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Abstract
The most popular methods for interactive hard shadows
rendering are shadow volumes and shadow maps.
Shadow volumes generate precise shadows but require
high fill rate. Due to excessive fill rate requirements,
shadow maps are probably the most widely used means
for generation of shadows, despite their well known
aliasing problems. In this paper, Extended Shadow Maps
are introduced, as a means to reduce required shadow
map resolution and enhancing visual quality of shadows
by encoding additional information about silhouette
edges into the shadow map by drawing quads for
silhouette preservation. Recent algorithms using this
technique were not suitable for computer games due to
their hardware requirements, because in this types of
applications, high frame rate is required. Our algorithm,
Extended Shadow Maps creates anti-aliased shadows
using fast fixed-point pixel shaders version 1.4. For
shadowing detection only 4 arithmetic instruction slots
and 3 texture pipes are used. Also, all geometry required
to render anti-aliased hard shadows using our new
method can be stored in static vertex and index buffers on
graphics accelerator. Additionally, using one dp3
instruction, arbitrary attenuation function can be
implemented.

Keywords: Shadows, Shadow Volumes, Shadow Maps,
Real-time Shadows

1 Introduction
Shadows play a vital role in our space perception [1].
Without them, scenes often look unnatural and flat; and
relative depths of objects in a scene can be very unclear.
Shadows are indeed essential in creating visually realistic
images, but they are also computationally intensive and
hard to generate.

In section 2 we present some algorithms related to our
work, in section 3 we introduce Extended Shadow Map
algorithm, section 4 presents our implementation, section
5 gives results of this method and section 6 is discussing
about limitations and advantages of our approach.     

2 Previous work
Numerous different methods and algorithms have been
developed for generating realistic looking shadows using
acceptable amount of resources. 
Review of many older shadowing techniques can be
found in the survey published by Woo et al.[2] and in
Watt and Watt's book [3]. 

Unfortunately not all techniques are suitable for
hardware rasterizers. Two most common techniques for
hardware accelerated complex shadowing are stenciled
shadow volumes and shadow mapping for spotlights.
Shadow mapping can be extended to omni directional
lights using multiple passes.

2.1 Shadow volumes

Shadow volumes are polyhedral regions that form
shadow of an object. They are formed by extruding the
silhouette edges away from the position of light source.
This auxiliary shadow volume geometry is then rendered
along with the original scene. By counting the number of
front-facing and back-facing shadow volume faces in
front of each rendered point, it is possible to determine
whether it is in shadow or it is lit. Shadow volume
methods have the advantage of generating precise
shadow boundaries. Unfortunately, the pixel fill rate
requirements for rendering shadow volumes remain
substantial. Shadow volumes have been recently extended
to soft-shadows [4][5]. Although this method requires
excessive fill rates, it is widely supported by PC-market
graphics accelerators and benefits from highly optimized
rendering pipelines.

2.2 Shadow Maps

Shadow mapping was introduced by Williams [6].
Shadow maps require an extra rendering pass to generate
a depth image from a point of view of the light.
Subsequently, shadowing can be determined for any point
in space by performing a constant-time lookup in this
shadow map. To shade a point on a surface, point
position is projected into light space and tested against
the corresponding shadow map depth sample. The point
is in shadow if it is further from the light than the stored
depth value. 

Since it is an image-space technique, if offers
advantages in terms of generality, speed and ease of
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implementation. Unfortunately, like any discrete image-
based technique, shadow maps suffer from aliasing
problems. Aliasing occurs, when the shadow map
resolution used is insufficient for the rendered image.
Removing aliasing in shadow maps has been a difficult
problem to resolve. Percentage-closer filtering[7] is one
of the solutions, but in cases of severe aliasing it can only
mask the aliasing by blurring. Deep shadow maps[7]
address aliasing by using jittered samples and pre-
filtering them. Silhouette Maps[10] uses additional
information encoded into silhouette map to reconstruct
shadow edges. 

Silhouette map is a texture, whose texels represent the
coordinates of points that lie on the silhouettes of objects
as seen from the light source. The purpose of the
silhouette map is to provide information on the location
of the shadow boundary so that it can be faithfully
reconstructed. The shadow boundary can be
approximated by a series of line segments. The piecewise
linear contour is  reconstructed during the second stage of
the algorithm by connecting adjacent points. Dual
contouring algorithm is used to reconstruct shadow
boundaries from silhouette map during the rendering.
Unfortunately implementing this technique in hardware
using pixel shaders requires approximately 46
instructions per pixel, and 60 instructions per shadow
map fragment. 

Recently, Eric Chan and Frédo Durand [11]
independently developed a soft shadow algorithm that is
using similar principles as ours. They combine shadow
maps with geometric primitives called smoothies to
render fake soft shadows. We compare their approach to
ours in Section 6.3.

3 Extended Shadow Maps
Standard shadow maps perform well in most areas of the
image, but suffer from aliasing artifacts near shadow
boundaries. Similarly as in Silhouette map algorithm,
standard shadow map is augmented with additional
information, which is then used to reconstruct shadow
boundaries. 
Like standard shadow map algorithm, extended shadow
map has two stages. The first pass of algorithm uses the
light source as a view point and shadow depth map and
additional information about silhouettes are generated.
Silhouette information is encoded inside shadow map
using one or two quads per silhouette edge, depending on
the local curvature. Shadow depth map and silhouette
information is encoded into the same 32bit texture. In the
second stage, scene is rendered from the viewer's
perspective and shadow determination is performed.
Extended Shadow Map is then used to improve the
quality of shadow near the shadow boundaries. This is
done differently as in [10] [11]. The main criteria for
selecting edge representation was, that the algorithm
should be as fast as possible, it should use as little as
possible texture fetches and pixel shader arithmetic

instructions and the required pixel shader version should
be as small as possible. Next, reconstructed shadow need
not to be exact, but should look well.

3.1 Silhouette representation

Silhouette edge representation uses the observation, that
bilinear interpolation of coplanar vertices forms a planar
surface. We can look at a texture as a height field, where
actual texel values represents heights. When four
neighboring texels are coplanar, then bilinear
interpolation of these texels will form planar surface. So
if we store signed distances to silhouette edge to the near
texture fragments, edge can be represented by isosurface
of bilinear interpolation of these values, i.e 

(i,j corresponds tou,v), so if f(u,v) = 0, u,v will be
silhouette boundary. Unfortunately, Z-buffer removes any
fragments rendered inside objects and original shadow
map algorithm creates shadow that is due to discrete
sampling sometimes 0.707 pixels wider. This can be
overcome using more passes and 2.0 pixel shader, which
would reduce performance to level that is not acceptable
for computer games. Instead of this, we use near clip
plane manipulation to perform long-distance Z-biasing,
and actual shadow is extended 0.707 pixels in shadow
map space. Z-biasing alone is not always working
properly, because some fragments are still not rendered
and some hidden silhouette edges can emerge. To
minimize artifacts of this method, hidden silhouette edges
should not be rendered. For fast determination, if
fragment being rendered is behind the edge, silhouette
depths are also stored into the extended shadow map. 

To generate silhouette information, the silhouette
edges of the geometry must be identified using any of the
techniques for shadow volumes. Only silhouette edges
formed from concave facets need to be processed,
because the other will not smooth any shadow boundary.
From every edge one or two quads are created according
to local curvature. This can be preprocessed, and the
whole silhouette determination and quads construction
can be done in graphics hardware using programmable
vertex pipeline.

3.2 Shadow determination

To determine, if a point in the scene is in shadow, it is
first projected into the light space. Its depth is then
compared with shadow map depth sample and silhouette
edge depth sample. This depths are point filtered. Results
of this comparisons are treated as flags and are encoded
together with bilinearly interpolated silhouette edge
distance intou coordinate of a texture.v coordinate is left
unused, it can be used to encode arbitrary attenuation
function. Then a dependent lookup is performed to
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transform flags, edge distance and attenuation factor to
light intensity.

This technique is well suited for hardware. Small
changes in hardware can increase rendering performance
(fetching filtered and not filtered texel from the same
texture), but with standard pixel shaders version 1.4 we
are able to get real-time performance for today computer
games environments. 

Figure 1 visualizes reconstruction of anti-aliased
shadow boundaries from extended shadow map.

4 Implementation
We implemented this algorithm on the ATI Radeon 9600
Pro using programmable pipeline of the Microsoft Direct
X 8.1 API. We have implemented version for both point
lights and spot lights. Point light were rendered using 6
shadow maps together with stenciled shadow volume to
mask geometry outside shadow map being rendered.
Also, static lightmap pass was used in our
implementation, but lightmaps were only used to add
ambient factor to rendered scenes. Three rendering
passes were needed per single shadow map, one to create
conventional shadow depth map, one to render silhouette
quads, and one to render scene and evaluate shadowing
for each image fragment. 

The first pass, rendering a depth map of the scene
from the light point of view proceeds as in conventional
shadow maps, but instead of using Z-buffer values,
fragment depth is stored into green color channel. Also,
0.75 is stored into edge distance channel (red) and
maximal distance is stored into edge depth channel
(blue). Alpha is used to mask non-silhouette depths, it is
initialized to zero. Although this is possible to be done
using fixed function rendering pipeline, small pixel
shader was used, in order to minimize switches between
legacy and programmable pipelines. Fragment program
uses one transformation of texture coordinates into color
values instruction and one arithmetic slot formove

instruction to store these values to output register. Alpha
channel is initialized in parallel to zero from pixel shader
constant. Figure 2 shows extended shadow map using 32
bit rendering, 8 bits per color channel.

4.1 Rendering silhouette quads

Silhouette quadrilaterals are used to compute signed
distances from silhouette edges in the shadow map space.
Silhouette distances are transformed through texture,
because using only linear distances was not sufficient.
The size of the quadrilateral is chosen to guarantee that
the fragment is generated for every texel that would be
needed to correctly interpolate edge distances. 

Due to shadow shift, no fragments inside shadow
occluder need to be generated, but doing so reduces
visual defects of this method in cases, where two or more
silhouette edges crosses. Because we cannot guarantee
that some fragments generated inside occluder will not be
removed during depth test, some distortions can arise.
For these texels only silhouette quad depth and alpha are
changed. Mentioned distortion is not critical, since
shadow edges are shifted 0.707 pixels away. 

All potential silhouette quads are encoded as
degenerated quads. Every vertex consists of an position,
plane equation and extrusion vector as shown in Figure 3.
For silhouette edges detection on graphics hardware, a

Figure 1: Shadow boundaries reconstruction from
extended shadow map. Shadow boundary is shifted
0.707 pixels in shadow map space from its orginal
position 

Figure 3: (Left) two triangles sharing potential silhouette
edge e1e2, (Right) created degenerated quad

Figure 2: Extended shadow map projected to scene.
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similar algorithm as for shadow volumes algorithm is
used. 

To draw a quad, we simply offset the vertices on
either side of the line by a extrusion vector. Length of
extrusion is such, that after projection to shadow map, all
texels that would be needed are processed. Extrusion
length is evaluated from vertexw multiplied with a
constant. Direction of extrusion is specified according the
position of light from given plane equation. If the
extrusion vector, if it is behind, it is moved in opposite
direction half distance. These shifts automatically
generate non-degenerated quads only from silhouette
edges, because a valid quad is only generated iff the light
is in front of one plane and behind the other. See Figure 4
for details.

To minimize complexity of vertex shader, generated
silhouette quadrilaterals are not rotated to be parallel to
screen space. Instead, if mutual angle of corresponding
facets is less than 90 degrees, two silhouette quads are
generated for single edge. Imaginary degenerated facet is
created with plane equation set to beveling plane formed
from sum of corresponding plane equations. Both quads
are now created as for normal case from degenerated
quad and corresponding facet. See Figure 5 for details.
We preferred this approach for two reasons: First, there
are not many facets meeting this conditions and quad
overhead is much smaller than performance loss caused
by more complex shader. Second, introduced error was
small to notice. In detail, maximal error we introduced
with this strategy is less than 30%. Worst case happens if
angle between two facets is exactly 90 degrees, and light
is just above one facet. Angle between light direction and
quad normal is 45 degrees. In this worst case, length of
quadrilateral is shrinked 70.7%.

To minimize errors caused when two or more
silhouette quads overlaps, we move visual defect to the
edge which is closer to light, because near light there is
higher shadow map sampling density, so error is
minimized in this way. This is achieved with setting
D3DRS_BLENDOP to D3DBLENDOP_MAX,
D3DRS_SRCBLEND to D3DBLEND_ONE and
D3DRS_DESTBLEND to D3DBLEND_DESTALPHA. 

Silhouette quads are rendered with alpha set to one.
Alpha is used to ignore depths and distances generated
for non-silhouette texels. In the case, where more
silhouette quads overlap, maximal depth and minimal
edge distance (maximal value) is chosen. Edge distance
and edge depth values generated for non-silhouette texels
are masked using alpha blending. This is accomplished
with modulating back buffer with alpha, which is for
these texels set to zero. For the first edge rendered to
single pixel, alpha is set to zero, so MAX blending
function with these settings only passes source values.
When more edges are rendered to single pixel, alpha is
set to one from previous quad, and MAX function returns
maximal depth and maximal inverted distance. 

In case, when combination of this blending operation
together with these blending factors are not supported,
silhouette rendering can be done in two passes, in the first
pass, silhouette quads are rendered only to overwrite
values rendered in non-silhouette texels, then second pass
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Figure 5: Angle between facets f1 and f2 is less than 90
degrees, two degenerated quads (extrusion vectors are q1

and q2) are generated for their common edge.
Degenerated quad is dotted.

Figure 4: Light source L is behind plane n2, appropriate
vertexes are shifted against extrusion vector, L is in front
of plane n

1
, appropriate vertexes are shifted according

extrusion vector,resulting quad is not degenerated.

Figure 6: Transformation texture that transforms linear
edge distances.



is used to select maximal values for depth and edge
distances using MAX blending. 

4.2 Encoding edge distances

Distances from silhouette edges cannot be encoded to
ESM directly as linear gradients. To reduce some
artifacts that can arise espetialy when shadow map
resolution is low and more silhouette edges crosses, there
must beguard zone on in-occluder side of silhouette
edge. One dimensional texture is used to encode values
with quard zone. This transformation texture is shown on
figure 6. Guard zone is part of the texture between zero
and 0.25. Without this section, end of one silhouette quad
can repulse shadow from another quad below it. As a
consequence, small lit holes between shadow created
from opaque triangles and shadow created from
silhouette quads will emerge (Figure 9).

Silhouette quads are scaled so, that edge passes
through 0.33, and 0.5 is mapped 0.707 pixels away from
edge.

5 Results
All of the images presented in this section and in the
accompanying video were generated at resolution of
640x480 on a AthlonXP 2800+ system with an ATI
Radeon 9600 PRO graphics card. Scene was lit with
point light, per-pixel bump mapping and per-pixel linear
attenuation was used. 

Figure 7 shows typical in-door game scene of a
factory with about 11300 triangles lit by one point light,
materials contain diffuse and bump map. Only diffuse
lighting was used. With our method, we have achieved
88fps with shadow map updated every frame, 135 frames
per second was achieved without updating shadow map
information. Second frame rate is important, because for
computer games typical case, only a small fraction of
lights need to be updated. Also shadow need not to be
updated more than 25-30 times per second.

Presented frame rate can be even higher. Our
implementation was not optimized, the number of
Direct3D API function calls is much higher than
recommended by graphics chips manufacturers
(approximately ten times higher). 

Figure 8 shows comparison of our method to an
ordinary shadow map algorithm. Shadow map resolutions
were the same for both images. Ordinary shadow map
algorithm was not implemented, scene was rendered with
the ESM, but with rendering of silhouette quads disabled.

Our implementation used for surfaces having diffuse
and bump map 15 pixel shader instructions (6 texture
fetches, 2 transformation of texture coordinates to colors
and 7 arithmetic instruction slots). This amount is still
high, but is significantly smaller than in existing methods.
Without diffuse and bump texture, only 9 instructions
were required and frame rate without extended shadow
map regeneration was approximately 70% higher.

Figure 8: Image rendered with Extended Shadow Maps
(top), same scene with an ordinary shadow maps
(bottom). Shadow map resolution for both images was
the same.

Figure 7: Image rendered with Extended Shadow Maps
at 62fps, 4.2MB texture memory in 8 shadow maps was
used for whole scene. Scene contained 40.000 triangles.
Per pixel attenuation was used.



6 Discussion
The above results illustrate the advantage of extending
shadow map with edge distance information. Although
we were limited to encode only one silhouette edge per
fragment, we achieved significant gain of quality and
maintain high frame rates. Using on-graphics hardware
silhouette detection and silhouette quadrilaterals
construction, we can take advantages of vertex and index
buffers and thus store complete geometry on graphic
accelerator. This approach can be also used for skinned
models and key-framed animations, so it is perfect-fit for
todays' computer games. Also, not generating silhouettes
on host processor allows us to use remaining time to be
used for other purposes (i.e. AI, physics...), which is
especially important in computer games. Algorithm can
be simply extended to cast shadows from alpha-keyed
textures and to support shadows cast by particle systems.

We have tested rendering point lights as six separate
spot lights and due to high precision of rendered shadow
we achieved good results, although point lights were
more than six times slower. 

We have tried to reduce artifacts created when two or
more silhouette quads overlaps with two strategies. The
differences were only in choosing edge depths and
distance values. First, we tried to store minimal depth and
minimal distance, as it is done in [11]. This approach
created cracks near shadow boundaries due to bilinear
filtering which was highly disturbing espetialy when
shadow map resolution is low, which is required for
maximizing performance. Visual defect is shown in
figure 10. We tried to solve this with extending silhouette
quads inside occluders, but this resulted in undesired
side-effect as shown in figure 9. Second, maximal depth
and minimal distance were tested, and this strategy was
chosen. Figure 11 shows the same scene rendered with
second strategy. We have not tried to encode more than
one silhouettes inside one fragment, because this would
require more rendering passes and switches of render
targets. 

6.1 Limitations

Major limitation inherited from shadow maps is the use
of discrete depth buffer samples, which leads to aliasing
at shadow edges. Due to to performance limitations we
can use only 32bit rendering, so maximally ten bits can
be used to store depth values, so only small depth range
was possible. This problem can be overcome with the use
of floating point render targets, but this introduces
performance penalty due to higher memory transfers.
Also, as we are not using hardware support for shadow
maps, which is not available on all hardware, we have to
solve self-shadow aliasing on our own. We have used
depth biasing and read values one shadow map unit
above rendered surface. This introduces 3 instructions in
vertex shader. Limitation is also number of stored
silhouette edges per fragment. 

6.2 Hardware improvements

Higher performance can be achieved, when there was
support for percentage closer filtering to be used on an
arbitrary texture. Then, a similar principle for “behind
edge” detection can be used as in [10]. Also, in a pixel

Figure 9: Minimal depth and minimal distance strategy
creates wider shadow near region where two or more
silhouette quads overlap. Image contains two crossed
pipes casting shadow on the wall behind them.

Figure 11: Maximal depth and minimal distance strategy
behaves almost like standard shadow mapping near
region where two or more silhouette quads overlap.

Figure 10: Crossed silhouette quads. Cracks created due
to bilinear filtering. Silhouette quads are not extended
inside occluders.



shader, we require to read the extended shadow map
twice, once with linear filtering to read interpolated
distance values and once with point filtering to read
depths. This reduces number of textures that can be used
in pixel shader. This method would benefit from setting
different filtering methods for every color channel. One
can also imagine to implement our method directly on
hardware as a single instruction. 

6.3 Comparsion with smoothies maps

First, we have to mention, that smoothies maps were
designed to render pseudo-soft shadows instead of hard
anti aliased shadows generated by our method. Our
approach is designed to be used with low-resolution
shadow maps, on the other hand, smoothies maps give
not as good results when shadow map resolution is low.
Figure 12 shows images rendered with smoothies map
algorithm. Notice the distortion near occluder when
smoothie size is 0.2 and shadow map resolution is
256x256. When compared to figure 8, our method gives
better results when shadow map resolution is low. Also,
hardware requirements are different in favor of our
method. The same is the idea to encode additional data
inside shadow map using geometry generated from
silhouette edges, which was developed independently
from our method.

7 Conclusion
We have presented new anti aliased hard shadow
generation algorithm based on shadow maps. We have
achieved high frame rates for spot lights and point lights.
Our algorithm is able to use arbitrary shadow casting and
receiving objects based on triangular meshes. We believe
that this algorithm can be successfully implemented in
computer games and thus increase realism without high
performance penalties known from stenciled shadow
volumes algorithms. 
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