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Abstract 

The integration of natural phenomena in a virtual scene is 

a difficult task. Most of them involve small scale 

dynamics that looks chaotic on large scale. Such 

phenomena are fluid motion, fire, and smoke. Although 

their simulation is difficult and usually has high resource 

requirements real-time simulation is possible by making 

compromises. In this paper we present a method to 

simulate smoke in real-time by taking advantage of the 

GPU. We also present a way to include solid objects 

considered as obstacles in the simulation. A disadvantage 

of the simulation is that the space for simulation is 

limited. The obstacles outside the simulation grid have 

no effect. In this paper we introduce a way to overcome 

this. 

Keywords: Smoke simulation, Navier-Stokes equations, 

Obstacles, Real-time, GPGPU 

1 Introduction 

Natural phenomena are still a researched field in 

computer graphics. In engineering their simulation is 

essential to accurately predict their behaviour. In the 

game industry accurate visualizations make the virtual 

worlds more realistic. Even though we know their inner 

dynamics their simulation remains difficult due to the 

tremendous amount of the resources required. In most 

cases it is necessary to run these simulations fast. In 

computer games the phenomena are only part of the 

virtual scene that needs to be updated and rendered 

within a fraction of a second. 

Smoke is one of the complex natural phenomena. It is 

basically a flow of matter, similar to fluids and fire. Its 

motion and dynamics are governed by the laws of 

physics on the scale of particles, but the tremendous 

amount of particles form a complex system that is 

difficult to simulate. The calculation capacity limits the 

number of particles we can use to create the effect, and a 

low number of particles make the effect visually 

unrealistic. The approach to simulate the individual 

particles is referred to as the Lagrangian view. 

There is another approach, called the Eulerian view, 

where the space is divided into discrete cells forming a 

grid. Every cell contains macroscopic quantities that give 

information about the space and matter inside that cell 

(like velocity, pressure, density, etc.). A simulation in 

Euler space does not calculate the motion of each 

particle, but the changes of the quantities in the cells. An 

advantage of this view is that it is easy to approximate 

gradients in a grid. Using this view, the accuracy of the 

simulation highly depends on the resolution of the grid 

instead of the amount of particles used. The higher this 

resolution the better it approximates the real life 

behaviour. 

The value of a simulation method is also measured by 

how well it can be integrated into a virtual world. An 

absolutely essential part of these scenes are solid objects. 

A world, even a virtual one would be boring with only 

fluid, or gas in it. Solid objects are considered obstacles 

and they drastically affect the motion of other objects, 

fluids, and gases. That is why their affect on smoke 

should be included in its simulation. 

2 Related work 

The particle based approach was the dominant solution 

for fluid simulations mostly because the necessary 

computing time can be controlled by limiting the 

maximum number of particles. In real-time applications 

there was no capacity for solving equations. With the 

particles the computations are very simple as long as 

there is no need to simulate particle-particle interactions. 

An accurate simulation however requires those 

calculations as well. 

The Eulerian approaches had very limited potential 

until Stam introduced the “stable fluid” simulation in [8]. 

This presented the first unconditionally stable algorithm 

for solving the Navier-Stokes equations. The method was 

still far from applicable in real-time. Harris [9] presented 

an implementation that uses the GPU on a video card 

based on Stam’s work. He also tested algorithms and 

recommended the Jacobi iteration to be used in the 

solving process. 

There are also articles and papers [1][3] on 

implementing a real-time fluid simulator based on the 

Navier-Stokes equations using the modern GPUs. The 

method is based on storing the simulation grid in textures 

and implementing the algorithms in pixel/fragment 

shaders. Rendering the texture that contains the current 

state onto another texture using the special shaders 

executes an algorithm. The target texture then contains 

the new state of the grid, containing the updated values in 

the cells. Even if some technical details are different in 

the implementations, the simulation in [1] and [3] are 



based on this method. We also used this technique to run 

the simulation on GPU. 

3 Simulation 

3.1 Dynamics 

The basics of the simulation are to numerically calculate 

the flow in the simulation grid. Every cell has a velocity 

which describes the average velocity of the matter inside 

the cell. Based on this, it is possible to approximate the 

distribution of quantities in the next time step. To 

simulate the motion we need to update the velocities 

according to the physical quantities. The Navier-Stokes 

equations offer a possible solution to that problem. The 

momentum equation (1) describes the change of the 

velocity. 
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In the equations u stands for velocity, p for pressure, g 

for acceleration caused by gravity, ν for dynamic 

viscosity, and ρ for density. 

The second is the incompressibility equation (2), 

which guarantees the conservation of mass if the matter 

is incompressible. 

 ∇ ∙ ��� = 0 ( 2) 

Fluids and gases are compressible but here we can 

make a general simplification and regard them 

incompressible. In most cases the compressibility is 

irrelevant because extreme circumstances are required to 

produce visible compression. We don’t lose much with 

this constraint but we gain a lot by enforcing the 

conservation of material. 

The momentum equation is a special form of 

Newton’s second law. The numerical solving of this 

formula alone is easy since the variables are all contained 

in the cells as quantities or can be calculated from the 

stored quantities. It can be further simplified by dropping 

viscosity. It is a very important force in the equation and 

must be counted in for realistic results but we can still 

leave it out. The reason is that the numeric nature of the 

simulation has an effect which is similar to viscosity and 

is very strong and visible. This is called numeric 

dissipation because the accumulating numeric errors in 

the calculations eliminate the small details in the motion. 

An example is the blur of turbulent flow when the vortex 

is created by the simulation, but with time the numeric 

dissipation blurs it into a simple moving mass. We 

replace the gravity with a variable force that creates 

acceleration a. 
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The incompressibility equation derives from the 

constraint that the amount of quantities flowing out from 

a certain place must equal the quantities flowing in. This 

is a constraint for the momentum equation which makes 

the solution difficult to calculate. We have to ensure that 

the velocity field is divergence free. A projection 

operator can be defined which takes w as input and gives 

u as output. It is called projection because executing the 

same operator again on a field leaves it unchanged. It is 

necessary in this case since we want a divergence free 

velocity field unchanged after a projection on it. 

The projection operator should solve a linear 

equation. If w is a velocity field containing divergence 

and u is divergence free than (4) is true. 

 � = � − ∇�  ( 4) 

Combining this with the incompressibility constraint 

gives equation (5). This can be interpreted as a linear 

equation and can be solved for pressure. 

 ∇2� = ∇ ∙ �  ( 5) 

Using equation (5) we can update the pressure values 

in the cells so when changing the velocities using the 

pressure gradient we eliminate the divergence. Solving 

equation (4) for pressure is possible with a number of 

algorithms. We used the Jacobi iteration to do this. This 

is considered an any-time algorithm since it converges to 

the solution. We need to run several iterations to get an 

accurate update of the pressures. Based on experience 

20-30 cycles produce acceptable results. The 

disadvantage of this method is that the results are not 

perfect so this cannot ensure a perfectly divergence free 

velocity field nor the perfect incompressibility of matter. 

The first creates an error in the simulation but the second 

can also be considered an advantage since it makes the 

simulated material slightly compressible. 

Now that the velocity field is updated and divergence 

free, the simulator only needs to calculate the advection 

of quantities in the grid. It would seem almost trivial to 

just use a forward integration to get the next position of 

the quantities in a cell. It would be a solution with 

Lagrangian viewpoint, but in Eulerian space it is 

unconditionally unstable. Not to mention that this could 

not be done on a GPU. There is also an algorithm that 

traces back the flow by approximating the source 

position based on the velocity. The disadvantage of this 

solution is that it is only an approximation and only first 

order accurate. The main reason for the error is that the 

calculated position of the source is based on the velocity 

in the destination cell at the previous moment. Its 

advantage is that the advection is unconditionally stable 

so it can even be used with large time steps. Because the 

theoretical view of this algorithm is Lagrangian but it is 

an advection in Eulerian space, this advection scheme is 

called semi-Lagrangian advection. Many simulators use 

this because it is fairly easy to implement and it always 

remains stable. The only condition is that it requires a 

divergence free velocity field to work. In practice the 

relatively small divergence that is left after the projection 

is acceptable.  

For the implementation, the solving of the Navier-

Stokes equations is broken down into the steps 

introduced before. The first step is the advection on a 

divergence free velocity field. It is followed by the 

application of the accelerations, forces and other 

manipulations on the quantities. Then the simulator runs 



the projection operator to apply the pressure gradient and 

make the velocity field divergence free again.  

3.2 Smoke 

The basic simulation is able to approximate a general 

flow of the quantities in the cells. These quantities must 

include the velocity and the pressure in order to run the 

basic simulation. New quantities can be added to serve 

the needs of special simulations. These new attributes are 

not necessarily physical. For the smoke we should add 

two more quantities which both describe physical 

attributes. The new quantities are advected the same way 

the previously introduced quantities do so the advection 

scheme used previously is also applicable with the new 

quantities 

The density of the smoke is an essential value. It does 

not affect the dynamics but is required for the 

visualization of the smoke. The other one is the 

temperature which creates buoyancy. This force is 

calculated by (5), where m is the molar mass, R is the 

universal gas constant, T is the temperature of the smoke, 

T0 is the ambient temperature. 
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Using the Boussinesq approximation the force to 

apply in the simulation is sown in equation (6). It 

includes the gravity as well as the buoyancy, and 

simplifies them in a linear equation. The constants α and 

β can be chosen based on experiences and test results. 
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Applying this force after advection and using the 

density values for rendering the general flow simulation 

is capable of simulating the motion of smoke. 

Based on these algorithms we implemented a smoke 

simulator in 2D. It is mainly for a sample 

implementation. The results are shown on figure 1, 

which pictures are taken as screenshots from the 

simulator. 

 

   
Figure  1 : Smoke simulation in 2D 

 

3.3 MacCormack advection 

The simulation is far from perfect. It has an inevitable 

error because of its discrete nature. There are several 

sources of this error. The trivial solution to decrease the 

error is to increase the resolution of the simulation grid. 

This approach works but has a high cost since the 

simulation algorithm is to be executed for every cell. The 

performance of the simulator is significantly lowered by 

a higher resolution of the grid as shown by Table (1). 

Another source of the error is the advection scheme 

used in the implementation because it is only an 

approximation. The semi-Lagrangian algorithm is only 

first order accurate. Its accuracy highly depends on the 

divergence in the velocity field, and the distance between 

the source and the destination. A more accurate 

advection scheme could also greatly improve the results. 

Another advection scheme that is called MacCormack 

advection gives second order accurate results and has 

low performance cost. We used the algorithm that [6] 

suggests and which is also used by [3]. It relies on the 

following equations if A is a first order accurate 

advection scheme, q
n
 is a quantity in the current moment, 

q
n+1

 is a quantity in the next moment and A
inv

 is the 

inverse of A (like time was going backwards). 
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The MacCormack advection uses a second advection 

step to estimate the error of the first one and then 

eliminates that error. This advection scheme is second 

order accurate and requires not much more than two 

semi-Lagrangian advection steps. There is a severe 

problem with this algorithm, its stability. It is only 

conditionally stable, which means that during the 

simulation it can destabilize and give completely useless 

results (as it is visible in Figure (2)). These incidents can 

be avoided by preventing the algorithm to create new 

extrema. To make it unconditionally stable limiters must 

be applied as presented in [6]. We decided that the 

advection should revert to the first order accurate result 

in case the limits would be passed. Since the semi-

Lagrangian advection scheme and the results within the 

boundaries of the limiters are both unconditionally stable 

the resulting advection scheme remains stable under any 

circumstances. 

 

  
Figure  2 : Result of unstable advection 

 

Figure 3 shows the quality gained by this more 

accurate advection because there are clearly more details, 

even though the grid resolution is the same. Table 1 

presents the low performance cost of this method. The 

MacCormack advection can also be used to gain 

performance by lowering the resolution since (as Figure 



4 demonstrates) the quality of the semi-Lagrangian 

advection in a high resolution grid can be achieved with 

the MacCormack method on a lower resolution.  

 

   
Figure  3 : left: semi-Lagrangian, 

right: MacCormack 

 

   
Figure  4 : left: 256x256 semi-Lagrangian, 

right: 128x128 MacCormack 

 

 semi-Lagrangian MacCormack 

128x128 443 413 

256x256 331 312 

512x512 93 90 

Table  1 : Performance
*
 results of the 2D simulator [FPS] 

3.4 Simulation in 3D 

In a virtual world the smoke should flow in a three 

dimensional space. The equations do not limit the 

dimension of the simulation grid, it is only a matter of 

implementation. A way to use the GPU to run the 

simulation is to store the values of the grid cells in 

textures with floating point numeric representation. One 

channel of a texture cell stores the value of one quantity 

and since one texture has four channels we must use 

more than one texture for all the quantities. A special 

quantity is the velocity which being a vector requires one 

channel for each of its components. 

A crucial question is what texture type to use. Today 

it is possible to use 3D textures because they can be used 

as render targets. This feature was introduced in Shader 

Model 4.0. An example for such implementation can be 

found in [3]. It makes the shader just as simple as in a 2D 

simulator leaving only the visualization as the main 

difference. We used a ray marching algorithm - similar to 

the one presented by [7] – to visualize the three 

dimensional grid. 

However it is also possible to use 2D textures and 

divide them into tiles representing the layers of a 3D 

texture. This flat 3D technique was chosen in [1]. The 

                                                           
*
 Test configuration: Athlon 64 X2 3800+, 4GB RAM, 

Radeon HD3870 512 MB, Vista (64 bit) 

coding is more difficult in this case because real 2D 

texture coordinates have to be converted to virtual 3D 

coordinates. Also the interpolation between the layers 

has to be done manually in the shaders. The price in 

difficulties is returned by the gain in performance. 

We implemented both versions. The performance of 

the simulator that uses 3D textures is almost 

unreasonably low, as it is clearly visible from Table 2. 

These values do not contain the visualization of the data. 

 

 Flat3D 3D 

32x32x32 336 18 

64x64x64 76 9 

128x128x128 10 4 

Table  2 : Performance of the 3D simulator [FPS] 

4 Obstacles 

4.1 Voxelization 

To simulate the effect of solid objects on the smoke’s 

motion it is inevitable to provide data about them in 

Eulerian space. The vertex based description would be 

useless in the simulation. A useful form is a voxel based 

model of the objects. The operation which creates a 

voxel based model from a vertex based is called 

voxelization. The main goal is to sign in every grid cell 

whether or not an obstacle is present, and to store the 

velocity of a moving solid object. The velocity describes 

the average velocity of the obstacle’s part that is located 

in the cell. This also means that the velocity is the same 

for a whole object if it is not animated and not rotating. 

The accuracy of the simulation with obstacles highly 

depends on the resolution of the simulation grid since it 

can be considered as the sampling resolution of the 

objects physical form. 

The implementation depends on the specifics of the 

obstacles. If we assume all objects have closed surfaces 

we can use a special rendering technique to voxelize. The 

result will be the needed information, which voxels are 

inside and which outside the solid object. The problem is 

similar to the well known shadow volume, so the 

solution can be similar as well. There are variations of 

the implementation. Some use the stencil buffer, some 

use blending (like [1]). The advantage is that the objects 

can be any free form surfaces that are closed. The 

disadvantage is that the model used for the voxelization 

must be rendered for each layer of the grid. This is why a 

simplified object is recommended for the voxeliation and 

not the same as the one used in the scene. 

If we limit the types of the obstacles to quadrics we 

can use a simple shader to calculate the inside-outside 

information for the whole grid. This is more 

performance-friendly since we do not need to render the 

object itself only specify its parameters. In case of a 

sphere the shader can simply determine if a voxel is 

inside by comparing its distance from the sphere’s centre 

to the sphere’s radius. The disadvantage is the obvious 



fact that the objects are limited. We used this method for 

voxelizing a sphere in our sample program.  

  
Figure  5 : 3D simulation with an obstacle 

 

4.2 Boundary conditions 

To create the effect of a solid object in the simulation 

grid we must modify the simulator. An important change 

is to ignore the values in those cells that are occupied by 

obstacles whenever calculating gradients, or divergences. 

This can be done by using the value in the centre cell for 

the calculation instead of the real value in that 

neighbouring cell. Without this modification the velocity 

divergence and the pressure gradient could be corrupt at 

the boundaries of the obstacles. 

The other change in the shaders should be the 

enforcement of the boundary condition. This condition 

limits the velocity in the neighbour cells of the obstacles. 

It is essential to keep the matter from flowing inside the 

solid objects. If the velocities at the boundaries have to 

be corrected, then these values create a divergence in the 

velocity field. The created projection operator will then 

smooth the velocity field. This allows the boundary 

condition to affect the velocity field near the obstacles. 

During the final step of the projection the neighbour 

cell’s velocity can be changed directly so it is the best 

place to enforce the boundary condition. 

The condition itself may vary as the specific 

application requires. Usually the free-slip condition is 

used by fluid simulators and it is formally defined by 

equation (7) if u is the velocity in a cell, uobstacle is the 

obstacle’s velocity, and n is the surface normal of the 

obstacle. It only allows the matter to flow parallel to the 

obstacle’s surface which creates an effect similar to the 

real behaviour of fluids. They appear to stick to the 

surfaces and this can be reproduced using the free-slip 

condition. 
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Although it is realistic for fluids this behaviour looks 

strange. Also it would require accurate surface normal 

vectors to produce the desired effect. Instead, we used a 

simple estimation by the relative position of the occupied 

neighbouring cell to the centre cell. 

This estimation makes it possible to limit the velocity 

in a cell to zero which can produce an anomaly. When 

smoke flows into such cell it acts as a source because the 

neighbour cells are likely to pull matter from that cell 

while the smoke is still completely stuck there. For these 

reasons we chose to use a condition that lets the smoke 

flow away from obstacles. Its formal description, 

equation (8) is very similar to the free-slip condition only 

it allows more freedom. 

 ��� ∙ 9�� ≥ �����:���;< ∙ 9�� ( 9) 

With this extra freedom it is possible that 

neighbouring cells pull out matter from cells occupied by 

obstacles. It has to be prevented by extending the 

advection to check for this condition and change the 

result accordingly. 

Using the voxelization and the integration of the 

boundary condition the simulator is now capable of 

handling solid objects. It looks realistic and it does not 

require too much extra resources. Unfortunately there is a 

fundamental problem. The simulation grid is only a 

predefined part of the virtual space. It means that only 

those objects that at least intersect the box defined as the 

simulation space can affect the simulation. The objects 

outside the grid have no effect whatsoever and no matter 

how close they are. 

5 Outer obstacles 

5.1 Effect of inner obstacles 

The simulation of the outer obstacles is not possible but 

the approximation of their effect can be applied 

indirectly to the simulation. We used an acceleration 

field to do this because it is not a direct manipulation of 

the velocities but it still offers some level of local 

control. The first step is to observe the simulated effect 

of the objects inside the grid.  

For the observation it is necessary to visualize the 

velocity field. A ray marching algorithm like the one 

used for the density is suitable with a slight modification. 

The output colour should represent the vector of velocity, 

and the colours are linked to the three components. The 

problem is that the output is limited and the velocities are 

not. Because of this problem a visible range must be 

defined for the visualization. 

 

  
Figure  6 : Velocity field 

 

In Figure 5 it is visible that the dominant effect is that 

the matter in front of the obstacle is pushed. It is like a 

shockwave before the moving object. This is the case 

when the pressure values are visualized on Figure 6. The 

negative and positive values are coded into separate 

colour channels. The pressure drops even in front of the 

object but before the shockwave.  

 



   
Figure  7 : Pressure field 

 

The shockwave appears as the objects starts moving. 

It is getting stronger and moves away from the surface of 

the object. The amount of the changes in the velocity 

field depends on the velocity of the object. The effect 

remains similar but the strength differs as its speed 

changes. 

5.2 Approximation 

To approximately reproduce the effect of solid objects, 

the following algorithm attempts to create a shockwave 

similar to the simulated. Any vector in Cartesian space 

can be defined by the linear combination of the axes of 

the coordinate system’s basis. Including the negative 

directions of the axes the vectors can be expressed using 

only non-negative coefficients. We express an objects 

velocity using the positive and negative directions of the 

three axes. This division into separate components allows 

storing data about the object’s movement through time 

without any increase in the storage space. The program 

updates the parameters for each segment instead of 

always storing new values in every frame. Every segment 

has individual parameters used to calculate the 

accelerations. The parameters are the centre, the distance 

of the peak of the wave from the centre and the 

maximum of its strength. The strongest acceleration is 

located in the intersection of the sphere defined by the 

centre and distance parameters and the vector defined by 

the direction of the velocity. The accelerations fade away 

as they are farther from this point.  

 

  
Figure  8 : Accelerations to approximate obstacle’s effect 

 

Also the direction is important so the accelerations 

are also fading as they are farther from the direction of 

the movement. Based on these assumptions the equations 

to get the acceleration in a position p are: 

 

Dist[i] = length*p – Centre[i]-; 
DistStr[i] = max*PeakStr[i] – abs*PeakDist[i] – Dist[i]-, 0-; 
DirStr[i] = max*dot*p – Centre[i], Dir[i]- – 0.8, 0-•5.0; 
Acc [i] = normalize*p – Centre[i]-•DistStr[i]•DirStr[i]; 
FinalAcc = ∑ Acc[i]b

cd, ; 

 

This calculation is implemented in a shader that 

renders onto the texture representing the acceleration 

field. This shader has to be executed for every solid 

object. 

5.3 Parameters 

The parameters used to calculate the accelerations should 

be updated every time step according to the object’s 

movement. To get an effect that is getting stronger by 

time the maximum strength should be increased in case 

of a continued movement in the same direction. Also the 

distance of the wave should be slightly increased as well. 

When the object starts moving the distance is reset to a 

constant chosen based on the object’s size. A possible 

choice could be the radius of the object’s bounding 

sphere. The starting effect is almost always irrelevant 

since it will take some time for the object to get near the 

simulation grid. The centre parameter is updated as the 

object is moving. When an obstacle is no longer moving 

in the same direction, the centre should remain 

unchanged and the distance should be rapidly increased. 

The strength of the shockwave should be decreased so 

the effect will fade away after the object stopped. Based 

on these directives the algorithm to update the 

parameters is shown below. 

 
SpeedStrength[i] = dot*ObstacleSpeed, Dir[i]-; 
if *SpeedStrength[i] > 0- { 
 if *PeakStr[i] < DragCoeff[i]•SpeedStrength[i]- { 
  PeakDist[i] = StartDist[i]; 
 } else { 
  PeakDist[i] = PeakDist[i] + 0.1 • Δt; 
 } 
 PeakStr[i] = DragCoeff[i]•SpeedStrength[i]; 
 Centre[i] = ObstaclePosition; 
} else { 
 PeakStr[i] = PeakStr[i]•max*0.0, 1.0 – 5.0•Δt-; 
 PeakDist[i] = PeakDist[i] + Δt; 
} 

5.4 Results 

The simulator program voxelizes the objects entering the 

simulation grid and uses the approximation of their 

effects otherwise. This made it possible to observe and 

compare the simulated and the approximated effect of 

obstacles. In the left side of Figure (8) the object is inside 

the simulation grid but in the sequence on the right side 

of Figure (8) it is outside. The distance between the 

objects starting position and the timing of its movement 

is the same in both cases. Therefore an ideal 

approximation should produce the same changes in the 

smoke’s motion. 

By looking at the two sequences (Figure 8) it can be 

stated that the result of the approximation is close to the 

simulated. The details are different but the main changes 

in the movement are very similar. The effect of the 

obstacle outside the grid can be considered as part of the 

simulation. 



   

   

   

   
Figure  9 : left: simulated, right: approximated 

6 Conclusion and future work 

The theory and the mathematical basis of the smoke 

simulation is well established. Methods to implement 

them in a real-time simulator are also available and there 

are several sources that present them. Most of these rely 

on the computing power of the GPU because the 

algorithms can be executed in parallel on each cell. In 

this paper we presented a way to implement a real-time 

smoke simulator. The interaction with solid objects is a 

highly important part when integrating the simulator into 

a virtual world. The limits of the Eulerian view require 

some form of extension to make this a competitive option 

in more scenarios. The method present can approximate 

the effect of solid objects with a visually acceptable 

error. Depending on the requirements this could increase 

the applicability of simulators with Eulerian space. The 

advantage of the algorithm is that its requirements are 

independent from the movement of the objects. The 

disadvantage is that it has to be executed for every 

obstacle separately. 

The algorithm can be extended with the monitoring of 

the obstacles and choosing only those that probably 

affect the simulation to run the approximation with them. 

This could save time in a general virtual world where 

many objects could be discarded easily. The 

approximation itself could be improved to give more 

accurate results. The drag coefficient used in the update 

of the parameters is manually specified. It would worth 

some research to automatically calculate this number. 

The simulator part could also be improved. The 

voxelization could be modified to work with free form 

objects like in [1] or in [3] and implement the 

approximation for them as well. Also the rotation of the 

objects is not part of the voxelization and the 

approximation therefore it could be examined and 

determine if it changes the approximation’s accuracy. 
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