
Scarlet – Real Time Mobile Augmented Reality Library

Csaba Bolyós ∗

Supervised by: Zuzana Haladová†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava, Slovakia

Abstract

Since the beginning of the new century, augmented real-
ity (AR) applications became very popular among smart
phone users. There is also an emerging trend of users be-
coming the producers of the visual content in the AR en-
vironments.

In this paper, we present Scarlet – a novel library for
Android developers of AR applications. The key problem
of AR is the registration of a virtual and the real world.
Scarlet can recognize different visual markers (images, lo-
gos, black-and-white markers) very fast using the state-
of-the-art local feature detection methods. Different lo-
cal features were tested and are presented in the paper.
Scarlet library also provides several functions for design-
ing AR application. The main advantage in comparison
to OpenCV4Android is that it is faster and the creation of
AR application is easier for the user. Scarlet is nearly 11.5
times faster then OpenCV4Android 2.3.1. Also, the num-
ber of the native calls is minimized.

Keywords: Local features, Visual marks, SIFT, SURF,
ORB, BRIEF, FAST, Augmented reality

1 Introduction

AR becomes more and more popular in a great variety of
different applications, including augmentations in sports
tournaments, AR games, cultural heritage AR applica-
tions, medical AR applications and many others. It has
been popularized in the last few years. Apart from AR
applications, there is also a strong trend of user becoming
the producer of the visual content on the internet and in the
AR environments.

Our aim was to create a user friendly AR library that
could help developers to create their AR application faster
and easier. Our solution is called Scarlet and it is based on
the mobile operation system Android and focuses mainly
on local features. It is able to recognize objects in the
frames of the mobile camera at interactive rates. Our li-
brary is of the small size and should offer the developers

∗bladeszasza@gmail.com
†zhaladova@gmail.com

both: the possibility of customization of the library and the
ability to produce results by single function calling.

This paper is organized as follows. The first section in-
troduces the reader to the selected previous work. Next,
properties of local feature descriptors are briefly stated.
The next section describes a simple sample application uti-
lizing our library. In the last two sections achievements are
summed up and future work is presented.

2 Previous work

We have examined three libraries for Android AR develop-
ers: openCV4Android [9], Vuforia [10] and Layar Vision
[6]. The Layar Vision is a commercial library which can
be purchased for more than two thousand dollars. It works
with geodata and provides image descriptor functions, but
the set up of these functions is not free either. Vuforia is a
free AR library developed by Qualcomm. It works best on
devices powered by Qualcomm processor or graphic card.
It works well with 2D markers and also supports texture
recognition. The third solution is the openCV4Android,
which is the port of openCV. OpenCV4Android is basi-
cally the wrapper of the OpenCV, and can be used sim-
ilarly to OpenCV. It implements many AR methods and
offers good and reliable results. The main problem of
this library is, that it does not operate in real time and in-
cludes wide range of redundant Computer vision, Image
and Video processing, Pattern recognition and other algo-
rithms - not only those needed for AR. It also has too many
native calls, resulting in slowing down the programs.

3 Local features

When performing object recognition (and later object reg-
istration), we usually want to correctly classify also in sit-
uations when the object is scaled, translated, rotated, oc-
cluded or only partially presented in the image. To achieve
this we need to describe the object using only features in-
variant under these transformations. The efficient solution
to this problem are local features. They mainly consists of
two methods, the detector and the descriptor. The detec-
tor seeks the interesting points in the image area and the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



descriptor describes the neighbourhood of the interesting
point via the feature vector.

We distinguish two types of the feature vectors created
via local feature descriptors: the integer and the binary
vectors. The integer vectors are usually compared using
the Euclidean distance:

d(p,q) = d(q, p) =
√
(q1− p1)2 + . . .+(qn− pn)2 =

=

√
n

∑
i=1

(qi− pi)2.

On the other hand, the binary vectors can be compared, us-
ing the Hamming distance whose computation is very effi-
cient. For example, the distance between the string ”0110”
and ”0000” is equal to two, and can be calculated using
following equation:

dh(p,q) =
n

∑
i=1

δ (pi,qi)/n

where

δ (p,q) =

{
0 if = (x < 0∧ y < 0)∨ (x = 0∧ y = 0)
1 if = otherwise

.

In this paper we examined and tested six local feature de-
scriptors. The results of comparison of different local fea-
ture methods can be seen in Table 3.

There not only the methods which are used as detector
and descriptor are mentioned, but also the type, size and
invariance under rotation, scale and noise of their result
vector.

3.1 Detectors

The traditional computer vision feature methods compute
the features uniformly from all the points in the image. Lo-
cal features however use only points which are somehow
interesting to us. An interesting point is the point of the
image in whose neighbourhood intensity varies. Compu-
tation of the features only for these points can speed up the
process considerably. Harris corner detector [5] is one of
the first detectors for interesting points (IP). The detection
is based on the responses of the Hessian matrix. The re-
sponses are calculated over a small region surrounding the
point.

The FAST (Features from the Accelerated Segment test)
is one of the algorithms implemented in our library. It ex-
amines every pixelś 9 point radius and compares the in-
tensity of the pixel with the pixels in the radius. If the
difference of at least 3 pixels in the radius with the central
pixel is over a threshold, the central pixel is considered the
key point. The FAST algorithm can work very fast, pro-
duces a lot of key-points but it is not invariant under scale
and rotation.

The detector of the classical local feature method SIFT
(Scale Invariant Feature Transform) [8] produces more ro-
bust points, but is remarkably slower. SIFT’s [8] detector

works in the scale space which ensures the invariance un-
der scaling (The example of scale space can be seen in
Figure 1). To remove the noise it filters images using the
Gaussian filter. The key-points are detected as the maxima
and minima in the 27-neighbourhood in the scale space.

A speed improvement of the SIFT’s [8] detector was in-
troduced in the SURF (Speeded Up Robust Features) [2].
It not only detects the key-points faster than SIFT, but also
maintains the invariance. As detector it uses scale space
as SIFT space, but it is created using an approximation of
second order derivatives of Gaussians in Y and XY direc-
tion with box filters on integral images. An example, of
the SURF’s [2] Box filters see Figure 2.

Integral images allow us to calculate rapidly the sum
over subregion of the image. Value of a pixel equal to the
sum of all values of the pixels above and on the left of it.
Second step is increasing the resolution of filters from 9*9
up to 27*27. Finally only the remaining points after a non-
maximum suppression in 3*3*3 scale space are selected.

All of the above methods give good results, but they
are a bit costly to be real-time even on high performance
mobile devices.

The ORB (Oriented FAST and Rotated BRIEF)
method[11] adds the rotation invariance to FAST. It can
be computed in real time even on mid-end smart phones.
ORB’s detector is called oFAST. It works similarly to
FAST, but extracts rotation using intensity of centroid. It
creates a vector with direction from IP to centroid. Vector
orientation could be easily gained.

The recent papers show that recent descriptors like
BRISK 3 and FREAK 4 calculate their detectors not on
the whole image but only on its part. BRISK calculates
the saliency first and then the key-points are extracted from
the region. FREAK [1] samples the image similarly to hu-
man eye, using a technique called retinal sampling. It uses
more samples at the center of the view focus and less sam-
ples at the edge of the focus. For our library, all of the
previously mentioned methods matter, as we want to offer
a large variety of algorithms.

3.2 Descriptors

Having the key-points extracted, we can sample informa-
tion from the region around them. We recognize two types
of descriptor, one is the n-dimensional numerical vector
and the other is the binary string. Numerical vectors are
created by SIFT [8] and SURF [2], giving a robust de-
scription of the region around a key point. They are both
invariant under noise, rotation and scale. But although
SURF methid is calculated faster, they are both too slow
on mobile devices. The SIFT descriptor calculates the
magnitude and the orientation of the gradient, which are
then weighted by a Gaussian window. The SURF method
is faster. To maintain fast filtering it uses integral images.
First it creates square regions around the key-point aligned
to it. Than each of these regions is subdivided into 4x4
smaller axial subregions. On all of the subregions, the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



detector descriptor vector type n dimensional vector invariance (R,S,N)
SIFT [8] scale space of DoG orientation of gradients integer 128 R,S,N
SURF [2] box filters responses from Haar wavelet integer 64 R,S,N
BRIEF [3] — binary tests binary based on patch size S(partial),N
ORB [11] oFAST rotation aware BRIEF binary based on patch size R,N
FREAK [1] retina sampling lighting intensity tests binary based on patch size R,S,N
BRISK [7] scale space FAST binary tests binary based on patch size R,S,N

Table 1: The comparison of local feature vectors. For each method their detector and descriptor are given and the type
of the resulting vector is presented. Also, the robustness of the results is given. In the invariance (R,S,N) column the ”R”
means the rotation, the ”S” the scale and the ”N” the noise

Figure 1: Scale space created and the difference of Gaus-
sian calculated [8].

Figure 2: The box filters which are used by SURF [2]

responses from Haar wavelets are calculated. To achieve
even more robustness towards geometric deformations, the
authors weighted these responses with Gaussian.

The other group of descriptors that utilize binary string
are BRIEF (Binary Robust Independent Elementary Fea-
ture) [3], ORB [11], BRISK (Binary Robust Invariant
Scalable Keypoints) [7] and FREAK (Fast Retina Key-
point) [1]. As mentioned before the distance between two
binary strings can be compared fast using the Hamming
distance. It speeds up to the final process of comparison.
The main advantage of these methods is that they can be
computed real-time, but lot of them lack of the robustness
of SIFT [8] or SURF [2].

BRIEF [3] lacks the rotation invariance, but it can be
computed in real-time. BRIEF calculates its descriptors
by sampling the image with binary tests. The responses of
these tests are stored in the binary string. Rotation invari-

ance can be achieved, for example using a bigger dataset
for one image. If at that dataset the chosen pattern is
slightly rotated and the descriptor is calculated from it, we
achieve similar descriptors and the pattern can be found
even if it is rotated. But our goal is to make development
faster and smoother, and therefore we do not want to use
big datasets.

ORB’s [11] description algorithm is based on BRIEF
[3] and it is called rBRIEF. The rBRIEF works similarly
to BRIEF but it has stored rotation which was gained from
oFAST at the key-point detection phase.

Figure 3: A sampling pattern used by BRISK. The red cir-
cles are regions smoothed with Gaussian kernel, the small
blue points are the sampling locations [7].

The BRISK descriptor produces binary strings that are
joined results of simple brightness comparison tests. The
algorithm works as follows: First, the characteristic direc-
tion is identified to achieve rotation invariance, next the
brightness comparisons are carefully chosen. These cho-
sen brightness comparison tests are evaluated at sampling
pattern which can be seen in Figure 3.

The last presented descriptor is FREAK [1]. FREAK
similarly to BRISK [7], ORB [11] and BRIEF [3] creates
a binary string. This binary string is achieved by concate-
nating results from binary intensity tests. Like BRISK,
FREAK uses the sampling pattern inspired by the human
vision system. It is called retinal sampling pattern (retinal
pattern can be seen in Figure 4).

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 4: The retinal sampling pattern. Every circle repre-
sent a receptive region, smoothed by corresponding Gaus-
sian kernel. The circles are placed similarly like the retinal
ganglion cells at human eye [1].

4 Application

This section describes the simple production of an AR ap-
plication utilizing Scarlet. First, the work flow of image
recognition is presented in Figure 5. Our library supports
multiple local descriptors, but ORB seems to be the best
solution for our purpose. The recognition is acquired in
less than a tenth of a second. In preprocessing, we create
a database of precalculated descriptors. Therefore, at run-
time we do not need to calculate the descriptor repeatedly,
which saves us lots of computational time. Next we want
provide the user with the best experience possible. The ap-
plication runs on multiple threads, as can be seen in Figure
5. The main thread starts at least one thread, providing the
video output for the screen. The processing of the image
or the pattern recognition is done in separate threads. In
the Figure 5, we can see this ”computing” threads don’t
need to run long, they can be put to sleep after they return
the result.

One iteration consists of capturing the frame from the
video thread. After that the computing thread is started. It
calculates the key-points on that frame and runs the de-
scriptor algorithm. When the descriptor is acquired it
is compared to our database of precomputed descriptors.
Some threshold is needed to tell that the distance between
two descriptors is within the similarity tolerance, if the
distance is small, the two descriptors are probably describ-
ing the same region. If it is big the two descriptor are not
similar. If we detected which descriptors from database
are nearest we can classify the pattern on that frame.

If we need to draw virtual object fast on the screen, we
can measure the median of the inlier points. If we want to
determinate the precise position and square region of the
pattern in the image, we could use algorithms for computa-
tion of the homography matrix between the points. Using
this matrix, we can give every point on the image the exact
location on the captured video frame.

One of the algorithms which can be used to find the ho-

mography matrix is called RANSAC (Random sampling
consensus) [4] it suffices to use 4 points to create the ho-
mography matrix, but the homography is more stable if
we use more points. In the best case, RANSAC determi-
nates the homography only from the inlier points, the out-
lier points have no influence on the result, as far as we use
enough iteration and inliers. In most of the cases it is suf-
fices to have just the axial boundary of the found pattern,
and on that square our virtual content can be drawn.

The Scarlet library is written natively in C++, to gain
speed of the native language supported by Android. The
functions are designed for easy and quick creation of an
AR application. We also propose functions in Java which
aggregate some background processing and background
calculation. As an example, GiveSquareRegion(database,
image) returns the axial region where the closest pat-
tern is detected. Our library aggregates functionalities
which are supposed to be near each other, so it reduces
the unnecessary native calls. Those in comparison to
openCV4Android we gain increase in speed.

5 Future work

In the next phase of our development, Scarlet will be ex-
tended with more local descriptors. We plan to implement
GPU version of some algorithms, which will require high
computational power, especially for descriptors. We plan
to utilize another pattern recognition method, for example
the contour recognition. It will fasten up the development
of AR applications.

Currently our library enables adding only 2D images as
objects, but in the near future it should provide a way to
draw out simple 3D objects. Later it will provide func-
tionality extended to video stream, where any kind of 3D
objects stored in .obj format can be incorporated. For this
purpose we want to use some 3D libraries which provides
us with some of the mentioned functionalities.

6 Validation

The Scarlet was tested on high and mid-end mobile de-
vice’s(HTC Sensation XE, Samsung Galaxy Nexus). The
results were compared to openCV4Android (ver.: 2.3.1).
The results show us a significant gain of speed. Scar-
let is nearly 11.5 times faster than openCV4Android (ver.:
2.3.1). Table 4 gives also results from processing a higher
resolution image. We see that the computational speed
drops as the resolution of the image grows. Also it shows
that even with that lost of computational speed more than
five frames are processed and the matrix of homography is
computed in one second. With this computational speed,
the user can still produce quality AR application, with only
in-betweens interpolated smoothly between two results.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: The work-flow of the application, demonstrating how multi-threading can be used in AR application. The top
image shows how the image is processed in one iteration. The result of this iteration is either a point or the whole region
defined by the pattern. On the bottom image, the work-flow of the whole application is showed. The computing thread is
not running all the time, it is put asleep as soon as it returns the result

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



800*480 frame with RANSAC 800*480 frame without RANSAC 480*320 frame
SCARLET 5,3 frame/sec 7,4 frame/sec 13,8 frame/sec
openCV4Android 2.3.1 — — 1,2 frame/sec

Table 2: The frame rate comparison of Scarlet and openCV4Android (ver.: 2.3.1) on video 480x320 frame.It also shows
that, the Scarlet computes real time not only the local features but the matrix of homography as well.

Conclusion

The presented solution is fast, reliable and light weight li-
brary suitable to produce Augmented reality application.
It is faster than openCV4Android (ver.: 2.3.1) nearly 11.5
times when using ORB for detection and description. As
default settings of the library, the ORB detector and de-
scriptor is used. Under these circumstances it provides
real time object recognition and gives good results. The
Table 4 shows how fast the ORB detector and descriptor
is computed and match with our database. We achieved
our goal to speed up the recognition time.

7 Acknowledgement

This work was partially funded by Slovenská Sporitelňa,
a.s. as a project of their own Augmented reality applica-
tion. The author also wishes to thank to RNDr. Zuzana
Haladová, RNDr. Martina Bátorová and doc. RNDr. An-
drej Ferko, PhD. for their supervision and help.

References

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak:
Fast retina keypoint. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on,
pages 510 –517, June 2012.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
SURF: Speeded up robust features. In Ale Leonardis,
Horst Bischof, and Axel Pinz, editors, Computer Vi-
sion ECCV 2006, volume 3951 of Lecture Notes in
Computer Science, pages 404–417. Springer Berlin /
Heidelberg, 2006. 10.1007/11744023 32.

[3] Michael Calonder, Vincent Lepetit, Christoph
Strecha, and Pascal Fua. BRIEF: Binary robust in-
dependent elementary features. In Kostas Daniilidis,
Petros Maragos, and Nikos Paragios, editors, Com-
puter Vision ECCV 2010, volume 6314 of Lec-
ture Notes in Computer Science, pages 778–792.
Springer Berlin / Heidelberg, 2010. 10.1007/978-3-
642-15561-1 56.

[4] Martin A. Fischler and Robert C. Bolles. Random
sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartog-
raphy. Commun. ACM, 24(6):381–395, June 1981.

[5] Chris Harris and Mike Stephens. A combined cor-
ner and edge detector. In Alvey vision conference,
volume 15, page 50. Manchester, UK, 1988.

[6] Layar. Layar vision @ONLINE. http:
//www.layar.com/documentation/
browser/howtos/layar-vision-doc/,
2011.

[7] S. Leutenegger, M. Chli, and R.Y. Siegwart. BRISK:
Binary robust invariant scalable keypoints. In Com-
puter Vision (ICCV), 2011 IEEE International Con-
ference on, pages 2548 –2555, nov. 2011.

[8] D.G. Lowe. Object recognition from local scale-
invariant features. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Con-
ference on, volume 2, pages 1150 –1157 vol.2, 1999.

[9] OpenCV. Opencv for android @ONLINE. http:
//opencv.org/android, 2013.

[10] Inc. Qualcomm Technologies. Augmented reality
(vuforia) @ONLINE. https://developer.
qualcomm.com/mobile-development/
mobile-technologies/
augmented-reality, 2012.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
Orb: An efficient alternative to sift or surf. In Com-
puter Vision (ICCV), 2011 IEEE International Con-
ference on, pages 2564 –2571, nov. 2011.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)


