
Augmented Reality platform for enhancing integration of virtual
objects

Mohamed El-Zayat

Faculty of Electrical Engineering, Sarajevo

Bosnia and Herzegovina

Abstract

With the wide spread of high end processors integrated in

mobile devices, ranging from 1GHz processors, to dual core

processors and hybrid processors (GPU and CPU on one

chip), augmented reality became more popular solution for

visualization and navigation. This work proposes an

augmented reality platform for organizing and enhancing

integration of computer generated objects by introducing

lights, shaders and shadows, in pursuing for better experience

for the end user, emphasizing on outdoor environments.

Keywords— augmented reality, platform, enhancing integration,

real time sun tracking

1 Introduction
Augmented reality (AR) is a relatively new and promising

concept. The ability of superimposing digital elements on a

physical world with means of interaction with the surrounding

world is quite intriguing idea, since AR introduction in 1968

by Ivan Sutherland [1]. However, the technology by that time

and for almost next 3 decades was quite limited to lab

research, since the mobility nature of AR, and lack of capable

mobile processor at that time.

Since the recent rapid development of GPUs, CPUs and

recently hybrid processors, AR became increasingly popular.

There are two main trends in AR research: registration, where

researchers try to solve misalignment and world tracking

problems, since the human visual system is capable of

detecting even the smallest visual errors; and integration,

where researchers are directed towards the enhancement of

computer generated object integration with the surrounding

environment.

This work proposes an AR mobile platform for enhancing

integration of virtual objects in outdoor environments.

Section 3 illustrates the proposed AR mobile platform.

Section 4 covers registration and Section 5 covers integration,

proposing a real time sun tracking system for capturing the

current lighting condition of the environment. Section 6

presents results compared to other AR platforms. Finally, in

section 7 we conclude the paper and give some directions for

future work.

2 Related work
In recent years we have seen significant advances in two

promising fields of user interface research: virtual

environments, in which 3D displays and interaction devices

immerse the user in a synthesized world, and mobile

computing.

Previous research in mobile AR has addressed a variety of

application areas including 3D mobile AR systems for

exploring urban environments [3], enhancing registration

through making a hybrid registration for outdoor AR [4],

improving teaching with mobile AR for learning and training

[5], location based AR for indoor environments [6], enhanced

computer generated objects rendering using environment

illumination [9] . In pursuing better registration of AR objects,

researchers are trying to combine computer vision with

sensors for achieving more accurate results [7]. Additionally a

combined solution for illumination techniques for AR objects

is discussed in [10]. One commercial platform that caught

many mobile device users’ attention, is Layar AR browser

(Figure 2.1).

Figure 2.1 Layar Browser, the original appearance of the Berlin wall (image

courtesy of layar.com)

This paper proposes the AR mobile platform for arranging

AR objects with an emphasis on enhancing the integration of

computer generated objects in the outdoor environment, by

introducing lights and shaders to the augmented objects.

3 AR platform
Making AR systems that work outdoors is a natural step in

the development of AR toward the ultimate goal of AR

displays that can operate in any environment. A user walking

outdoors could see spatially located information directly

displayed over live camera stream, helping to navigate and

identify features of interest [4].

While designing the platform, the mobility and

optimization factors were taken into consideration as

described in the upcoming sections. Figure 3.1 shows the

overall architecture of the platform.

Figure 3.1 AR Mobile Platform architecture

In order to achieve higher performance and decrease the

disk usage by 3D models and their associated textures, all 3D

models are stored on a web server, and will be downloaded on

the mobile device once the user is near the location where the

virtual object should be displayed.

3.1 Server side

A database containing 3D models along with the associated

textures, and additional lighting data for improving the

integration of the virtual object, resides on the server side.

Lighting details are covered in Section V.

The Virtual Objects Manager is responsible for handling

authentication and requests to the database. This component

would be crucial in case this platform is implemented for a

mobile provider.

Using the server side for managing virtual objects will

relieve the users from constantly updating and downloading

the complete application once 3D models get updated, thus

increasing the performance and saving unnecessary storage

load.

3.2 Client side
This platform requires a mobile device that is GPS capable

along with at least accelerometer and compass. Since most

mobile device vendors are integrating these sensors as a

standard in their devices, we believe that in few years these

devices will be common among users.

Mobile devices contain two major components: registration

and integration components. Registration component is

responsible for AR registration, which could be done using

complete sensor based registration (i.e. combining GPS,

accelerometer and compass data as discussed in Section IV),

or hybrid one as discussed in [4]. A hybrid registration could

combine some elements of computer vision and sensor data to

improve the integration of computer generated objects.

Therefore, the registration system could handle unstructured

and unprepared environments [9], and in this case, the AR

engine will be activated in the augmentation pipeline.

Once the user gets to a desired location detected by GPS,

where a virtual object resides, registration component will

generate the frustum that will be handed to the rendering

engine.

Rendering engine will send a request to the communication

layer to load 3D object and its associated data from the server

side, thus rendering the virtual object and “clearing” the

background with the camera feed, hence superimposing the

virtual object over the physical world.

4 AR registration
In order to enhance the integration of augmented objects,

improving registration is required. GPS data is required to

determine the position of the virtual object in the physical

world and the position of the user according to the position of

virtual object, hence calculating the position of the frustum

according to the physical world using equation 4.1:

 (4.1)

 represents user position, while represent the

virtual object’s position. is the range value. If the user is in

the range of the detected object, he/she will be notified and the

frustum will be generated.

In order to detect the rotation of the user, a compass will be

used for azimuth rotation direction, and the accelerometer will

control frustum altitude as shown in figure 4.1:

Figure 4.1 frustum controlled by sensors

The registration is sensor based, in pursuing for saving

CPU/GPU cycles to enhance the rendering of augmented

objects, hence improving the integration.

5 AR integration
There are several factors that have to be taken into

consideration for outdoor rendering of augmented objects.

One of these factors is lighting, which is a crucial component

in rendering any object in a scene.

In order to improve the integration and create a realistic

scene, AR platform should track sun position in real time, thus

approximating lighting conditions of physical objects along

with their shadows. Therefore a directional light is used to

simulate sunrays.

Earth is relatively spherical celestial object that rotates

around itself eastwards every approximately 24 hours and

around the sun approximately every 365 days. The axis on

which earth rotates is the Polar axis. The great circles that

intersect with the Polar axis are called meridians. The great

circle equidistant from the North and South Pole is the equator

[12].

Since Earth rotation axis is tilted, by declination of ,

it results in changing the relative position of the sun as the

Earth moves in orbit. This change reflects on the angle of the

sun rays according to the equatorial plane. This angle is called

declination.

Figure 5.1 shows the Sun position towards the Earth along

with the above described angles.

Figure 5.1 Sun position towards the Earth [12]

 is the altitude of the sun above the ground (horizon)

plane, is the azimuth, which is the compass direction of the

sun on the ground plane.

Declination is calculated using equation 5.1:

 (5.1)

where is the number of the day for which the declination

is being calculated, January 1
st
 being day number 1.

The Azimuth may be expressed in two ways; either as the

angle clockwise from North or as the angle East of or West of

South. Although the former is most often used, we used the

latter convention.

Azimuth and altitude of the sun can be calculated using the

following equations [12]:

Table 5.1 shows the legend for the above equations:

Symbol Variable Definition

D Declination The angle of the sun rays to the

equatorial plane, positive in the

summer.

L Latitude Angle from the equator to the

position on Earth’s surface

H Hour angle The angle the Earth needs to rotate to

bring the meridian to noon. Each

hour of time is equivalent to 15 deg.

N Day number The day number, January 1
st

is 1.

Table 5.1 Azimuth Altitude equation legend

The colour of the Sunrays plays an important role in

displaying the time of the day, and also determines the colour

temperature of objects. This problem can be approached by

implementing atmospheric scattering algorithms to change sun

and atmosphere’s colour depending on the time of the day.

However in order to decrease the CPU/GPU load, and

increase the frame rate, sun colour could be determined

through basic hardcoded RGB values [11] as shown in table

5.2:

Source RGB(0-255) RGB(0-1)

Sun at sunrise or sunset 182, 126, 91 0.71, 0.49, 0.36
Direct sun at noon 192, 191, 173 0.75, 0.75, 0.68
Sun through clouds/haze 189, 190, 192 0.74, 0.75, 0.75

Table 5.2 Sun colour at different times of the day

Using those values, the RGB numbers between the two

stages of the sun during the day could be extrapolated based

on the starting time of the simulation.

Another factor that has to be taken into consideration is the

night time, where no sun or any light source is available

except the presence of the moon, at a certain times of the

month. In real life, the moonlight illumination is almost

unnoticeable in urban or artificially illuminated areas, thus the

moon light factor will be neglected in this case (Figure 5.2).

Figure 5.2 Logarithmic scale of light intensity (image courtesy of Canadian

conversation institute)

In order to compensate the loss of sun light, Rendering

Engine component queries for artificial light that is associated

with the desired model from database on the server side. The

artificial light data contain position, light type, and the diffuse

components.

At the early dawn or late sunset, where sun’s illumination is

not strong enough to illuminate the augmented object, the

directional light is turned off, and the queried artificial lights

are activated.

One possible way to speed up lighting calculations is by

performing the light map, which is especially useful when

used in conjunction with multitexturing. Additionally, texture

baking could be used as an alternative technique for

increasing the frame rate [13].

6 Results
By the time of writing this paper, tests have been running

under OpenGLES2.0 emulators, and since computers video

cards can handle OpenGLES2.0 with almost no frame rate

loss, as a result, frame rate data will be neglected for the time

being.

Current models are using per-vertex illumination, and the

shaders component of this platform is still under development.

As a consequence, directional light and spotlight with

insignificant diffuse values for smoothing shadows have been

added. However, the loss of per-pixel illumination does not

highly affect the outcome; an image displaying the color

temperature of the models at different times of the day is

shown in Figure 6.1 compared with Layar render for the

augmented 3D object:

Figure 6.1 Simple zeppelin model, under several lighting

conditions compared against Layar AR platform renderer.

Initially, comparing Figure 6.1 (a) with (b), that Layar AR

Platform did not include any lights for illuminating its 3D

objects. Nevertheless we could see a dramatic change even on

per-vertex lighting when comparing (c) and (d) renders. It is

worth noting that comparing Figure 6.1 (c) and (d) carefully,

the latter has lighting temperature close to the camera feed and

almost has the same sunray direction.

Color temperature of objects during noon could have a bit

of yellow tint to it, as shown in Figure 6.1 (c) on the building

bellow the zeppelin and the test zeppelin render(d). Figure 6.1

(e) shows the zeppelin model under sunset lighting condition,

while for the cloudy or hazy weather as showed in (g) light

color tends to be white. We believe that, completing the

shader component will gain better results.

After several tests, one could disagree with [11] for using

same values for sunrise and sunset, since during sunrise (i.e.

dawn), objects’ color temperature tends to be cold, thus has

blue tint to it as shown in Figure 6.1 (f), hence one could

suggest to add one more RGB values for sunrise. We suggest

that these values would be (0.50, 0.49, 0.60) for R, G and B,

assuming that RGB values goes from 0 to 1.

7 Conclusions and future work
In this paper a solution for AR organization and integration

problems, in a context of generic AR platform is presented.

This solution deals with two major topics: integration where

virtual objects are illuminated according to the time of the day,

by tracking sun position in real time, thus estimating the

correct color temperature and shadows; and organization

where all objects are organized in a database along with its

illumination data on remote server. 3D objects are

downloaded upon a query from the client side (i.e. mobile

device). Hence superimposing the downloaded object after

light calculations are finished.

The presented platform is still under development, though

several features could be implemented, such as calculating

length of shadows, compensating for rainy, snowy or cloudy

weather, where most of the objects tend to have no shadows

since light distortion is very high and the object is illuminated

almost from all sides.

Implementing several lighting techniques, such as light

mapping or texture baking could assist in increasing the frame

rate.

Current calculations for predicting Sun position still lack a

very important parameter, which describes the accurate

position of the user on Earth. Therefore Sun position would be

calculated with a higher precision.

Another important factor that could affect the experience of

the user is the quality of the camera in their mobile device.

Since modern mobile devices are equipped with autofocus

and/or have automatic exposure correction, one possibly

would notice the difference of color temperatures and light

intensity between the augmented object and the physical

world.

(g) Cloudy/Hazy weather

(c) Direct sun at noon

(b) Default OpenGL Light

(i.e. OpenGL lights not

enabled)

(f) Sun at Dawn (e) Sunset

(a) Layar Augmented 3D object at

noon (image courtesy of

Layar.com)

(d) Test render direct sun at noon

http://static03.site.layar.com/wp-content/uploads/2009/11/superimpose_layar_mondrian.jpg
http://static03.site.layar.com/wp-content/uploads/2009/11/superimpose_layar_mondrian.jpg

This platform could not fully enhance the integration if

augmented objects exist in urban areas. The enhancements

which will be negatively affecting the experience, are when

the augmented object’s position has special geological

properties, or it is surrounded by other higher objects that cast

shadows on it.

References
[1] S. Cawood and M. Fiala Augmented Reality: A Practical guide. The

Pragmatic Programmers, 2007.
[2] www.layar.com.

[3] S. Feiner, B. MacIntyre, T. Höllerer, A. Webster. A Touring Machine:
Prototyping 3D Mobile Augmented Reality Systems for Exploring the

Urban Environment. In Personal Technologies pp 208-217, 1997.

[4] K. Satoh, M. Anabuki, H. Yamamoto, and H. TamuraA Hybrid

Registration Method for Outdoor Augmented Reality. ISAR’01, 2001.

[5] R. Wichert. A Mobile Augmented Reality Environment for

Collaborative Learning and Training. Tivoli Systems Inc, 2002.
[6] G. Reitmayr and D. Schmalstieg. Location based Applications for

Mobile Augmented Reality AUIC03, 2003.

[7] M. Kanbara and N. Yokoya. Real-time Estimation of Light Source
Environment for Photorealistic Augmented Reality ICPR04, 2004.

[8] R. Azuma. The Challenge of Making Augmented Reality Work

Outdoors, In Mixed Reality: Merging Real and Virtual, pp 379-390,
Springer-Verlag. 1999.

[9] L. Chai, W. Hoff, T. Vincent. 3-D Motion and Structure Estimation

Using Inertial Sensors and Computer Vision for Augmented Reality,
Teleoperators and Virtual Environments, 2005.

[10] S. Pessoa1, E. Apolinário1, G. Moura, J. Paulo S. Lima,

M. Bueno, V. Teichrieb, J. Kelner. Illumination Techniques for
Photorealistic Rendering in Augmented Reality, SVR 2008.

[11] J. Birn. Digital Lighting & Rendering- Second Edition, New Riders,

2006.
[12] Building Environment 1 lecture notes, University of Bath.

[13] P.Ridout. iPhone 3D programming, O’REILLY, 2010.

