
Graphical Support of the Traffic Simulation System

Jana Hájková
hajkovaj@students.zcu.cz

Department of Computer Science and Engineering

Faculty of Applied Sciences
University of West Bohemia

Pilsen, Czech Republic

Abstract
This paper describes the editor of street graphs, which is
a part of system for a traffic simulation – Java Urban
Traffic Simulator (JUTS). It enables the users to create
a street graph from the given geographical data, or to
modify it. The street graph is a detailed road map of
a town district, it includes roads, crossroads, vehicle or
parking lanes. Street graphs are intended to be used as an
environment for a traffic simulation in Pilsen (Czech
Republic), or in any other town which can provide the
whole simulation system with all input data in the correct
format.

All actions of the editor can be done in an elegant
way, users do not need to be specialists in geographical
systems. The users can create a new map or they can
change an existing map saved in XML format.

Keywords: road map, map-editing, XML, GIS systems,
simulation system, 2D system, JUTS.

1 Introduction
In Pilsen, as well as in most cities and bigger towns,
there is a very bad traffic situation both in the historical
center with a great number of narrow lanes, and on the
main roads with the heavy traffic. As in Pilsen there is no
simulation system that works on the microscopic level (it
means a simulation of particular vehicles), we were
asked to create a simulation system that would enable
a traffic simulation based on the real data measured
directly inside the roads, and that could be extended in
the future.

In this project we cooperate with the transport
department of Pilsen municipals from which we obtain
the data for the half-automatic simulation map generating
and the data for running the simulating process coming
from several detectors. For software preparation and
testing we use the data from one small district of Pilsen.

We are trying to create a complex simulation system
with easy methods for editing and generating simulation
maps and other modules for data preprocessing. The
main aim of this project is to simulate the traffic
concentration depending on real data measured on the

real roads and at crossroads. Basic parts of our system
are a simulation core [1] and a graphical user interface
that communicate together and perform the simulation
with an online visualisation. The system also includes
a map editor and transformation utilities for data
conversions. The Map editor serves for an easy and
comfortable preparation and editing the maps (= street
graphs).

This paper shows how a traffic simulation can be
graphically supported by creating a special tool – the
graphical editor. Also a close relationship to data files
and their formats is described.

Section 2 goes into the related work, existing GIS
system and systems for traffic simulation. The structure
of the system into more detail decribed in Section 3, file
format specifications in Section 4. More information
about the graphical editor and some of its most important
functions can be found in Section 5. Section 6 concludes
the paper.

2 Related Work
A traffic simulation system can be a very useful tool
while anticipating traffic jams, possible problems during
road reconstructions, etc. The transport department of
Pilsen municipals is using just a sketch tool for global
traffic flow calculations based on some public and
commercial area positions together with a raw traffic
network structure. As no microscopic simulation is
available, Pilsen is interested in creation of a microscopic
simulation model of the traffic flow and in getting more
information about traffic in more specific areas.

As we want to have a detailed model and a manual
map creation takes a long time, we need some graphical
tool for a semi-automatical map creation. At first, we
were trying to find some suitable existing system that we
would be able to use for the preparation of street graphs.
That is why we were exploring GIS systems.

According to [2], there are over 20 companies
(e.g. Bentley, Intergraph, ESRI, Foresta, Gepro, ...)
dealing with GIS. The number of products themselves is
even higher. Most of them put stress on a coordinate
system exactness, a work with rasters and many other
geodetic and construction functions which are important
for the map creation. At a user’s disposal there are many

functions for various distances, surfaces or land tract
computations. Software packages differ in size of the
areas they are working with – some are good for
processing the whole states, some are suitable for
covering coordinations of building estates, roads or
stands only.

The basic functions of GIS systems are usually very
similar, the systems differ in specialized functions. Due
to the requirements for a close cooperation with other
parts of the simulation system, requirements for
specialized functions e.g. for crossroads editing. Since it
is necessary to have a simple and cheap tool, we decided
to find a system most conformable to that we would
need, and to create a new specialized graphical tool for
the simulation map creating and editing – a graphical
street graph editor. After consultations with experts from
the Department of Mathematics – the Department of
Geomatics, University of West Bohemia, we decided to
use the system Kokeš [3].

The basic study was to get a maximum amount of
information concerning the service and style of work in
the systems for map processing. We tried to find such
functions which would simplify and speed up editing of
street graphs to the user.

A graphical editor of street graphs has to combine
some control elements used in usual graphical editors
and some special functions for manipulation with the
map and its parts – crossroads, roads, etc.

3 The JUTS project
At the beginning of the JUTS project, there was only
a case study for a new microscopic model. But during the
time, as the cooperation with the Pilsen city has been
growing, it has become a project with many
subproblems, subprograms and team members. The main
part of the project is the simulation module that loads the
map and performs the simulation and enables
visualisation of the simulation. Input data for the
simulation are prepared in the separate part of the
system.

Map data (geographical coordinates and information
about crossroads) are loaded by the map editor. In the
editor, data are processed into the form of a map and
saved in the XML files.

Values of the traffic intensity are measured by
detectors – measuring loops – which are placed under the
surface of each crossroads lane. These detectors are
counting numbers of cars that drive over, and every 15
minutes they save the measured values in the form of
a separate file to the central computer. We can operate
with these files. At present, we can apply data from the
whole year 2004. Measured values are preprocessed in
the separate system part and read in the simulation part
of the system, where the real traffic is simulated.

The process of simulation can be followed online (it
means the user can see how cars were driving in the
observed district) or offline (the user is interested just in
some critical sections of the traffic during the day and in
the final statistics; the visualisation is not used). A more

detailed description of JUTS system you can find in [4].
The structure of the system is shown in Figure 1, the
whole project is written in Java.

The graphical editor serves for comfortable
preparation of the simulation system input data, but they
can be also prepared by a direct modification of the XML
files. It uses known techniques but because of being so
specialized, it cannot be produced by any other tool.

4 File Formats
Input and output files have a specific format. This format
was one of the basic things we had to standardize at the
beginning of the work because there are several parts of
the system that use these files. Except for two input files
with the geographical data, files are given in an XML
format. The XML format is very advantageous for many
reasons (well prepared methods for XML processing in
Java, universality of this format and its simplicity).

There are five files with which the editor works – two
input files with measured geographical data (coordinates
of road segments and crossroads points), an input file
with crossroads description, an output file with the
graphical part of the street graph data which is used by
the simulator for a map visualisation and a simulation
output file with relationships of roads, crossroads, etc.

4.1 Input File – Road Segments

This file has not an XML structure. It is a text file
containing geographical data – vertex coordinates of all
road segments. Each line contains coordinates of
a bounding box of one road segment. All coordinates are
measured with respect to the official geographical
measured point which is located near the town of Talin
(the starting point of the S-JTSK – the system of the
unified Czech/Slovak Trigonometric Cadastral Net [5]).

These values do not give the exact direction of the
road segment. They just say that the segment is closed
inside of the bounding box and it starts and ends on the
border of the bounding box.

4.2 Input File – Crossroads Points

It is another text file. It gives all coordinates of
crossroads points of the processed region. A crossroads
point can be a crossroads or just a point where

Figure 1: Structure of the JUTS system.

“something happens“ (e.g., an exit from a parking place,
or just a connection of two road segments). Each road
segment goes from one crossroads point to another.

Measured values are, as in the first input file, given
with respect to Talin.

From these two input data files, a basic road net can
be automatically prepared. For each road segment
bounding box, two crossroads points are found and a
road segment is determined as the segment of a line
between these two points. Although we use this
approximation, it gives good results for the simulation.
Examples of possible situations during connecting
crossroads points and road segment bounding boxes are
shown in Figure 2. An example of a final road net is
shown in Figure 3.

4.3 Input File - Crossroads

The file has an XML format and includes data from the
traffic light controlled crossroads. A crossroads is
described from two points-of-view, a static view and a
dynamic one. The static view describes the crossroads
from the view of a designer (a total number of streets,
their names, a total number of vehicle lanes and their
directions, etc.). The other view represents the data from
measuring loops detecting cars driving over detectors and
formulas for calculation of the traffic intensity. This part
of file is not important to the graphical editor.

Each crossroads has its name and number. These
attributes are gained from the official city infobase. If we
look at the crossroads from the designers point-of-view,
we can see that each crossroads has several streets, with a
defined name and a rough orientation. The orientation of
every street is specified according to the clock time (see
Figure 4). In this point, an accuracy of the rough
orientation is adequate. The more accurate orientation
setting comes during the map editing while mapping the
crossroads onto the crossroads point.

Each street consists of two parts – a road going to the
crossroads (roadIn) an a road which goes from the
crossroads (roadOut), roads are divided into vehicle
lanes (laneIn, laneOut). For a vehicle lane there are
several attributes – a description and a shortcut of the
direction of the cars and also a vehicle lane sequence
considered from the left side of the road (in Figure 5
marked with numbers). Some other mentioned features
of the crossroads description can be seen in Figure 5. The
file format thinks also of more specialized cases, such as
one-way roads, roundabouts, flyovers or more
complicated crossroads.

All crossroads parts have their own identifiers which
serve as a connection with the simulation system.

Figure 5: A description of the basic crossroads parts
and their relation to the XML tags.

Figure 4: A rough orientation according to the clock
time used for the street description.

Figure 3: An example of a road net.

Figure 2: Possible situations of the approximated road
segment shape by a segment of a line:

 a real shape of the segment
 an approximation.

The editor generates two output files. The first one,

a graphical part of the map, serves for an online
visualisation of results. The other one, a simulation part
of the map, is used to save the map structure for the
simulation. These two files are generated so that it would
be possible to separate the simulation and visualisation
part. It is not necessary to do the visualisation each time
(or the whole time), as well as the simulation (results
obtained from the simulation can be “replayed“). It
would be possible to keep both kinds of information in
one file, but it is more useful for us to have it in two files,
e.g., the XML parser for both files can be done in a more
simple way. All elements in both files have their
identificators which serve for connecting separate map
parts.

4.4 Output File – the Graphical Part of the Map

Graphical part of the map serves for an online
visualisation of results. Any time during the map creation
and modification it is possible to export it into the output
XML file. It means that each operation has been finished
and the map is consistent after each operation.

The structure of this XML file can be seen in the
form of a tree structure in Figure 6. All data are
encapsulated in the tag graphic. It includes a bounding
rectangle (BoundingBox), a part for roads (RoadGraphic)
and a part for crossroads (CrossRoadGraphic).
RoadGraphic may contain one or more description of
particular roads (RoadGraphicItem), CrossRoadGraphic
may contain one or more crossroads definition
(CrossGraphicItem). Each road is determined by its id
(roadID) and consists of one or several vehicle lanes
(lane), which is described by two curves, see Figure 7.
Each crossroads has also its unique id (crossID) and is
given by several curves, see Figure 8. Crossroads places
for definition of possible car driving directions are
defined here (CrossRoadPlace), too.

Figure 7: A visual illustration of dividing the
road into the XML tags.

Figure 8: A visual illustration of dividing the
crossroads into the XML tags.

Figure 6: The structure of the output XML file with the graphical part of the map.

... ...

Items are further split into more detail parts, but this
extended description is not necessary on this level of
understanding.

Each item (vehicle lane, road, crossroads) has its own
identifier. This ID is used for the connection of graphical
and simulation files. The simulation file is briefly
mentioned in the next part.

4.5 Output File – the Simulation Part of the Map

This type of the output file serves for a traffic simulation.
It includes connections between all items of the map. The
roads are connected to the crossroads, the crossroads
carry a definition how cars can drive through, etc. This
file also contains generators and terminators that provide
the car traffic simulation. These objects are constructed
in the simulation model and are of no interest in the
graphical editor and out of scope of this paper.

5 Editor
The graphical editor enables an easy construction of
both the output files from the given input data. Both the
output files can be reopened and the graphical and
simulation part modified.

After reading input data files the editor uses all data
to make a maximum of work automatically, then the user
can complete the map by adding information about
vehicle lanes, one-way roads, etc. The finished map can
be also modified, single map parts can be inserted,
deleted, modified or completed.

The work runs in several steps:

1) From the input geographical data (the input file with

road segments and crossroads points – Sections 2.1,
2.2) a basic road net is automatically generated – the
neighbouring road segments and crossroads points
are connected, possible positions of crossroads are
determined.

2) The user can change the generated road net by
creating/deleting of the crossroads points or road
segments. Several functions for the road net
modification are available. The user has to allocate
particular crossroads from the list to the prepared
crossroads positions. The crossroads are described in
the other input file (Crossroads - Section 2.3).

3) According to the placed crossroads, the roads for
necessary vehicle lane number are automatically
extended. Neighbouring crossroads are connected.

4) The user corrects vehicle lane numbers - e.g., he/she
can add vehicle lanes for turning to the right or left.

5) The editor automatically preprocesses possible
directions and ways for driving through the
crossroads. The user can correct or complete it
manually.

6) The user can add parking lanes if necessary.
7) The created street graph can be exported into both

the output files – the graphical and the simulation
part (described in Sections 2.4 and 2.5).

The graphical user interface of the editor uses many

controll elements to simplify creating the street graph –
menu, toolbars with easy access to most frequently used
functions. Each component can be hidden or set visible.
Part of the main editor window with menu and all
visible toolbars can be seen in Figure 9.

As it was mentioned in the introduction section, the
graphical editor of street graphs has to combine some
control elements of usual graphical editors and some
special functions for manipulation with the map and its
parts – crossroads, roads, vehicle lanes, access places,
etc. The functions can be divided into several groups, the
most important are: functions for file processing, view
functions and design and map functions.

5.1 Functions for File Processing

The user has two possibilities how to start working with
the map. The first one is to create a new street graph
from all input files. As there is more than one file read
into the editor and data have to be read at the same time,
the editor uses a project file. This project file (in the
XML format) includes references to all necessary inputs.
Functions for project creation and modification belong to
the editor file functions, too.

The other possible way is a modification of complete
street graphs (graphical and simulation one) which are
already saved in the correct XML format. Any map like
this can be opened, changed and resaved.

For reading and storing data in the computer memory
we use a DOM (Document Object Model) approach
which is fully supported by classes from the Java Core
API. The DOM classes create a tree object model in the

Figure 9: Part of the main editor window with menu and all visible toolbars.

memory which can be easily modified. Data from this
tree are after each operation directly exportable to the
output XML files.

5.2 View Functions

These functions are intended for working with the map
view – map scale, zoom, a region choice by a rectangle,
exact map scale settings, etc. It is possible to say that the
editor covers all expected (normally used) functions for
this group of editors.

The editor also enables switching to a full screen
mode. In this mode all controll elements are hidden.

5.3 Design and Map Functions

These functions are the key part of the editor. They are
the main reason why this special type of graphical editor
has been constructed. The functions are used for the
design, corrections and removal of lines, roads and
crossroads. The editor also enables several user interface
settings for more comfortable work.

Map elements functions belong to fundamental ones.
The user can insert a new map element – road, vehicle
lane, crossroads, ... directly into the street graph. During
creation, basic properties (size, position) have to be set.
The rest of the element properties can be set in the time

of creation or later. For this modification the element can
be chosen from the street graph directly by a mouse click
or through the dialog with a list of all existing map
elements. It is also possible to work with a group of
elements. The algorithms for element choice can be
found in [6].

The system also enables automatical corrections
(a connection of adjacent elements or fastening a newly
created road to the existing crossroads, etc.).

The editor supports work in layers – it means that
every element is placed in one of several specialized
layers – roads, crossroads, text descriptions, etc. All
layers can be set visible or some of them can be hidden.
In the user interface setting each layer obtains its own
color and the style in which it is drawn. All pre-set
values can be saved to an INI file (also in an XML
format).

If the user likes to use, e.g., an aerial photograph of
the constructed area, he can insert the picture on the
background of the street graph, create the map and then
remove the picture or use another one.

An example of the application state during the street

graph processing can be seen in Figure 10. It is a
situation after the first step – reading the input data.
Crossroads points and road segments are processed.

Figure 10: The main application window after reading of the input data.

6 Conclusion, Future Work
This paper presented a system dealing with the street
graphs (maps) processing. The main functions and main
features necessary for the style of work in the graphical
editor are described. This system allows the user to
create a completely new street graph from the input data
files or to open and modify an already existing map. In
the paper, the used file formats were described in detail.

The editor as well as the other parts of the simulation
system have been implemented in Java. Thanks to classes
for XML processing this file format is very suitable for
data manipulation in the intended task.

The next step in the developement of the software
will be a testing phase by responsible experts from the
municipal traffic department. It is possible that the range
of the input files will be extended in order to handle other
future tasks by the intended users. This depends on
possible requirements of responsible experts. We hope
that the whole simulation system will help to improve the
traffic situation in Pilsen.

Acknowledgements
I would like to thank to Dr. Ivana Kolingerová and
Dr. Pavel Herout from the Department of Computer
Science and Engineering, Faculty of Applied Sciences of
the University of West Bohemia, Pilsen, Czech Republic
for their suggestions and advising during preparing this
paper.

The research was supported by a grant of the Grant
Agency of the Czech Republic – Research of methods
and tools for verification of embedded computer systems,
no 102/03/0672. Moreover, my work was fully supported
by a special scholarship from the Pilsen municipals.

References
[1] Hartman, David, Head Leading Algorithm for

Urban Traffic Model. Proceeding of European
Simulation Symposium. pp. 297-302, 2004

[2] Cajthaml, Jiří, The present state of geographic

information systems for towns and cities in Czech
Republic. Proceedings of GIS Ostrava 2005

[3] GEPRO s.r.o., Documentation for Interactive

Graphical System. 2002

[4] Hartman, David, Implementation of Head Leading

Atgorithm in Simulation of Traffic in Pilsen. Eighth
United Kingdom Simulation Society Conference,
Oxford, UK, 2005

[5] Veverka, Bohuslav, Krovak Projection.
 http://krovak.webpark.cz/e_version/krovak.pdf

[6] O' Rourke, Joseph, Computational Geometry in C.

Cambridge University Press, 2000

