
Fast Hydraulic and Thermal Erosion on the GPU

Balázs Jákó∗

Supervised by: Balázs Tóth†

Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Budapest/Hungary

Abstract

Computer games, TV series, movies, simulators, and

many other computer graphics applications use external

scenes where a realistic looking terrain is a vital part of

the viewing experience. Creating such terrains is a chal-

lenging task. In this paper we propose a method that gen-

erates realistic virtual terrains by simulation of hydraulic

and thermal erosion on a predefined height field terrain.

The model is designed to be executed interactively on par-

allel architectures like graphics processors.

Keywords: Erosion, simulation, GPU, GPGPU, hy-

draulic, thermal.

Figure 1: Landscape with mountains, valleys, ridges,

riverbeds and lakes, generated by our method.

1 Introduction

Natural eroded terrains have some typical features like val-

leys, riverbeds, ridges, etc. These are results of differ-

ent kinds of erosion caused by water, thermal shocks, and

wind. Hydraulic erosion is caused by running water on

terrain surface generated by from falling rain and springs.

∗balazs.jako@hun-digital.hu
†tbalazs@iit.bme.hu

The flowing water dissolves soil and transports it to lower

locations where the dissolved sediment is deposited. Ther-

mal erosion is caused by temperature changes caused by

the alternation of the hot Sun and cold night air. Hard sur-

faces are cracking up into smaller parts, the decomposed

material is moving down to lower areas due to gravity.

There are different approaches to generate virtual ter-

rains with features caused by these phenomena. Methods

based on fractal techniques build a terrain that is similar to

real-world mountain scenery, but these are isotropic, mak-

ing ridge and valley generation difficult. Topographical

methods use structural models to simulate water systems.

These emphasize water flow, but mountain slopes are less

natural in results. Physics based models simulate erosion

factors and their effects on terrain surface like water flow,

thermal shocks, and wind. In our method, we focus on hy-

draulic and thermal erosion, because these have the most

impact on the terrain surface.

The programmability of modern GPUs makes it pos-

sible to execute not only graphics algorithms but a wide

range of other, more generic tasks [11]. Using general pur-

pose graphics processing units (GPGPUs) for simulation

is obvious when the simulation algorithm can be excuted

in parallel. The architecture of the GPUs execute appro-

priate algorithms much faster than traditional CPUs which

makes such simulations able to run interactively, allowing

direct observation and manual intervention during execu-

tion.

Physics based erosion methods apply some kind of fluid

simulation. Chiba et al. [4] were the first to propose sim-

ulating valleys and ridges using particle systems. Beneš et

al. [3] presented a model that uses the Navier-Stokes equa-

tions on a 3D regular grid simulating the erosion process.

Neidhold et al. [5] used simplified Newtonian physics

model for velocity computation on a 2D grid. Up to this,

all of these models are computationally expensive, and due

to data dependencies they are hard to execute on a parallel

hardware. 2D Navier-Stokes equations were solved effi-

ciently by Harris [6] and Wu [14]. Kass et al. [7] solve

shallow water equations in their model, which was also

used by Beneš et al. [1], to simulate erosion in real-time.

Mei et al. [8] used this model in their simulation with em-

ploying virtual pipes introduced by O’brien et al. [10] that

is the key to parallel execution. Our approach is partly

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

based on [8]. To improve the realism of the simulation, we

adapted the thermal erosion model of Beneš et al. [2] by

applying the idea of virtual pipes and merging it into the

improved hydraulic erosion algorithm.

2 Erosion Model

Our hydraulic erosion model is an improved version of the

method introduced by Mei, Decaudin and Hu [8]. This

model works with a 2D uniform grid and uses the follow-

ing quantities in each (x,y) cell (see Figure 2):

• terrain height b,

• water height d,

• suspended sediment amount s,

• water outflow flux f= (f L, f R, f T , f B),

• velocity vector
−→
v .

These values are updated in each iteration. The simulation

iteration consists of the following five steps:

1. Water incrementation due to rain or water sources.

2. Flow simulation using shallow-water model. Compu-

tation of the velocity field and water height changes.

3. Simulation of the erosion-deposition process.

4. Transportation of suspended sediment by the velocity

field.

5. Water evaporation.

These steps are executed in each iteration step, gradually

changing the state variables in each cell. Let bt ,dt ,st , ft ,
−→vt

denote the data elements at a given time t and ∆t the time

step. In the following, we summarize the calculations pro-

ducing the values at the next t+∆t time. Since the model

calculates some variable values in two or more steps, we

will use subscripts 1,2, ... to distinguish the temporal val-

ues from the final output used in following iterations.

First, we simulate the effects of water arriving at the ter-

rain surface. Unlike the original model, we use constant

r(x,y) rain rate for each cell instead of large randomly dis-

tributed raindrops falling down to surface. The rain rate

specifies the water amount arriving at a given (x,y) cell

during ∆t time. This gives us more balanced and finer

grained results in the long run. The water height is up-

dated by the following formula:

d1(x,y) = dt(x,y)+∆t · rt(x,y) ·Kr (1)

where Kr is a global simulation parameter that scales the

overall rate of water increment, and d1 is the intermediate

value of the water height.

Then, we calculate the water flow between cells. Each

(x,y) cell has four virtual pipes to the four neighbors which

Figure 2: Water and thermal sediment flow model.

transport water outward from the given cell. Neighboring

cells also have four virtual pipes, transporting water to op-

posite directions. The water outflow flux is updated with

the pressure difference between interconnected cells. Let’s

denote f=(f L, f R, f T , f B) the outflow flux in a given (x,y)
cell, where f L is the outflow flux to the left neighbor at

(x− 1,y), and similarly f R, f T , f B are the outflow fluxes

to right, top, bottom directions, respectively. We calculate

the change of f L as:

f Lt+∆t =max(0, f Lt (x,y)+∆t ·A
g ·∆hL(x,y)

l
) (2)

where A is the cross section area of the virtual pipe, g is

the gravity, l is the length of the virtual pipe, ∆hL(x,y) is
the height difference between the left and the current cell:

∆hL(x,y) = bt(x,y)+d1(x,y)−bt(x−1,y)−d1(x−1,y)
(3)

The calculation of f R, f T , f B is performed in a similar

way. The total outflow should not exceed the total amount

of the water in the given cell. If the calculated value is

larger than the current amount in the given cell, then f will

be scaled down with an appropriate K factor:

K =max(1,
d1 · lx · ly

(f L+ f R+ f T + f B) ·∆t
) (4)

where lx, ly are the distances between the grid cells in the

x,y directions. The outflow flux is multiplied by K:

f it+∆t(x,y) = K · f it+∆t , i= L,R,T,B. (5)

We calculate ∆V water height change with adding fout out-

put and fin input flow values in each (x,y) cell:

∆V (x,y) = ∆t · (∑ fin−∑ fout) =

= ∆t · (f Rt+∆t(x−1,y)+ f Tt+∆t(x,y−1)+

f Lt+∆t(x+1,y)+ f Bt+∆t(x,y+1)−

∑
i=L,T,R,B

f it+∆t(x,y).

(6)

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Then, we update the water height in the current (x,y) cell:

d2 = d2(x,y)+
∆V (x,y)

lxly
. (7)

Using outflow flux values, we can calculate the
−→
v velocity

field that needed to calculate hydraulic erosion and depo-

sition. The calculation of the x component is:

∆Wx =
1

2
(f R(x−1,y)− f L(x,y)+

f R(x,y)− f L(x+1,y))
(8)

The y component is calculated in a similar way. Since we

know the velocity vector, we can calculate C water sed-

iment transport capacity that represents how much sedi-

ment can be transported in a cell. In the original model C

is calculated as:

C(x,y) = Kc · sin(α(x,y)|−→v (x,y)|) (9)

where Kc is a global simulation parameter controlling sed-

iment capacity, sin(α) is the local tilt angle, and
−→
v (x,y)

is the water flow vector in the cell. This empirical formula

erodes terrain proportional to the surface slope. To allow

some erosion at nearly flat areas, there is a lower limit for

sin(α(x,y)). Fluid erosion in real-world is highly depen-

dent on the water depth. Deep sea floors are practically

never eroded, even if there is a stream in the water, because

water flow is slower in deeper water levels, although sed-

iment capacity of deeper water is larger due to the larger

water volume. On the contrary, a relatively shallow river

always dissolves the terrain at the bottom, because water is

flowing faster and has direct effect on the bottom. To sim-

ulate this, we modified equation (9) by introducing lmax
limiting function:

C(x,y) = Kc · sin(α(x,y))|−→v (x,y)| · lmax(d1(x,y)) (10)

lmax(x) is a ramp function that is defined by the following:

lmax(x) =











0,x≤ 0

1,x≥ Kdmax

1− (Kdmax− x)/Kdmax,0< x< Kdmax

where Kdmax is a global simulation parameter controlling

the maximum erosion depth. This function scales down

the fluid erosion effects by the water depth, so the erosion

will occur only in shallower areas, forcing the simulation

to dispose sediment at deeper water areas, just like in real

world. This produces much more natural looking deep wa-

ter sea and lake floors than the original model. Moreover,

we included true 3D collision between water and terrain

surface:

C(x,y) = Kc · (−
−→
N (x,y) ·

−→
V) · |−→v (x,y)| · lmax(d1(x,y))

(11)

where N(x,y) is the terrain surface normal at point (x,y)

and
−→
V is the 3D water flow vector calculated from the sur-

face tangent and 2D velocity vector
−→
v . This modification

erodes more soil if the water collides with the surface in

angles closer to perpendicular. With our model, we ob-

served some ripples on sea floors similar to sand ripples

on real-world seashores.

At this point, there is a decision by using theC capacity.

If transported sediment st in cell (x,y) is smaller than C,

then we dissolve some soil in water:

bt+∆t = bt −∆t ·Rt(x,y) ·Ks(C− st), (12a)

s1 = st +∆t ·Rt(x,y) ·Ks(C− st), (12b)

d3 = d2+∆t ·Rt(x,y) ·Ks(C− st), (12c)

where Ks is the global coefficient. Otherwise, if C < st ,

then we dispose some of the transported sediment in a sim-

ilar way:

bt+∆t = bt +∆t ·Kd(st −C), (13a)

s1 = st −∆t ·Kd(st −C), (13b)

d3 = d2−∆t ·Kd(st −C), (13c)

where Kd is a global parameter controlling deposition

speed. Equations 12c and 13c were added to improve

long-term stability. Originally, the ∆t · Kd(st −C) sus-

pended sediment amount was subtracted from the terrain

heigth bt without adding it to dt water height. The overall

height of the water surface is defined as bt +dt at a given t

time. Thus, after the subtraction the overall water surface

height was decreased by the amount of the sediment sus-

pended by the water itself, caused water to disappear with

the sediment, ignoring the fact that suspended amount is

still in the water in fluid form. This caused some unwanted

feedback to the water flow simulation from the sedimenta-

tion process and causes regular ripples on the water surface

in the long run. With our modification, this behavior can

be eliminated.

To prevent negative water heights in equation 12c, we

clamped the dissolved amount to water height in cell (x,y).
There is one more improvement in the model. In nature,

moving sediment becomes softer by the time. To imitate

this, we slowly lower the R(x,y) local hardness coefficient
of the terrain when some soil is disposed:

Rt+∆t(x,y) =max(Rmin,Rt(x,y)−∆t ·KhKs(st−C)) (14)

where Rmin is the lower limit of hardness, Kh is a global

coefficient controlling the sediment softening. The next

step in the model is to move dissolved sediment along the

water using
−→
v = (u,v):

st+∆t(x,y) = s1(x−u ·∆t,y− v ·∆t) (15)

If point (x− u ·∆t,y− v ·∆t) is not on the grid, the model

uses linear interpolation between the four closest grid

points. In the last step, we simulate water evaporation:

dt+∆t(x,y) = d3(x,y) · (1−Ke∆t). (16)

In nature, the evaporation has a negligible effect, but in our

model it is important because the scene would fill up with

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Demonstration of talus angle: photograph of real

red sand dumped between flat plexi plates. The material

has near linear slope. [13].

water by the time if the water was not removed from the

system.

Our thermal erosion model is based on [9]. The orig-

inal method was designed neither to run on parallel ar-

chitecture nor in real-time, but with some improvements

these problems can be solved. Let’s denote the terrain

height of the current (x,y) cell by b and its eight neigh-

bors by bi, i = 1,2, ...,8. Let’s denote the height differ-

ence between the current cell and its lowest neighbor by

H =max{b−bi, i= 1, ...,8}. The area of each of the cells
is a and the volume to be moved is ∆S = a ·H/2. This is
the maximum, otherwise the algorithm will oscillate. To

handle local R(x,y) terrain hardness in cell (x,y), we have
extended this formula:

∆St+∆t = a ·∆t ·Kt ·Rt(x,y) ·H/2 (17)

where Kt is a global coefficient. Then we move this

amount to the lower neighbors proportionally if the so

called talus angle is larger than that the value determined

by material viscosity. The talus angle is an important

static parameter of solid granular materials without cohe-

sion between grain particles. To measure this parameter,

we should dump the material slowly to a flat surface be-

tween two transparent plates. The material will form a

slope with an angle, which is a maximum that the given

material can reach. Above this angle, the material starts

moving to lower levels, making the slope lower. When

slope angle reaches this critical angle, then the material

does not move anymore [13]. See figure 3.

Let’s denote the distance between two cells by d and

talus angle by α = tan((b− bi)/d). Let’s denote the set

of neighbors that are lying lower than the current element

under the talus angle by A = {bi,b− bi < 0∧ tan(α) >
(R(x,y)∗Ka+Ki), i= 1, ...8}, where Ka and Ki are global

simulation parameters controlling minimum talus angle

dependence on R(x,y) local hardness factor. Each element

Figure 4: Virtual pipes of thermal erosion. Brown ar-

rows: virtual pipes. Red arrows: soil movement from the

Cell(x,y) to the neighbors whose are lower than the talus

angle. Yellow arrows: soil movement is inhibited to cells

which height is above the talus angle.

in A will get part of the volume ∆Si proportional to its

height difference:

∆Si = ∆S
bi

∑∀bk∈A b
k
. (18)

In contrary to the original model, we do not move ∆Si vol-

umes directly to cells in set A because this would intro-

duce data write dependency that we wanted to avoid for

easy parallel execution. Similarly to fluid flow simulation,

we put these quantities into eight virtual pipes carrying

material to the neighbors of this cell (see Figure 4), then a

separate simulation step updates the terrain height for each

cell by summarizing the incoming material flow from their

neighbors.

With this modification we can easily execute the algo-

rithm in parallel and integrate it to the fluid-based erosion

simulation:

1. Water incrementation due to rain or water sources.

2. Flow simulation using shallow-water model. Com-

putation of velocity field and water height changes.

3. Soil flow calculation with outflow in virtual pipes

of thermal erosion model.

4. Simulation of erosion-deposition process.

5. Transportation of suspended sediment by the velocity

field.

6. Thermal erosion material amount calculation.

7. Water evaporation.

With these improvements, we can execute the two ero-

sion models in conjunction with each other. Steep walls

of riverbeds carved by hydraulic erosion will start to fall

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

down due to thermal erosion. And vice versa, the mate-

rial eroded by thermal erosion will be dissolved and trans-

ported by the running water.

3 GPU Implementation and Visual-

ization

In our implementation, the cell structure is represented by

2D 4-channel floating-point texture layers stacked upon

each other, attached to a single framebuffer object. Texels

of the same position in texture layers form one cell, con-

taining all the simulation variables associated with it. With

two such framebuffers we calculate one iteration using one

of these buffers as an input and the other as an output

(ping-pong) [12]. After the iteration we swap these buffers

and start over. The iteration process is implemented in a

single fragment shader that runs in three passes on a full-

size quad rendered over the entire framebuffer, writing the

output textures using the multiple render target feature.

The implementation exploits linear interpolation and edge

wrapping, which are basic features of the graphics hard-

ware.

The texture buffers can be used directly to visualize the

terrain height values to offset triangle vertices of the ren-

dered mesh in the y direction. For the sake of simplicity

we used a regular grid mesh to render the terrain surface,

but heightfield texture can also be used in advanced terrain

rendering methods.

Water is rendered in a similar way. The water surface

is a simple uniform grid mesh too, rendered with y offset

with the water height and a small −∆y constant. Due to

z-buffering this makes water surface invisible where water

height does not exceed ∆y. Water surface has a simple

fragment shader that calculates simple sky reflections and

alpha transparency.

4 Results

We have used regular and randomly generated terrains to

test our method. Regular terrains were utilized to test our

parallel erosion methods (see Figure 5 and Figure 6) and

see they are running without problems. As we can see,

thermal erosion makes the terrain material spread around

until the critical talus angle is reached, then the material

stops moving. Hydraulic erosion carves the surface creat-

ing deep valleys.

Random terrains were utilized to test the model in

natural-like scenarios. Random terrains were generated

with the the well-known Diamond-square algorithm (see

Figure 7a). We implemented it non-recursively to make it

possible to generate terrains with similar patterns at dif-

ferent resolutions. We used Gaussian distributed random

numbers to generate middle point heights in the algorithm

instead of regularly distributed ones, which makes the re-

sult more realistic.

Figure 5: Effects of our parallel thermal erosion method

on a regular height field after 1000 iterations.

Our erosion model uses R(x,y) local hardness coeffi-

cient in every (x,y) cell. This is a value in range 0..1,
that represents the resistance of the soil against in a given

cell. Smaller values are representing harder material and

vice versa. We generate this coefficient array by copying

and scaling the terrain heightfield, adding some random

noise to every cell, and applying a global Gaussian filter

to the array. The idea behind this was twofold. First, in

the nature, the terrain material at higher levels is usually

more resistant to erosion than the lower parts. Second,

real-world terrain material is never homogeneous, the con-

sistency varies from location to location. With this simple

method we can improve the realism of the generated ter-

rain. The surface will be more irregular, similarly to real-

world terrains where the material inhomogenity influences

the erosion at different locations (see 1).

Figure 7b shows the effects of the improved hydraulic

erosion model on the aforementioned random terrain. The

hydraulic erosion carves deep grooves into the surface that

rarely occurs in nature. This is why we included thermal

erosion in the model.

Figure 7c shows the effects of the parallel thermal ero-

sion process on the random terrain. The material at too

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Terrain Size Speed (ms/iteration) Ratio (GPU/CPU)

CPU1 CPU2 GPU1 GPU2 conf. 1 conf. 2

128x128 82.8 25.7 2.57 0.295 32.21 87.1

256x256 325 102.4 9.92 1.01 32.76 101.3

512x512 1289.1 412.6 39.22 3.835 32.86 107.5

1024x1014 5165.6 1647 160.15 15.47 32.54 106.5

Table 1: Performance results

Symbol and Description Range Value Symbol and Description Range Value

∆t Time increment [0;0.05] 0.02 Ks Soil suspension rate [0.1;2] 0.5

Kr Rain rate [0;0.05] 0.012 Kd Sediment deposition rate [0.1;3] 1

Ke Water evaporation rate [0;0.05] 0.015 Kh Sediment softening rate [0;10] 5

A Virtual pipe cross section area [0.1;60] 20 Kdmax Maximal erosion depth [0;40] 10

g Gravity [0.1;20] 9.81 Ka Talus angle tangent coeff. [0;1] 0.8

Kc Sediment capacity [0.1;3] 1 Ki Talus angle tangent bias [0;1] 0.1

Kt Thermal erosion rate [0;3] 0.15

Table 2: Allowed ranges and typical values of global simulation parameters used in our simulator.

(a) Initial terrain generated by a modified version of the widely-known

Diamond-square algorithm

(b) Effect of the improved hydraulic erosion model

(c) Effect of our thermal erosion model (d) Effect of the combined erosion method

Figure 7: Effects of different erosion methods on random terrain after 1000 iterations. The reddish color indicates sedi-

ment in the water.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: Effects of our hydraulic erosion method on a

regular height field after 1000 iterations.

steep slopes is moving towards the lower regions.

Figure 7d demonstrates the effects of our combined ero-

sion algorithm on a random terrain. We can observe that

the riverbeds and valleys are v-shaped which is more real-

istic than in the original erosion model.

In our framework the following ranges were defined for

global simulation parameters:

Figure 8 shows the effect of oscillations on the wa-

ter surface appearing at long simulations (upper image).

These ripples were successfully removed by some modifi-

cation applied to the model (lower image). See equations

12c and 13c.

Figure 9 illustrates the effect of erosion depth limiting

introduced in eqation 10. On the upper image the original

model carves riverbeds unrealistically deep. The improved

version produces more credible riverbeds (lower picture).

We tested the performance of our model on the two fol-

lowing hardware configurations.

1. CPU1: AMD Athlon XP 3.2 GHz

GPU1:ATI Radeon HD3650 AGP

2. CPU2: Intel Core2 Q9550 2.83GHz

GPU2: ATI Radeon HD4870

Figure 8: Elimination of the oscillation in the original ero-

sion model.

We implemented the erosion model both on CPU and on

GPU to measure the difference between the two architec-

ture. The results are summarized in Table 1. We can see

that the speedup gained by utilizing GPU is very high, we

reached 30 to 100 times faster execution. On the second

configuration, the ratio is higher, showing that the GPUs

are developing faster than the ”traditional” serial CPUs

due to their more scalable architecture. Using GPU im-

plementation, our algorithm can run at interactive speed

even on larger terrains.

5 Conclusions

We proposed an erosion model that can be executed on

massively parallel architectures like graphics processors.

The method combines and improves two algorithms to

simulate hydraulic and thermal erosion in conjunction

with each other. The original hydraulic erosion method

is extended to be more versatile and stable. The thermal

erosion model is a parallel redesign of an earlier work. It

makes it able to run on parallel architectures and be inte-

grated with the fluid erosion model. Our method gener-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: Effects of hydraulic erosion depth limit.

ates more realistic results while still running at interactive

speeds.

Acknowledgements

This work has been supported by OTKA K-719922 and by

TÁMOP-4.2.1/B-09/1/KMR-2010-0002.

References

[1] Bedřich Beneš. Real-time erosion using shallowwa-

ter simulation. The 4th Workshop on Virtual Reality

Interactions and Physical Simulation - Vriphys’07,

pages 43–50, 2007.

[2] Bedřich Beneš and Rafael Forsbach. Layered data

representation for visual simulation of terrain ero-

sion. In SCCG ’01: Proceedings of the 17th Spring

conference on Computer graphics, page 80, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[3] Bedřich Beneš, Václav Těšı́nský, Jan Hornyš, and

Sanjiv K. Bhatia. Hydraulic erosion: Research arti-

cles. Comput. Animat. Virtual Worlds, 17(2):99–108,

2006.

[4] Norishige Chiba, Kazunobu Muraoka, and Kunihiko

Fujita. An erosion model based on velocity fields for

the visual simulation of mountain scenery. Journal of

Visualization and Computer Animation, 9:185–194,

1998.

[5] E. Galin, P. Poulin (editors, B. Neidhold, M. Wacker,

and O. Deussen. Interactive physically based fluid

and erosion simulation.

[6] Mark Harris. Fast fluid dynamics simulation on

the gpu. In ACM SIGGRAPH 2005 Courses, SIG-

GRAPH ’05, New York, NY, USA, 2005. ACM.

[7] Michael Kass and Gavin Miller. Rapid, stable fluid

dynamics for computer graphics. In Proceedings

of the 17th annual conference on Computer graph-

ics and interactive techniques, volume 24 of SIG-

GRAPH ’90, pages 49–57, New York, NY, USA,

September 1990. ACM.

[8] Xing Mei, Philippe Decaudin, and Bao-Gang Hu.

Fast hydraulic erosion simulation and visualization

on GPU. In 15th Pacific Conference on Computer

Graphics and Applications, Pacific Graphics 2007,

November, 2007, pages 47–56, Maui, Hawaii, Etats-

Unis, November 2007. IEEE.

[9] Forest Kenton Musgrave, Craig E. Kolb, and

Robert S. Mace. The synthesis and rendering of

eroded fractal terrains, 1989.

[10] James F. O’Brien and Jessica Kate Hodgins. Dy-

namic simulation of splashing fluids. In Proceedings

of the Computer Animation, pages 198–, Washing-

ton, DC, USA, 1995. IEEE Computer Society.

[11] László Szirmay-Kalos and László Szécsi. General

Purpose Computing on Graphics Processing Units.

MondAT kiadó, 2011.

[12] László Szirmay-Kalos, László Szécsi, and Mateu

Sbert. GPU-Based Techniques for Global Illumina-

tion Effects. Synthesis Lectures on Computer Graph-

ics and Animation. Morgan & Claypool Publishers,

2008.

[13] Péter Vankó. Izgalmas mérések a mérnök-fizikus

hallgatói laboratóriumban. Fizikai szemle, BME

TTK, 9:307, 2006.

[14] Enhua Wu, Youquan Liu, and Xuehui Liu. An

improved study of real-time fluid simulation on

gpu. Department of Computer Science, University

of Manchester, UK. Since, 15:139–146, 2004.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

