn Rockwood, editor,
Siggraph 1999, Computer Graphics Proceedings,
pages 121–128, Los Angeles, 1999. Addison Wesley
Longman.

[17] V. Biri, S. Michelin and D. Arques. Real-Time Ani-
mation of Realistic Fog. Thirteenth Eurographics
Workshop on Rendering, 2002.

