
Real-time Tracking of Participants in Meeting Video
Michal Hradiš1 and Roman Juránek2

Department of Computer Graphics and Multimedia
Brno University of Technology

Brno, Czech Republic

Abstract
The aim of our work was to develop a robust real-time
tracker of body parts in meeting videos. We have focused
mainly on tracking heads in meeting video data from the
AMI project. The AMI project is concerned with the de-
velopment of meeting browsers and remote meeting assi-
stants for instrumented meeting rooms. Our system is
intended to process video data acquired from camera on-
line. This sets bounds in the terms of computational cost
of used algorithms. Therefore we decided first to create a
fast solution and analyze its results in order to tell if
further improvements are needed.
We have divided tracking task into two separate parts.
First skin color model, background subtraction and topo-
logical feature based object classification is used to detect
heads in video. The detected objects are consequently
tracked throughout the video sequence by using KLT fe-
ature based tracker. Tracking results are stored in the
XML format for evaluation.
Keywords: Tracking, Head detection, Skin color model,
KLT tracker

1. Introduction
Detecting and tracking objects in video sequences is very
wide and up to now not generally solved topic. In order to
achieve practical results it is necessary to constrain this
problem and use implicit knowledge as much as possible.
Our work focuses narrowly on tracking people in meeting
video data. This allows us to assume constant illumina-
tion, static background and certain typical object behav-
ior in all video sequences.
Human visual tracking is used in many applications—
mainly video surveillance and human-computer interac-
tion. In our case tracking results are planned to be used to
extract semantic information about a meeting. This in-
volves meeting participant localization, current speaker
identification and keeping track of events like voting etc.
It could be also used for gesture recognition in order to
allow comfortable control over the recording system. The
resulting system is supposed to process all recorded data
on the fly. This fact demands all used algorithms to be
able to work in real-time.
As the first step we decided to concentrate on head track-
ing, considering the fact that this task is relatively easy
compared to tracking other parts of human body. When
tracking heads we can make use of a knowledge about its
color, shape, size and movement. Our goal was to present
simple multiple head tracker, evaluate its performance
and suggest further improvements if needed.

2. Related work
There has been much effort to solve human tracking in
video sequences in the last years. Many different methods
were created to detect faces in images based on skin color
model [1], neural networks, image classifiers, template
matching, Gabor wavelet networks etc. There are also
many methods for tracking objects in video sequences
e.g. particle filters, Kalman filter, condensation algorithm
and optical flow estimation [2]. Here are some projects
about body parts tracking in videos.
The HandVu is originally a project of University of Cali-
fornia. It is targeted to track hands in real time and to
control a system by hand gestures. It is based on the work
of Kölsch [3] which extends the KLT tracker with feature
flocking and color cue behavior.
In [4] an extended KLT tracker of heads is described that
uses stochastic skin color model with elipse fitting to init
the tracker. The result system achieved real time perfor-
mance and was able to automatically recover when the
face was lost.
The AMI project in which this work takes part is more
complex. It is focused on development of meeting
browsers and remote meeting assistants for instrumented
meeting rooms. Image processing part of the project
focuses on automatic annotation of meeting sessions. This
involves mainly speaker detection and tracking of
participants in order to extract semantic information
about session progress. Meeting rooms use either
scenario with several video cameras or with one omni di-
rectional camera. Within the scope of the AMI project
many different approaches are explored to search for
body parts and to track them e.g. particle filters [5] or
neural network based face detectors [1].

3. Overview
In the present it is very difficult or even impossible to re-
liably detect faces or heads in all positions and situations
that can arise during meeting sessions. On the other hand
it is possible to track almost arbitrary objects even in dif-
ficult conditions in real-time. Therefore we decided to
combine relatively simple head detection with an object
tracker and observe the resulting performance. This sche-
me allows us also to exchange either the detector or the
tracker for a different one if necessary.
Our head detector is based on background subtraction
and skin color segmentation. We could use these methods
due to constrained meeting environment with constant il-
lumination, static camera and background.

1 xhradi05@stud.fit.vutbr.cz
2 xjuran07@stud.fit.vutbr.cz

We based our tracker mainly on the work by Kölsch and
Turk [3]. They combined KLT feature tracker with fea-
ture flocking behavior and with color model information
to track a hand in video from non-stationary camera.
They used this approach mainly for its ability to deal with
rapid posture changes, but it is also fast and relatively
simple. KLT Tracker is available in public domain and is
also part of the OpenCV library which allows fast appli-
cation development.

4. Head detection
This contains several facilities processing image in order
to find participants heads. Skin color detection, back-
ground subtraction and connected component analysis.
The detection is done in several steps. First a background
mask is calculated and then intersected with a mask of
skin color. So a result one contains foreground pixels that
have color of skin (usually face and hands). The last step
is to find components in this mask corresponding to par-
ticipants faces and drop the others. In most cases faces
correspond to compact ellipse-like shapes with distinctive
axis aspect ratio in the mask. We use a method of statisti-
cal moments to find these components.
The result of the head detection is set of a detected head
centers. These points are used on higher level to initialize
a KLT tracker.
The following subsections will describe each method to
make functionality of a head detection clear.

4.1. Skin color model
We use a color model to find areas in image where skin
color appear. The input is a RGB image, processing is
done in normalized RG space and result is a grayscale
skin color likehood image. Algorithm is based on method
described in [1].
RG space discards brightness and keeps chrominance and
saturation. Therefore skins of many different people are
mapped to relative small area, because values vary mostly
in brightness. Normalization to RG is described by (1).

r= R
RGB g= G

RGB
(1)

Where R, G and B are original color values and r, g are
coordinates in RG space. Value b is redundant due to nor-
malization, where r + g + b = 1.

(a) (b)
Figure 1.: (a) Distribution of skin samples in RG space. (b)

Gaussian model calculated from (a). Images are equalized in
order to bring up contrast in dark areas.

Now we make distribution function from skin samples
mapped to RG as shown on figure 1a. This distribution

could be either used itself to get probability of particular
pixel or we can approximate it using some function. We
use approximation by gaussian distribution N m ,2
where m=r , g  is center of the gaussian function calc-
ulated by (2). Parameter N is number of skin samples.
Probability P  x of each pixel x=r , g  we calculate
using the formula (4) where  is covariance matrix calc-
ulated by (3).

r=
1
N ∑

i=1

N

r i g=
1
N ∑

i=1

N

g i (2)

=[r r  r g

 g r  g g]= 1
N ∑

i=1

N

 xi−mxi−mT (3)

P  x=exp−0.5 x−mT −1 x−m (4)

Using this we transform RGB image to grayscale where
value of each pixel corresponds to the skin color like-
hood. To obtain segmented image we use thresholding.

(a)

(b)
Figure 2.: (a) Original image. (b) Skin color likehood of (a)

4.2. Background subtraction
There are lot of methods extracting foreground parts of
image to discard non interesting pixels. Some of them use
probabilistic model calculated from certain history of
frames (e.g. [6]) or simple methods based on subtraction
of background image. Most of them work with static cam-
era because involving motion causes problems. Some
problems are also caused by still foreground objects that
are evaluated as background; after some time and they
disappear. In our case we need an algorithm that will
always evaluate objects in foreground even if they are
still for an arbitrary time period.

We designed method based on progressive background
model improvement. It needs several background—only
frames in the beginning of sequence to make initial mod-
el. Value of each pixel of a current frame is then com-
pared against value in the model. When difference is
higher than a threshold the pixel is evaluated as fore-
ground otherwise it is background. By this we obtain
mask of objects in foreground.
Model improvement is done by accumulation of RGB
pixel values of current frame in model buffers (every col-
or channel has buffer of its own). Updated are only those
pixels evaluated as background. Updating foreground pi-
xels would cause model degradation. And still objects in
foreground might then disappear after some time. Ac-
cumulation is important to make model adaptive to light-
ing conditions.
This model is perfectly suitable for our purposes due to
the stable light conditions and controlled environment
with no extra background movement.

4.3. Component analysis
We need to find out what parts in the mask of relevant
pixels have shape of human head. There are many differ-
ent approaches to do this. We use a spatial component
analysis by statistical moment calculation. Note that re-
sults are used for tracker initialization, not tracking itself,
though it may be suitable even to do tracking.
The analysis is the key step in our approach. Input is a
intersection of masks obtained by methods described
earlier in sections 4.1 and 4.2. This is processed by
median filter to drop out noise pixels and fill small gaps
in the mask and even connect components that were not
connected before. This step might be seen useless becau-
se of computational time it takes. But we figured out that
it brings advantage in better detection results. Algorithm
then finds all connected parts within mask by flood fill
and for each of them calculates its moments using equ-
ations (5) and (7). Where xt and yt are component center
and N number of pixels.

V=
∑
i=1

N

xt−xi
2

∑
i=1

N

 yt− yi
2

(5)

xt=
1
N ∑

i=1

N

xi yt=
1
N ∑

i=1

N

yi (6)

M 1 =
1
N

max2X ,Y  (7)

where
X =max xi−min  xi
Y=max  yi−min  yi
i∈〈1.. N 〉

The xt and yt are component center, N number of pixels
and xi, yi are coordinates of all pixels belonging to the
component. Moment V (variance) represents an ellipse
aspect ratio. Moment M1 represents coverage ratio of
component over its bounding square. It is used for dis-
carding of components with low compactness (M1 < 0.5).

We accept ellipses within range V ∈〈0.3 ;1.2〉 .

5. Head tracking
We based our tracker on the public domain KLT feature
tracker. It provides means to select features in image that
are suitable for the tracking and to find most likely locat-
ion of these features in another image.
The KLT tracker uses an image pyramid (a series of pro-
gressively smaller-resolution interpolations of the original
image) [7] in combination with Newton-Raphson style
minimalization to efficiently find a most likely position of
features in new image. Feature displacement is first
roughly estimated at coarsest pyramid resolution and this
estimation is then refined on more detailed levels of the
pyramid. A feature window size determines how much
context information is used for tracking. Although larger
window sizes may provide better resistance against image
ambiguities, it comes with higher computation cost and
problems near object silhouettes. In most cases it is ap-
propriate to choose window size 7×7.
We embedded both flocking behavior and color cue sug-
gested in [3] into our tracking system.
We use the maximum distance from mean position con-
straint. This means that after processing each frame we
discard all features with distance from flock center larger
then defined threshold. This is appropriate because we do
not expect larger size changes of tracked objects. On the
other hand we do not use minimum distance between fea-
tures constraint, because we have not observed significant
local feature cumulation and so we do not think this
would bring much performance improvement. However
this constraint could easily be included later.
As color cue we use object RG color model that could be
either predefined or trained when the tracker is placed on
an object. We use this model to discard all features whose
color does not match expected object color. The prede-
fined model is the same as we use for skin segmentation
during head detection. The learned model is constructed
from RG color samples under the tracker position. First
we compute the 256×256 2D histogram in RG color
space. Then we smooth this histogram to compensate the
small number of samples and finally we threshold it.
When determining if feature is on correct color we check
4 neighboring pixels. If any of them contains color
matching the model we keep the feature otherwise we dis-
card it.
This color cue in combination with the flock compactness
criterion almost eliminates feature drift to background
and non-stationary objects in the scene. Tracker is also
resistant to partial occlusions. Although normalized RG
color representation is quite insensitive to light intensity
changes, it is sensitive to chromatic changes. While using
this color cue, this results in almost certain object loss
when the tracked object is illuminated by chromatic light
source (e.g. data projector). The object can be also lost as
a result of large occlusion or unfortunate combination of
background color, object rotation and motion. In our case
it is necessary to detect these events.
To detect the object loss we use the same trained object
RG color model as described earlier. Percentage of area

beneath the tracker matching the color model is computed
each frame. If the percentage drops below given threshold
(e.g. 35 %) tracked object is considered lost. Further we
compute sum of mean feature velocities over short history
(e.g. 10 frames). If this velocity drops too low we assume
tracker has drifted to background object and we also dis-
card it. This leads to falsely discarding trackers over tem-
porary stationary objects, but this isn’t such a problem
because lost objects are in most cases soon detected
again. On the other hand the tracker attached to back-
ground would otherwise remain there until it is occluded.

(a) (b)
Figure 3.: Gray area represents trained color model. White
dots correspond to current color distribution under tracker.

Even when applying these two rules the tracker can still
drift to other non-stationary objects with similar color as
the original object. In our case these objects are hands
and other heads. We have not observed any case when
tracker drifted from a head to a hand even when the hand
occluded the face. This is due to hand’s small size and
fast movement which causes that trackers tend to stick
preferably to faces that provide a texture rich areas for
features to lock on.
To avoid tracker drift to other faces in the image we com-
pute a distance between all trackers in the image. If this
distance is smaller then assumed head diameter we dis-
card one of the trackers. In order to choose the occluded
tracker we compute for each tracker a sum of lost features
over recent history and discard the one with more lost
features.
The KLT tracker is able to track features only up to
certain maximum displacement which is derived from the
number of image pyramid levels, sub sampling between
the levels and feature window size. Increasing this max-
imum distance results in higher computational cost and/or
worse tracker performance. In order to increase maximum
displacement we predict future tracker position based on
current mean feature velocity and acceleration. This also
provides little speed up due to the fact that the search for
feature correspondence starts at more probable position
resulting in less search iteration cycles at coarsest pyra-
mid level.

6. Results
To evaluate tracker performance we have employed com-
mon evaluation scheme used in the AMI project [8]. This
scheme consists of recorded meeting video sequences
with corresponding ground truth annotations as well as
methods to evaluate multiple object trackers.
For evaluation we have chosen 8 video sequences with
total length of 13 minutes. These sequences represent a

set of typical meeting situations and were recorded under
constant illumination conditions. The sample from these
sequences can be seen on figure 2a.
To measure tracking performance over these sequences
we used following measures based on tracker estimation
E and annotated ground truth GT:
• FP - False positive. There is E indicating an object,

where no GT is.
• FN - False negative. A GT is not tracked by an E.
Decision about correspondence between estimated object
Ei and ground truth object GT GTj is based on F-measure
Fij (10).

Recall ij=
∣E i∩GT j∣
∣GT j∣

(8)

Precisionij=
∣E i∩GT j∣

∣E i∣
(9)

F ij=
2 ijij

ijij
(10)

If Fij is greater then certain threshold (we use 0.33) ob-
jects are considered to be corresponding.
We have evaluated the tracking system as a whole be-
cause detection and tracking are meant to complement
each other. Where one fails the other should succeed. It
would be possible to evaluate head detection and tracking
separately, but that wouldn't give us much idea about the
resulting performance.
We have compared the performance of the tracker using
skin color model trained specifically for each video se-
quence, with the tracker using general skin color model
for all sequences (table 1). Since there were people of
distinct skin color in different video sequences, these re-
sults confirm that the RG color model is general enough
to represent a skin color.

Universal Model Specific Model
FP 0,320 0,357
FN 0,085 0,081

Table 1.: Results of tracking using color segmentation with
universal color model and model specific to concrete sequence.

Further we have inspected the benefit of the background
subtraction. The difference in performance between the
case when the background subtraction is used and when it
is not is strictly dependent on the skin color threshold.
The lower the threshold is the more background objects
are considered to have skin color and are classified as
heads. Generally the use of background subtraction is
beneficial in environment where there are many skin-like
colored objects in the background.

Figure 4.: FP and FN dependence on used color cue. Bright
column – object color model, middle – skin color model and

dark – no color model

FP FN

0
0,05
0,1
0,15

0,2
0,25
0,3
0,35
0,4

We have also evaluated the benefit of a using color cue in
combination with the KLT tracker (figure 4). The color
cue brings significant performance gain and better tracker
behavior. Training special color model for each tracked
object surprisingly proved to be better than using the fea-
ture discarding based on skin color model. There is an
unexpected decrease in FP rate when no color cue is
used, but this is not significant as we plan to reduce FP
rate in the future by using additional knowledge about the
scene.

(a)

(b)
Figure 5.: (a) FP and (b) FN dependency on threshold for skin
color segmentation. Bright column – with background subtrac-

tion, dark - without background subtraction

7. Conclusion and future work
We have created the head tracker that tracks heads cor-
rectly in more then 90 % of video sequences. On the oth-
er hand the FP rate is quite high – around 30 % because
hands are often misinterpreted as heads. The FP rate
could be reduced using additional topological knowledge
about the scene and temporal correspondence, or by using
some face detector. It seems promising to use a face
detection method described in [9] based on skin color
model and several assumptions that verifies face candid-
ates. Otherwise it si possible to use an ellipse fitting pre-
sented in [4].
Compared to [4] this paper focuses on inspection of a
benefit of different configurations of the head detection
to FP and FN rate as shown on figure 4 in chapter 6.
Further we evaluated FP and FN dependency on used
color cue.
The result implementation achieves approximately 17 fra-
mes per second on Athlon 64 3500+ processor. We assu-
me that the speed could be increased at least by factor of
two.
Main drawback of the presented tracking system is that
the results depend upon many parameters that have to be
set manually for different meeting environments. This
fact very much limits the usability of the tracker. These
parameters should be set as generally as possible or there
should be a simple procedure to calibrate the system. An-
other limiting factor is that the skin color model is sensi-
tive to illumination changes. But this could be avoided by

using head detector which is not color dependent, beca-
use the skin color model is not necessary needed for
tracking.
The main conclusion of this work is that the concept of
tracker interconnected with detector is well suited for
tracking heads. Also the KLT tracker proved as promis-
ing method to track head sized objects.
In the future we plan to use some statistical-based method
like a condensation algorithm [10] or Kalman filter to in-
terpret optical flow estimation generated by the KLT fea-
ture tracker. This should allow us to track even very small
and fast moving objects like hands. [11]

Acknowledgment
Thanks to Adam Herout, Igor Potúček and Standa Sumec
for guidance and to Víťa Beran for tracking evaluation
software.

References
[1] F. Wallhoff, M. Zobl, G. Rigoll, I. Potucek, Face

Tracking In Meeting Room Scenarios Using Omni-
directional Views, 2004

[2] J. Shi, C. Thomasi, Good Features to Track, IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 1994

[3] Mathias Kölsch, Matthew Turk, Fast 2D Hand
Tracking With Flocks and Multi Cue Integration, De-
partment of Computer Science, University of Cali-
fornia, 2005

[4] P. Gejguš, M. Šperka, Face Tracking in Color Video
Sequences, Proc. of SCCG 2003, Budmerice, Slovakia,
2003

[5] O. Sileye, J. Odobez, A Rao-Blackwellized Mixed State
Particle Filter for Head Pose Tracking in Meetings,
International ACM-ICMI Workshop on Multimodal
Multiparty Meeting Processing, 2005

[6] A. Elgammal, D. Harrwood, L. Davis, Non-Parametric
Model for Background Subtraction, 6th European Conf-
erence on Computer Vision, Dublin, 2000

[7] J. Bouguet, Pyramidal Implementation of Lucas Kana-
de Feature Tracker - Description of the Algorithm, Mi-
croprocessor Research Lab, Intel Corporation

[8] S. Schreiber, D. Gatica-Perez, Evaluation Scheme for
Tracking in AMI, 2006

[9] M. Sedláček, Evaluation of RGB and HSV Models in
Human Faces Detection, Proc. of CESCG 2004, Bud-
merice, Slovakia, 2004

[10] M. Isard, A. Blake, Conditional Density for Visual
Tracking, International Journal on Computer Vision 29
(1), 1998

[11] B. D. Lucas,T. Kanade, An Iterative Image Registra-
tion Technique with an Application to Stereo Vision,
Proc. of Image Understanding Workshop, 1981

40 60 80 100 120

0

0,03

0,05

0,08

0,1

0,13

0,15

0,18

40 60 80 100 120

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

