
Precise Merging of Multiple Phographs
Michal Seeman*

Department of Computer Graphics and Multimedia
Brno University of Technology

Brno/Czech Republic

Abstract
Photographs are records of projected images of the

photographed scene. All the parameters of the projection
are defined by the lens and the image sensor used.

To efficiently merge multiple photographs, the
projection parameters must be adjusted and the lens
distortion has to be computed and eliminated. This paper
describes a method for merging of multiple photographs
and for elimination of the error caused by the lenses. The
presented method enables for creation of very large
(wide) photographs with no geometrical distortion caused
by lenses or even with a simulation of specific distortion.
Keywords: photography, lens, panorama, merging

1 Introduction
The aim of the presented work is to create a wide

image by merging multiple photographs taken from the
same place. For each photograph, an information about
the lens, focal length, and camera direction should be
used. Many commercial and freeware applications can be
found for this purpose but most of them do not compute
the lens distortion (Canon PhotoStitch). Instead of
creating realistic projection of the scene, they only
deform the images to fit together so some parts of the

images could be misshaped. Some precise applications
for merging images do exist but they are either very
expensive or difficult to use.

One of the major drawbacks of the majority of
commercially available software systems is that they do
not allow for proper adjustment of the final projection of
the merged photographs. The proposed system allows the
user to project the photographs obtained from some point
in a 3D space onto a sphere with that point in the centre.
The user can select a most suitable view of the
photographs to be merged and render the output image.

To merge the images precisely, the lens distortion has
to be removed firstly. It gives the pure error-free
information about the scene. The method is discussed in
the section Distortion elimination.

2 Unit sphere image merging
The method proposed in this paper is based on the

idea that the photographs taken from the same place can
be projected on a unit sphere. The unit sphere with the
photographs then can be projected on a plane that
represented the merged photographs. After the user
selects the projection, the final photograph containing the
merged photographs can be rendered.

*xseema00@stud.fit.vutbr.cz

Figure 1: Unit sphere projection

The geometrical properties of the unit sphere are
suitable also for description of the lens used during
photographing. If an ideal reverse lens transformation
existed, it would get a 3D vector from each place on the
photograph; however, as the distance of the photographed
objects is unknown, the length of the 3D vector would be
unknown, only the direction would be valid. So length of
all these vectors can be set as 1. Therefore, all the points
of the photograph are considered to lie on the unit sphere.
This sphere, seen from it's centre would simulate the
photographed scene's appearance (see Figure 1).

3 Image distortion elimination

The photograph is a projection of the objects in the
scene onto a sensing plane (Figure 2). As true
information about the scene is needed, both the image

data and the lens parameters must be known because the
lens performs the transformation from a 3D space into the
flat (plane) coordinates.

To implement the projection, the lens has to be
described in some way. The general lens transforms any
point in the space into a point lying at the sensors sensing
plane (or to an invalid point if the point in space is out of
the view). This transformation should be simplified and
mathematically described so that is is usable in the
software. Most of the real lenses are axis symmetrical. It
means that all the optical elements in the lens are
symmetrical according to the lens axis. The errors caused
by the non-symmetry of the lenses are not considered in
this paper. The only value to be transformed, if the lenses
are considered symmetrical, is the angle from the lens

Figure 4: Screenshot from the program

Figure 3: Lens projection

Figure 2: Lens function

axis to the pointing vector. So the lens function can be
represented by relation between the distance from the
sensor centre and the angle from lens axis (Figure 3). For
better usage features, let us define a function which uses
tan (angle) instead of the angle itself. This function is be
easier to work with, from several points points of view.
For example, this function is linear for the ideal lens.

The function can be described as
sensor distance = l (scene angle)
and we can define inverse function
scene angle = l-1 (sensor distance)
The functions of the ideal lenses are given

analytically and functions of the real lenses are
interpolated based on a number of measured points
(samples). The inverse (projection) function could be
evaluated easily. Now as both simple lens functions,
forward and inverse are known, the complex lens
functions can be found.

sensor position = L (scene vector)
scene vector = L-1 (sensor position)

Let us assume that all of the photographs were taken
in different direction, though from the same place. The
angle has to be represented in some way. The proposed
way is to use matrix of 3*3 floating point numbers that
form a vector base. Each vector of the base is of unit size
and the vectors are mutually perpendicular. The direction
could be obviously represented by three angles, but the
vector base provides more comfort for further
calculations. A transformation must be found that
converts one photograph's co-ordinates into another
one's. Such transformation can be evaluated easily. The
co-ordinate vector has to be multiplied by the first lens's
matrix and then by the inverted matrix of the second lens.
This is simple to implement for each matrix is normal.

GlobalVector = Vector · Matrix
Vector = GlobalVector · Matrix-1

where Vector is GlobalVector in the Matrix base's co-
ordinates

4 Rendering the image
To evaluate a pixel's value, it's necessary to compute

the pixel's 2D coordinates in the source photograph(s).
This can be done using the above described projections:

 The new image pixel's co-ordinates are transformed
by the new image's lens function. The transformation
creates 3D position vector. This vector is multiplied by
the new image's direction matrix and then by the source
image inverted direction matrix, as described in the
previous section. The result is 3D position vector of the
pixel, but seen from the source photograph direction. The
last step is to transform the vector by the photograph's
lens function. It computes the pixel's coordinates on the
source photo.

SourcePixel = L(L-1(NewPixel) · NewMatrix · SourceMatrix-1)

But the resulting location cannot be directly used for
obtaining the pixel's value as the alignment problems can
occur due to inproper sampling. So multiple surrounding
pixels should be used to avoid alias effects. And if the
final pixel location is contained in more source images,
the value of such pixel is computed as the weighted
average of the colours of all the images. The source
image's pixel's value gets less weight if the pixel is
positioned near to the source image's border. Such
approach removes sharp edges at image seams as can be
seen in Figure 4. The image shown in Figure 4 is the
preview image that does contain the visible seams.
During the final rendering, the visible seams are
removed.

Viewing one image data from another image's
direction is relative, no matter if one of them is the newly
generated image. The process is similar to the real
photographing. One important think is that we have to
choose a lens - either real or ideal, specified analytically.

5 Finding mutual direction
The user usually cannot set the direction precisely.

The reason is that he cannot see the finest details of the
images; the quality of the images during the real-time
redrawing cannot be compared to the final rendered
image. For the final rendering, the precise direction has
to be found .

Let us examine the problem. The image can be moved
around the unit sphere and turned around its axis. So the
position can be changed in three ways. To see the
complexity of this problem if it was to be solved by
examining each possible combination of pixels. Let us
assume that both the horizontal and vertical positions can
be of so many states as the size of the image in pixels.
And if the image grows, also rotation needs to be set finer
because the incorrect rotation becomes more visible near
the border. So the cardinality of rotation variable grows
with the image size too. We have n3 possible
combinations. For each of the combination the quality
has to be computed. The complexity of the quality
computation is n2. So the whole complexity will by n5. To
find the direction in an acceptable time, a better
algorithm must be found. And a way to improve
(decrease) the complexity does exist. The problem just
need to be turned inside out. The outer loop passes all
image pixels and for each one we look for the ideal
position. Since now it seems that it does not change the
computation time. But for each pixel, only two
dimensions are searched, so the complexity changes to n4.
And from the pixel position it can be said that moving it
can affect in translation or rotation of the image. Also,
average values of translation and rotation can be used.
This way, the program can place the image onto the right
position. Then the final image can be rendered.

Here is a simplified algorithm. In fact, the centre of
the rotation has to be found in another loop.

for(P = all image pixels)
{
 for(N = pixels close to P)
 Find pixel in the other images which suits best to P
 Translation += BestP – N
 Rotation += angle from N to BestP
 around Centre
 Count += 1
}
Translation /= Count
Rotation /= Count

6 Implementation
The whole project is implemented in C++. The main

class is TPhoto. It holds the image data, reads and stores
it to files. TPhoto also contains the direction matrix, focal
length value and pointer to the TLensBase virtual class
representing the photograph's projection lens. The lens
has the same functionality no matter if it's used for a
source photograph or for the rendered image. It can be
used by virtual functions AngleToFilm and FilmToAngle.
Their deal is discussed in the section Lens parameters.
From TLensBase three real classes are derived:
TIdealFlatLens and TIdealSphericalLens are
mathematical models of these two ideal lenses.
TInterpolatedLens reads measured data about a real lens
and simulate it's behaviour.

Open-GL library for the scene visualization. It offers
everything the project needs for drawing and by now it's
accessible on nearly every personal computer.

7 Future work
Obviously, many aspects of the presented system can

be improved. When some photographs are taken using
different exposure or when the light conditions in the
scene changes too fast, some photographs could be
darker than the others. So brightness and contrast
calibration for each photograph should be included and
some lighting corrections of the lenses should be
included as well.

In the sample panorama shown in Figure 4, grey
gradual filter was used to suppress bright sky. Inexact
balance of the filter caused the annoying dark stripe at the
seam. Therefore, also important would be to implement a
brightness gradient correction and vignetting correction.

Another question is how to get most of existing lenses
measured and whether to include some asymmetric error
corrections. The solution might be to implement a
calibrating program, which would create a lens model
from a reference photograph or a set of reference
photographs.

8 Conclusions
This project demonstrates a novel way of merging

photographs. The unit sphere projection enables easy
implementation of lens distortion elimination. It also
helps to create a comfortable user interface.

A demonstration application has been developed,
which respects the physical parameters of the projection.
And it can be used even by a photographer without much
technical skill.

9 References
[1] Žára, J., Beneš, B., Felkel, P.: Moderní počítačová

grafika, 1998, Computer Press, Czech Republic,
ISBN 80-7226-049-9

[2] Canon Technology: Digital Cameras, 2005, Canon,
Inc., USA (available at
http://www.canon.com/technology/index.htm)

[3] Segal, M., Akeley, K., Frazier, C., Leech, J., Brown,
P.: The OpenGL Graphics System: A Specification,
Version 2.0, October 22, 2004, Silicon Graphics,
Inc., USA (available at http://www.opengl.org)

[4] Watt, A., Watt, M.: Advanced Animation and
Rendering Techniques, Addison-Wesley 1992USA,
ISBN 0-201-54412-1

TLensBaseTLensBase

TIdealFlatLens

TIdealSphericalLens

TInterpolatedLens

TPhoto

TSourcePhoto

TDestPhoto

