
SPH-Based Fluid Simulation for Special Effects

Peter Horvath∗
David Illes†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

Simulating natural phenomena like smoke, sand or fluid
by physics-based algorithms is a very complex and impor-
tant task in the visual effects industry. Animating fluids
is time-consuming and the result is hard to control. There
are only a few commercial fluid simulators on the market,
which fit the high expectations of the effect artists. Our
goal is to develop a physically correct fluid simulation sys-
tem using a particle-based approach which is very scalable
and flexible for special purposes.

Keywords: Special Effects, Particle Systems, Dynamics,
Fluid Simulation, Houdini

1 Introduction

This paper describes the basic equations of fluid dynam-
ics [1] [2] and covers implementation details of a method
called Smoothed Particle Hydrodynamics (SPH) [3]. The
particle-based approach reduces the complexity of the
simulation because mass conservation equations can be
disregarded. The particle system can be used to render
the surface of the fluid using spheres, metaballs in the po-
sitions of the particles. A surface can also be created us-
ing marching-cube based surface generation. The point-
type output of the simulation enables the user to add extra
points using interpolation techniques or generate the sur-
face even in render-time.

We will show how to implement an SPH-based fluid
simulation engine and how to port the system to a high-
end 3D animation tool called Houdini. For the integration
and scalability we created a fluid simulation plugin using
Houdini’s SDK.

In Section 2, we describe the basics of fluid simulation.
In Section 3, we discuss the Smoothed Particle Hydrody-
namics approach. Finally, in Sections 5 and 5.1, we show
how we have implemented our SPH-based algorithm.

∗hp560hp@gmail.com
†asterix@index.hu

2 The Basics

2.1 Equations of Fluid Dynamics

The motion of a fluid system can be described with the
Navier-Stokes equations. These partial differential equa-
tions are usually written in the following form:

∂~u
∂ t

+~u ·∇~u+
1
ρ

∇p =~g+ν∇ ·∇~u

∇ ·~u = 0

The symbol ~u is used for the velocity of the fluid, ρ
stands for the density, p for pressure. The letter g is the
acceleration due to gravity. The ν is called kinematic vis-
cosity. It measures how much the fluid resists deforming
while it flows.

The first equation is called momentum equation which
describes how fluid moves due to the forces. The second
equation is the incompressibility condition.

For a detailed explanation of the equations see [5].

2.2 Lagrangian and Eulerian Viewpoints

For tracking the motion of the fluid we have two possibili-
ties named Lagrangian viewpoint and Eulerian viewpoint.

The Lagrangian approach represents the motion as a fi-
nite interpolated system like a given number of particles.
Each point is labeled as a particle with position (~x) and
velocity (~v). Solids are usually simulated in a Lagrangian
way.

The Eulerian approach looks at fixed points in the vol-
ume and measures how the fluid quantities (density, veloc-
ity, pressure etc.) change in time.

The Lagrangian viewpoint corresponds to a particle
system [4], the Eulerian viewpoint uses a fixed grid that
does not change in space.

3 The SPH Approach

3.1 Particle Systems

For smoke, water splashes or spray effects using particles
is the most comfortable solution. A particle system con-
tains a number of particles moving in the space based on

the effect of the surrounding forces. Usually they can col-
lide with each other and with obstacles. Without a particle-
particle interaction we call our system a simple particle
system. Such a system can be implemented efficiently and
with a low number of particles it runs real-time. These
particles are created at the start of the simulation using
a defined volume or generated by emitters. Particles are
born at a given rate (particles/sec) and die after a certain
time. When they get close to the end of their lifetime, they
disappear.

Without a particle-particle collision model the dynamic
properties can be described by a set of decoupled ordinary
differential equations:

ẋi = vi

v̇i = fi/mi

where xi is the position, vi is the velocity, mi the mass
of particle i and fi is the force affecting the particle.

3.2 Modelling Fluids Using Particles

SPH is an interpolation method for fluid motion simula-
tion. SPH uses field quantities defined only at discrete
particle locations and can be evaluated anywhere in space.
SPH distributes quantities in a local neighborhood of the
discrete locations using radial symmetrical smoothing ker-
nels.

A scalar value A is interpolated at location r by a
weighted sum of contributions from the particles:

AS(r) = ∑
j

m j
A j

ρ j
W (r− r j,h)

where j iterates over all particles in the scene, m j is the
mass of particle j. r j the position, ρ j the density and A j the
field quantity at r j. The W(r,h) is called smoothing kernel
with core radius h. The kernel is normalized if

∫
W (r)dr = 1.

Because mi = m constant in our case, we can evaluate
the density at every step using a modified equation based
on [3]:

ρS(r) = ∑
j

m j
ρ j

ρ j
W (r− r j,h) = ∑

j
m jW (r− r j,h).

With the SPH approach the derivatives only affect the
smoothing kernel. The problem with the method is that
these equations are not guaranteed to satisfy some physi-
cal rules including symmetry of forces and conservation of
momentum. [3] also solves these SPH-related problems.

Using particle-based simulation simplifies the solution
of Navier-Stokes equations. Because the number and the
mass of particles are constant, mass conservation is guar-
anteed. The mass conservation equation can be omitted.

The expression ∂~u
∂ t +~u ·∇~u on the left side can be replaced

by the substantial derivative D~u/Dt because the particles
move with the fluid.

Based on simplified Navier-Stokes for the acceleration
of particle i we get:

ai =
d~ui

dt
=

fi

ρi

where ~ui is the velocity of particle i, fi and ρi are the
force density field and the density field at the location of
particle i. The next sections describe how to model the
force fields.

3.3 Pressure, Viscosity

Instead of an equation described by the SPH rule a modi-
fied solution is used for pressure force because it guaran-
tees the symmetry of forces:

f pressure
i =−∑

j
m j

pi + p j

2ρ j
∇W (ri− r j,h)

The pressure at particle locations has to be calculated
first, which can be computed via the ideal gas equation:

p = kρ

where k is a gas constant that depends on the temper-
ature. A modified version - which we used in our imple-
mentation - makes the simulation numerically more stable:

p = k(ρ−ρ0).

where ρ0 is the rest density. Applying the SPH rule to
the viscosity term also yields to asymmetric forces because
the velocity field varies. The idea of symmetrizing the ex-
pression is using velocity differences:

f viscosity
i = µ ∑

j
m j

v j− vi

ρ j
∇2W (ri− r j,h).

3.4 External Forces

Additional forces can be applied to the particles with-
out using the SPH-method. Gravity or other external
forces change the acceleration component of the particles.
Particle-object collisions are solved by reflecting the ve-
locity component that is perpendicular to the surface.

3.5 Smoothing Kernels

Accuracy of the algorithm highly depends on the smooth-
ing kernels. For our implementation we used the following
kernel:

Wpoly6(r,h) =
{ 315

64πh9 (h2− r2)3 0 ≤ r ≤ h
0 otherwise

Figure 1: Fluid simulation results displayed as wireframe in Houdini’s viewport. 14 000 particles were simulated and
cached 1 frame/sec. The result was used for surface creation

Figure 2: Fluid simulation results rendered in Houdini’s Mantra. The fluid shape is based on 14 000 particles. A 3D
Texture was generated for every frame using metaballs in the particle positions and displayed with the Isosurface SOP

The advantage of this kernel is that r only appears
squared which means that it can be evaluated without com-
puting square roots in distance calculations. Debrun’s
spiky kernel solves the problem of our basic kernel, clus-
tering under high pressure. For pressure computing we use
the following expression:

Wspiky(r,h) =
{ 15

πh6 (h− r)3 0 ≤ r ≤ h
0 otherwise

Figure 3: The smoothing kernels used in our simulations.
Wpoly6, Wspiky and Wviscosity. The thick curves represent
the kernels, the thin lines their gradients in the direction
towards the center and the dashed lines the Laplacian.
Smoothing length parameterer: h = 1

Viscosity is a phenomenon that is caused by friction de-
creasing the fluid’s kinetic energy by converting it into

heat. For two particles that are close to each other, the
Laplacian of the smoothed velocity field can cause nega-
tive result in forces that increase their relative velocity. For
the computation of viscosity forces a third kernel was used
because of stability problems:

Wviscosity(r,h) =

{
15

2πh3 (−r3

2h3 + r2

h2 + h
2r −1) 0 ≤ r ≤ h

0 otherwise

whose Laplacian is positive everywhere with the follow-
ing expressions:

∇W (r,h) =
45

πh6 (h− r)

W (|r|= h,h) = 0

∇W (|r|= h,h) = 0

3.6 Improving Performance

Keeping scalability with high particle number is a key fac-
tor. In a simulation step the most expensive part is to find
the neighbouring particles. We have implemented a sim-
ple but effective searching structure. The space where par-
ticles can move is divided to grid cells parallel with the
axises.

Every grid cell contains references for the included par-
ticles. Physically every particle interacts with all the oth-
ers. Particle neighbours outside of a given distance play an
irrelevant role in the computation. For better performance
our implementation only considers points inside a prede-
fined radius. This core is quintuple of the particle radius.
Cell size is set up based on this core radius. Searching the
neighbouring particles needs only checking of the neigh-
bouring cells.

Space partitioning also helps speedig up the calculation
of particle-object collision analyzing only the cells close
to the geometry’s surface.

4 Implementation of the SPH Appli-
cation

We implemented an engine based on the Smoothed Parti-
cle Hydrodynamics approach. The stand-alone prototype
was written in C++ using OpenGL framework. The appli-
cation handles more fluid containers interacting with each
other. It can display the fluid molecules with different col-
ors depending on the amount of pressure, density or forces.
A later version can also simulate rigid bodies. The simu-
lation parameters are read from a file and can be saved
to numbered TGA sequences. The engine can log simula-
tion parameters and calculation times. External forces and
fluid volume were burnt into the code. For this paper we
simulated water using 100 000 particles. Each frame took
2.5 sec to render with 1 GB RAM on an Intel P4 3 GHz
single-core processor without the use of GPU. [7] showed
that the use of GPU is not efficient enough in these simu-
lations. An other disadvantage is that today’s renderfarms
usually do not have GPU included.

A stand-alone system has some limitations. We should
import highly complex geometry and scene data for high-
end quality simulations like characters deformed by bones
in a pool representing 10 millions of particles. Handling
this complexity and keeping scalability is a huge task. Our
goal was to test multiple methods before integrating the
algorithms into a system as a plugin.

5 Implementation of the SPH Hou-
dini Plugin

Side Effect’s Houdini [8] is maybe the most complete vi-
sual effects solution available. This award-winning and
production-proven product handles the most challenging
shots using a node-based procedural workflow. The Ap-
prentice version lets you learn about the possibilities with
some limitations. With the learning edition users have ac-
cess to the Houdini Development Kit which gives the free-
dom adding new tools. This section contains details about
how developers can widen the power of the software using
third-party plugins like fluid solver.

5.1 Effect Creation Using Procedural Work-
flow

The base concepts behind Houdini are different from other
3d animation tools. In Houdini effects are created using
node operators connected into each other like an acyclic
graph. There are several node types based on their func-
tions like surface operators (SOPs), particle operators
(POPs), shader operators (SHOPs) etc. Each operator has
an output that can be passed to the next operator as input.
Operators optionally have one or more inputs. For exam-
ple, a Copy operator has a primitive input and a template
input. The operator’s output is a list of primitives placed
on the template positions. If the primitive is a sphere and
the template is a particle system, the output is spheres
placed in the location of the particles. The strength of this
method is that each step of the effect can be changed and
complex effects can be mixed from the nodes usually with-
out programming knowledge.

5.2 Results

We have been implementing a SOP Houdini plugin using
the application’s SDK toolkit compiled in Visual Studio
2003 as a DLL with the toolkit’s custom compiler script.
The plugin is loaded during the startup and can be used
with other SOP nodes.

Figure 4: The Fluid node with a box source geometry and
a bounding box collision object. Simulation results are
cached and metaballs are placed in the position of the par-
ticles

The node has 4 inputs. 2 fluid container inputs help
building different water volumes creating a tree from the
nodes. There are also a source geometry and a collision
input. The node has point output, the location of the parti-
cles are passed to the next node. The output can be cached
to hard disk using the Cache SOP operator (Figure 4),

Figure 5: User Interface of the Houdini fluid simulation
plugin. Users can change fluid parameters, collision prop-
erties and are able to log simulation details

surfaces can be generated on the points with the help of
shaders and the Isosurface node.

Fluid properties can be modified on the interface of the
plugin (Figure 5). The user can control the particle num-
ber, the fluid density, viscosity and a constant parameter
called gas constant. External forces can be set and changed
in time. Fluid volume is determined by a geometry input,
which is filled with fluid using the given Fluid Level pa-
rameter. It can be set whether the fluid interact with this
volume. Strength of object-particle collision can be con-
trolled.

Figure 6: Water collides with a torus inside a box. Fluid
is represented by 30 000 particles. A simulation step was
calculated in 2 secs

Controllable fluid shape was necessary in the Houdini
plugin. This - of course - resulted decrease of the perfor-
mance. The calculation time of a frame became double

than the stand-alone prototype, which was optimized for
tube geometry. To offset this loss we have implemented
two types of collision detection. In Houdini there are sev-
eral primitive types. For the polygon primitives we use
the simple mechanism of particle collision similar to the
stand-alone version. We always predicate the next posi-
tion of a particle before moving and check in which half
of the space is it by the side of the primitive. If we detect
an emigrant particle then it’s acceleration vector is mod-
ified, so elements can not leave the container’s geometry.
For computing the return force we just need the distance
of the next position of the particle from the surface of the
primitive that can be detemined with a dot product. The
other method of the collision detection works with rays
for NURBS- and Bezier- primitives (Figure 6).

6 Conclusion and Future Work

The Houdini plugin is still under development. We are
planning to extend it’s capabilities. In the near future the
plugin will have an additional force input that can handle
complex forces - like wind, spiral and vortex forces - gen-
erated with the application’s Force node. Particle-object
collision algorithm is planned to reimplement with the ex-
tensive use of the grid structure only calculating collision
for the points that are close to the surface.

The stand-alone implementation can simulate basic
rigid body scenes [6]. Rigid bodies are constructed with a
particle filling method. The geometry behaving like rigid
body is filled with particles representing the rigid body
properties. The Fluid node will be extended to handle rigid
body simulation.

Our plan is to run the fluid simulation distributed on
multiple machines. The volume-based distribution will
simulate complex fluids by dividing the fluid with the grid
cells.

Future tests will include scenes above 100 000 particles
and complex geometries.

References

[1] G. K. Batchelor. An Introduction to Fluid Dynamics.
Cambridge University Press, 1967.

[2] D. Pnueli and C. Gutfinger. Fluid Mechanics. Cam-
bridge Univ. Press, NY, 1992.

[3] M. Müller, D. Charypar, M. Gross. Particle-
Bsed Fluid Simulation for Interactive Applications.
Eurographics/SIGGRAPH Symposium on Computer
Animation, 2003.

[4] W. T. Reeves. Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects. ACM Transac-
tions on Graphics 2(2), pp. 91-108, 1983.

[5] R. Bridson, M. Müller-Fischer, E. Guendelman.
Fluid Simulation. (Siggraph 2006 Course Notes), pp.
2-11

[6] T. Takahashi, U. Heihachi, A. Kunimatsu, and H. Fu-
jii. The Simulation of Fluid - Rigid Body Interaction.
ACM Siggraph Sketches & Applications, July 2002.

[7] K. Fatahalian, J. Sugerman, P. Hanrahan. Under-
standing the Efficiency of GPU Algorithms for
Matrix-Matrix Multiplication. Graphics Hardware,
2004.

[8] Houdini 3D Animation Tool. http://www.sidefx.com

