Real-Time Global Illumination in Point Clouds

Reinhold Preiner

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Motivation

- Given: Huge point cloud scenes
- Target: Realistic Illumination
- Problems: Data quality, splat artifacts, etc.
- →Global Illumination (GI) applied to point clouds for the first time

Virtual Point Lights (VPLs)

Distributed in the scene to approximate radiance [Keller]

Used for indirect illumination of the scene

Imperfect Shadow Maps (ISMs)

Responsible for VPL visibility [Ritschel et al.]
 Parabolic depth map created by point splatting

Indirect Shadows

Important for scene realism

VPLs & ISMs: Point sampling necessary

VPLs: store surface positions on meshes

ISMs: points for splatting

1) Preprocessing: faster, but semi-dynamic
2) On the fly: dynamic, but slow performance

In point clouds:

WE DON'T CARE

GI Render Chain

Increasing realism by multiple indirect diffuse and specular light bounces

1 bounce

2 bounces

3 bounces

4 bounces

Diffuse and glossy scenes, caustics

Performance: Interactive up to real-time

Current Work

Screen-space curved reflections

Thank You Folks!

