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Abstract 

With the wide spread of high end processors integrated in 

mobile devices, ranging from 1GHz processors, to dual core 

processors and hybrid processors (GPU and CPU on one 

chip), augmented reality became more popular solution for 

visualization and navigation. This work proposes an 

augmented reality platform for organizing and enhancing 

integration of computer generated objects by introducing 

lights, shaders and shadows, in pursuing for better experience 

for the end user, emphasizing on outdoor environments. 
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1 Introduction 
Augmented reality (AR) is a relatively new and promising 

concept. The ability of superimposing digital elements on a 

physical world with means of interaction with the surrounding 

world is quite intriguing idea, since AR introduction in 1968 

by Ivan Sutherland [1]. However, the technology by that time 

and for almost next 3 decades was quite limited to lab 

research, since the mobility nature of AR, and lack of capable 

mobile processor at that time. 

Since the recent rapid development of GPUs, CPUs and 

recently hybrid processors, AR became increasingly popular. 

There are two main trends in AR research: registration, where 

researchers try to solve misalignment and world tracking 

problems, since the human visual system is capable of 

detecting even the smallest visual errors; and integration, 

where researchers are directed towards the enhancement of 

computer generated object integration with the surrounding 

environment. 

This work proposes an AR mobile platform for enhancing 

integration of virtual objects in outdoor environments.   

Section 3 illustrates the proposed AR mobile platform. 

Section 4 covers registration and Section 5 covers integration, 

proposing a real time sun tracking system for capturing the 

current lighting condition of the environment. Section 6 

presents results compared to other AR platforms. Finally, in 

section 7 we conclude the paper and give some directions for 

future work. 

2 Related work 
In recent years we have seen significant advances in two 

promising fields of user interface research: virtual 

environments, in which 3D displays and interaction devices 

immerse the user in a synthesized world, and mobile 

computing. 

Previous research in mobile AR has addressed a variety of 

application areas including 3D mobile AR systems for 

exploring urban environments [3], enhancing registration 

through making a hybrid registration for outdoor AR [4], 

improving teaching with mobile AR for learning and training 

[5], location based AR for indoor environments [6], enhanced 

computer generated objects rendering using environment 

illumination [9] . In pursuing better registration of AR objects, 

researchers are trying to combine computer vision with 

sensors for achieving more accurate results [7]. Additionally a 

combined solution for illumination techniques for AR objects 

is discussed in [10]. One commercial platform that caught 

many mobile device users’ attention, is Layar AR browser 

(Figure 2.1).  

 

 

Figure 2.1 Layar Browser, the original appearance of the Berlin wall (image 

courtesy of layar.com) 

This paper proposes the AR mobile platform for arranging 

AR objects with an emphasis on enhancing the integration of 

computer generated objects in the outdoor environment, by 

introducing lights and shaders to the augmented objects. 

3 AR platform 
Making AR systems that work outdoors is a natural step in 

the development of AR toward the ultimate goal of AR 

displays that can operate in any environment. A user walking 



outdoors could see spatially located information directly 

displayed over live camera stream, helping to navigate and 

identify features of interest [4]. 

While designing the platform, the mobility and 

optimization factors were taken into consideration as 

described in the upcoming sections. Figure 3.1 shows the 

overall architecture of the platform.  

 

Figure 3.1 AR Mobile Platform architecture 

 

In order to achieve higher performance and decrease the 

disk usage by 3D models and their associated textures, all 3D 

models are stored on a web server, and will be downloaded on 

the mobile device once the user is near the location where the 

virtual object should be displayed. 

3.1 Server side 

A database containing 3D models along with the associated 

textures, and additional lighting data for improving the 

integration of the virtual object, resides on the server side. 

Lighting details are covered in Section V. 

The Virtual Objects Manager is responsible for handling 

authentication and requests to the database. This component 

would be crucial in case this platform is implemented for a 

mobile provider. 

Using the server side for managing virtual objects will 

relieve the users from constantly updating and downloading 

the complete application once 3D models get updated, thus 

increasing the performance and saving unnecessary storage 

load. 

3.2 Client side 
This platform requires a mobile device that is GPS capable 

along with at least accelerometer and compass. Since most 

mobile device vendors are integrating these sensors as a 

standard in their devices, we believe that in few years these 

devices will be common among users. 

Mobile devices contain two major components: registration 

and integration components. Registration component is 

responsible for AR registration, which could be done using 

complete sensor based registration (i.e. combining GPS, 

accelerometer and compass data as discussed in Section IV), 

or hybrid one as discussed in [4]. A hybrid registration could 

combine some elements of computer vision and sensor data to 

improve the integration of computer generated objects. 

Therefore, the registration system could handle unstructured 

and unprepared environments [9], and in this case, the AR 

engine will be activated in the augmentation pipeline. 

Once the user gets to a desired location detected by GPS, 

where a virtual object resides, registration component will 

generate the frustum that will be handed to the rendering 

engine. 

Rendering engine will send a request to the communication 

layer to load 3D object and its associated data from the server 

side, thus rendering the virtual object and “clearing” the 

background with the camera feed, hence superimposing the 

virtual object over the physical world. 

4 AR registration 
In order to enhance the integration of augmented objects, 

improving registration is required. GPS data is required to 

determine the position of the virtual object in the physical 

world and the position of the user according to the position of 

virtual object, hence calculating the position of the frustum 

according to the physical world using equation 4.1: 

 

    (4.1) 

 

 represents user position, while  represent the 

virtual object’s position.  is the range value. If the user is in 

the range of the detected object, he/she will be notified and the 

frustum will be generated. 

In order to detect the rotation of the user, a compass will be 

used for azimuth rotation direction, and the accelerometer will 

control frustum altitude as shown in figure 4.1: 

 

 

Figure 4.1 frustum controlled by sensors 

The registration is sensor based, in pursuing for saving 

CPU/GPU cycles to enhance the rendering of augmented 

objects, hence improving the integration. 



5 AR integration 
There are several factors that have to be taken into 

consideration for outdoor rendering of augmented objects. 

One of these factors is lighting, which is a crucial component 

in rendering any object in a scene. 

In order to improve the integration and create a realistic 

scene, AR platform should track sun position in real time, thus 

approximating lighting conditions of physical objects along 

with their shadows. Therefore a directional light is used to 

simulate sunrays.  

Earth is relatively spherical celestial object that rotates 

around itself eastwards every approximately 24 hours and 

around the sun approximately every 365 days. The axis on 

which earth rotates is the Polar axis. The great circles that 

intersect with the Polar axis are called meridians. The great 

circle equidistant from the North and South Pole is the equator 

[12].  

Since Earth rotation axis is tilted, by declination of , 

it results in changing the relative position of the sun as the 

Earth moves in orbit. This change reflects on the angle of the 

sun rays according to the equatorial plane. This angle is called 

declination. 

Figure 5.1 shows the Sun position towards the Earth along 

with the above described angles. 

 

Figure 5.1 Sun position towards the Earth [12] 

 is the altitude of the sun above the ground  ( horizon ) 

plane,  is the azimuth, which is the compass direction of the 

sun on the ground plane.  

Declination is calculated using equation 5.1: 

 

   (5.1) 

 

where  is the number of the day for which the declination 

is being calculated, January 1
st
  being day number 1. 

The Azimuth may be expressed in two ways; either as the 

angle clockwise from North or as the angle East of or West of 

South.  Although the former is most often used, we used the 

latter convention. 

Azimuth and altitude of the sun can be calculated using the 

following equations [12]: 

 

  

 
 

Table 5.1 shows the legend for the above equations: 

Symbol Variable Definition 

D Declination The angle of the sun rays to the 

equatorial plane, positive in the 

summer. 

L Latitude Angle from the equator to the 

position on Earth’s surface 

H Hour angle The angle the Earth needs to rotate to 

bring the meridian to noon. Each 

hour of time is equivalent to 15 deg. 

N Day number The day number, January 1
st
 
 
is 1. 

Table 5.1 Azimuth Altitude equation legend 

The colour of the Sunrays plays an important role in 

displaying the time of the day, and also determines the colour 

temperature of objects. This problem can be approached by 

implementing atmospheric scattering algorithms to change sun 

and atmosphere’s colour depending on the time of the day. 

However in order to decrease the CPU/GPU load, and 

increase the frame rate, sun colour could be determined 

through basic hardcoded RGB values [11] as shown in table 

5.2: 

Source RGB(0-255) RGB(0-1) 

Sun at sunrise or sunset 182, 126, 91 0.71, 0.49, 0.36 
Direct sun at noon 192, 191, 173 0.75, 0.75, 0.68 
Sun through clouds/haze 189, 190, 192 0.74, 0.75, 0.75 

Table 5.2 Sun colour at different times of the day 

Using those values, the RGB numbers between the two 

stages of the sun during the day could be extrapolated based 

on the starting time of the simulation. 

Another factor that has to be taken into consideration is the 

night time, where no sun or any light source is available 

except the presence of the moon, at a certain times of the 

month. In real life, the moonlight illumination is almost 

unnoticeable in urban or artificially illuminated areas, thus the 

moon light factor will be neglected in this case (Figure 5.2). 

 

Figure 5.2 Logarithmic scale of light intensity (image courtesy of Canadian 

conversation institute) 

In order to compensate the loss of sun light, Rendering 

Engine component queries for artificial light that is associated 

with the desired model from database on the server side. The 

artificial light data contain position, light type, and the diffuse 

components. 

At the early dawn or late sunset, where sun’s illumination is 

not strong enough to illuminate the augmented object, the 

directional light is turned off, and the queried artificial lights 

are activated. 



One possible way to speed up lighting calculations is by 

performing the light map, which is especially useful when 

used in conjunction with multitexturing. Additionally, texture 

baking could be used as an alternative technique for 

increasing the frame rate [13]. 

6 Results 
By the time of writing this paper, tests have been running 

under OpenGLES2.0 emulators, and since computers video 

cards can handle OpenGLES2.0 with almost no frame rate 

loss, as a result, frame rate data will be neglected for the time 

being. 

Current models are using per-vertex illumination, and the 

shaders component of this platform is still under development. 

As a consequence, directional light and spotlight with 

insignificant diffuse values for smoothing shadows have been 

added. However, the loss of per-pixel illumination does not 

highly affect the outcome; an image displaying the color 

temperature of the models at different times of the day is 

shown in Figure 6.1 compared with Layar render for the 

augmented 3D object: 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

Figure 6.1 Simple zeppelin model, under several lighting 

conditions compared against Layar AR platform renderer. 
 

Initially, comparing Figure 6.1 (a) with (b), that Layar AR 

Platform did not include any lights for illuminating its 3D 

objects. Nevertheless we could see a dramatic change even on 

per-vertex lighting when comparing (c) and (d) renders. It is 

worth noting that comparing Figure 6.1 (c) and (d) carefully, 

the latter has lighting temperature close to the camera feed and 

almost has the same sunray direction. 

Color temperature of objects during noon could have a bit 

of yellow tint to it, as shown in Figure 6.1 (c) on the building 

bellow the zeppelin and the test zeppelin render(d). Figure 6.1 

(e) shows the zeppelin model under sunset lighting condition, 

while for the cloudy or hazy weather as showed in (g) light 

color tends to be white. We believe that, completing the 

shader component will gain better results. 

After several tests, one could disagree with [11] for using 

same values for sunrise and sunset, since during sunrise (i.e. 

dawn), objects’ color temperature tends to be cold, thus has 

blue tint to it as shown in Figure 6.1 (f), hence one could 

suggest to add one more RGB values for sunrise. We suggest 

that these values would be (0.50, 0.49, 0.60) for R, G and B, 

assuming that RGB values goes from 0 to 1. 

7 Conclusions and future work 
In this paper a solution for AR organization and integration 

problems, in a context of generic AR platform is presented. 

This solution deals with two major topics: integration where 

virtual objects are illuminated according to the time of the day, 

by tracking sun position in real time, thus estimating the 

correct color temperature and shadows; and organization 

where all objects are organized in a database along with its 

illumination data on remote server. 3D objects are 

downloaded upon a query from the client side (i.e. mobile 

device). Hence superimposing the downloaded object after 

light calculations are finished. 

The presented platform is still under development, though 

several features could be implemented, such as calculating 

length of shadows, compensating for rainy, snowy or cloudy 

weather, where most of the objects tend to have no shadows 

since light distortion is very high and the object is illuminated 

almost from all sides.   

Implementing several lighting techniques, such as light 

mapping or texture baking could assist in increasing the frame 

rate. 

Current calculations for predicting Sun position still lack a 

very important parameter, which describes the accurate 

position of the user on Earth. Therefore Sun position would be 

calculated with a higher precision. 

Another important factor that could affect the experience of 

the user is the quality of the camera in their mobile device. 

Since modern mobile devices are equipped with autofocus 

and/or have automatic exposure correction, one possibly 

would notice the difference of color temperatures and light 

intensity between the augmented object and the physical 

world. 

(g) Cloudy/Hazy weather 

(c) Direct sun at noon 

(b) Default OpenGL Light 

(i.e. OpenGL lights not 

enabled) 

(f) Sun at Dawn (e) Sunset 

(a) Layar Augmented 3D object at 

noon (image courtesy of 

Layar.com) 

(d) Test render direct sun at noon 

http://static03.site.layar.com/wp-content/uploads/2009/11/superimpose_layar_mondrian.jpg
http://static03.site.layar.com/wp-content/uploads/2009/11/superimpose_layar_mondrian.jpg


This platform could not fully enhance the integration if 

augmented objects exist in urban areas. The enhancements 

which will be negatively affecting the experience, are when 

the augmented object’s position has special geological 

properties, or it is surrounded by other higher objects that cast 

shadows on it. 
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