
Efficient GPU-based Decompression of BTF Data Compressed
using Multi-Level Vector Quantization

Petr Egert∗

Supervised by: Vlastimil Havran†

Faculty of Electrical Engineering, DCGI
Czech Technical University

Prague / Czech republic

Abstract

One of the main drawbacks of Bidirectional Texture Func-
tion (BTF), as a method of capturing realistic and accurate
real-world material appearance, is the resulting size of the
measured data set. Several lossy methods to compress the
data were proposed over the years to cope with this prob-
lem. To efficiently use the compressed data an appropriate
decompression algorithms are also needed, allowing fast
random synthesis of BTF data without the need to recon-
struct the whole BTF back to its original representation.
One of such methods based on multi-level vector quan-
tization and providing both good compression ratio and
random access from the compressed data was proposed by
Havran et al. in 2010. In this paper, we would like to share
our experience with writing a GPU based implementation
of the decompression part of the aforementioned method.
Our goal was to evaluate the implementation difficulty, as
well as the resulting performance and suitability of the al-
gorithm for real-time use.

Keywords: BTF, bidirectional texture function, decom-
pression, GPU, OpenCL, Multi-level vector quantization

1 Introduction

Capturing and accurately representing real-world material
appearance remains one of the major challenges in com-
puter graphics nowadays. In real-time applications, such
as computer games, this challenge gets even harder, be-
cause of the limited resources available to store and ap-
ply the material to the resulting scene. The common ap-
proach is to sacrifice physical correctness for performance
and achieve visually pleasing results.

As new methods to represent the material appearance
have been discovered and the performance of the com-
puter hardware increases, some also suitable for the real-
time use. One such method is Bidirectional Texture Func-
tion (BTF). First introduced in [2], a monospectral BTF is
a six-dimensional function returning the amount of light

∗egertpet@fel.cvut.cz
†havran@fel.cvut.cz

reflected by an arbitrary point on the material surface,
when illuminated and viewed from arbitrary directions.
By extending the function to a given color-space, a seven-
dimensional, multispectral BTF is obtained. BTF can also
be imagined as a planar texture, where the amount of light
reflected from each individual texel also depends on the
view and illumination directions of the texel1.

One of the main advantages of BTF over simpler meth-
ods is the ability to preserve information about the material
structure, including properties such as anisotropy, mask-
ing or self-shadowing. The main drawback is the size of
the measured data set, which in raw form can take up to
several gigabytes of space for a single material sample.
This would render the method virtually useless for real-
time use. Therefore several compression schemes were
proposed, some of them allowing even for real-time use.

An in-depth survey of available BTF compression
schemes was provided by Filip et al. [3], including the
fitness of the BTF evaluation part of the studied algo-
rithms for fast GPU-based implementation. More recently,
a novel BTF compression scheme based on multi-level
vector quantization was proposed by Havran et al. [4]. In
the paper, the authors state fast random access data syn-
thesis and convenient GPU implementation as two of their
design goals. They also evaluate the performance of the
proposed algorithm by providing a GLSL [10] based GPU
implementation.

Our goal in this paper is to summarize the lessons
learned while writing our own implementation of the
data synthesis part of the scheme described in [4] using
OpenCL [6] as our framework of choice, instead of GLSL
used in the original paper. We describe the algorithm in
detail and evaluate the performance of our implementation
against both a CPU and the original GLSL variant using
our own OpenGL-based [1] sample application. Finally,
we discuss suitability of the algorithm for real-time use.

1It is worth noting, that while for a fixed spatial position the remain-
ing arguments of a BTF are the same as for Bidirectional Reflectance
Distribution Function (BRDF), Helmholz reciprocity does not apply in
this case due to structural properties of the material, which is the key
difference between BTF and Spatially Varying BRDF (SVBRDF).

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

n
y1

n
y2

S2 S1

nα
nβ

S
C

SI

nβ

Index a−b

SII

nα

Index 2D

S
3

nθ

3D PDF

α

[x,y]

S
4

nϕ

β

[x,y]

n
ym

n
xm

S
I2

(α,β,θ ,ϕ)v vFx

Original BTF Samples

(θ ,ϕ)v v

n
x1

n
x2

4P 3P

2P
1P

1I2I

Material Specific
Indices

Databases Shared by all Materials

Scaled material
index tables

[x,y]

2D PDF 1D PDF

[x,y]

4D PDF

3D PDF

ϕ

θ

α

β

Index
L−ab

6

6

1D PDF

2D PDF

 example

index of PDF / scale
index

v

vθ

ϕ

v

v

view direction parametrization illumination direction parametrization(α,β)

x

y

v

v

M

C

6P

P

P

’

’’

Luminance
colors a,b

, Colors
a,b

a−b color channels (a:Cr/U, b:Cb/V)

Luminance channel (L:Y/LogL)

Figure 1: Multi-level vector quantization BTF compression model scheme (Image courtesy of [4]).

2 Compression algorithm overview

In this section, we recall the basic outline of the compres-
sion method proposed in [4]. For a more detailed descrip-
tion of the algorithm please refer to the original paper.

The basic concept of the compression method is shown
in Figure 1. The process starts by resampling the raw mea-
sured BTF data according to another parametrization. By
using the planar material position as index, the BTF can
be decomposed into a set of individual 4D texels (called
apparent BRDFs). Using a fixed number of steps to quan-
tize each of the four dimensions, each of the texels is re-
sampled into the ’onion-slices’ parametrization described
in [4]. Additionally a specific data arrangement is used, as
shown in the orange area of Figure 1. This arrangement
allows to treat differently sized slices of the data as condi-
tional probability density functions (PDFs), which are then
used as input vectors to the multi-level vector quantization
(MLVQ) scheme.

The MLVQ scheme extends the concept of a basic vec-
tor quantization (VQ) compression method, where the
whole set of input PDF vectors is represented by a smaller
representative subset, a codebook. In MLVQ, the VQ pro-
cess is applied to progressively smaller subsets at different
levels of the original data, thus forming a set of codebooks.
Each level corresponds to a single dimension of the resam-
pled BTF data. This is shown in Figure 1; the original
monospectral BTF has 6 dimensions. 4D PDF is specified
by the planar material position. By further specifying the
view azimuthal angle, a 3D PDF is obtained. Similarly,
3D PDF is decomposed into 2D PDFs etc.

An integral part of any VQ-based compression method

is a similarity measure. A similarity measure is a function
returning the level of similarity between two sets of data.
In VQ, this function is used to compare the currently pro-
cessed input vector with the entries already present in the
codebook. If a similar enough (depending on a predefined
threshold and possibly other conditions) entry is found in
the codebook, it is returned as a representative vector for
the given input vector. If no entry satisfying all the de-
fined conditions is found, the input vector is added as a
new entry into the codebook. Since the original and the
representative vector need only to be similar to each other
(not exactly the same), the VQ is considered a lossy com-
pression method. The similarity measure and its proper-
ties are therefore of critical importance, since they define
the relation between the quality of the compressed data
and the overall compression ratio. In [4], the authors de-
scribe structural similarity index measure (SSIM) [8] as
their method of choice.

The compression algorithm itself works by iterating
over all the available texels of the resampled BTF data and
performing MLVQ on each of them. For each such texel
a corresponding entry in the top level 6D-level table P6
needs to be created. As described earlier, each texel can
be treated as a 4D PDF. The MLVQ process starts by find-
ing a similar entry in the 4D level codebook P4. If such an
entry is found, its index is returned and stored in the proper
location (corresponding to the planar position of the texel)
of P6.

To achieve better hit-rate and therefore better compres-
sion ratios, the search for a similar entry in the P4 code-
book is performed ’up to scale’. Both the input and the
compared vectors are normalized to have the same overall

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

luminance. If the normalized vectors are found to be sim-
ilar enough, the index of the entry and scaling coefficient
for the data are stored in the P6 table.

If an entry for the given input vector is not found in
the P4 codebook, a new entry needs to be created. Con-
trary to the basic VQ process, in MLVQ the higher-level
codebooks do not directly store the raw data. Instead, the
individual codebooks form a hierarchy, where each entry
in the codebook consists of a set of indices into a lower
level codebook. The raw data are then only stored in the
lowest levels and can be reconstructed back to the original
form by the means of chained indexing through the whole
hierarchy.

To create a new entry in the 4D-level P4 codebook, the
original 4D PDF is first split into a set of 3D PDF slices.
Each slice is specified by the planar position of the texel
and the the view azimuthal angle ϕv, thus forming a 3D
PDF. The process continues by iterating over all these
slices and finding their corresponding entries in the 3D-
level P3 codebook. As a result, a row of index/scale en-
tries is obtained, where each index points to a row in the P3
codebook. The number of entries in the row corresponds
to the number of steps in which the view azimuthal direc-
tion is quantized. This row is then stored as a new entry in
the P4 codebook.

The compression algorithm remains almost the same
on all levels - if a similar entry is not found in the cur-
rent level codebook, the current PDF is split into smaller
slices, which are then searched in a lower-level codebook.
Some exceptions however apply to this process. From 2D
level down, the BTF data are converted from the orig-
inal RGB to a more perceptually uniform color model
(YCbCr for LDR samples, LogLuv [9] for HDR sam-
ples). To achieve better compression ratios, the luminance
and chrominance channels start to be treated separately on
these levels. Therefore two different sets of codebooks
are used - P2, P1 for luminance information and I2, I1, C
for chrominance information. Additionally, scaling coeffi-
cients are only used for the luminance data. Entries in the
I2 and I1 codebooks therefore consist only of indices, not
index/scale pairs. To provide a relation between the two
separate channels, an additional codebook, marked M in
Figure 1, is used. By using this codebook, a matching pair
of luminance and chrominance data can be obtained and
converted back to the original RGB color model later on.

In the lowest-level codebooks (P1 and C), there are no
other codebooks to refer to. The representative vectors of
the resampled BTF data are stored in the 1D array. This
completes the codebook hierarchy and serves as the fi-
nal stage of the MLVQ process. As shown in Figure 1,
a minimum of nine codebooks, arranged in a tree-like hi-
erarchy, is used in total to store a single material. The
method also allows multiple materials to share the same
set of codebooks, each requiring only one additional 6D
level codebook. By means of chained indexing through
the hierarchy, the BTF can be evaluated directly from the
compressed data.

3 Decompression algorithm

The decompression part of the method is described only
briefly in sec. 4.6 of [4]. In this section we would like to
provide a more in-depth analysis of the problem.

The compressed BTF evaluation process is based on
chained indexing among the data codebooks. The algo-
rithm starts to look up the corresponding entry in the high-
est level codebook P6 by using the planar spatial coordi-
nates x and y. This entry consists of a row index in the
lower level P4 codebook and a scaling coefficient, which
is later used to multiply the obtained value.

The algorithm then descends to the lower level, P4 code-
book. Here the index obtained from the upper level entry
is used to find the corresponding row of data. Then the
view direction azimuthal angle ϕv is used to find the cor-
responding entry in the row. As in the previous case, the
entry consists of a row index in the lower level P3 code-
book and a scaling coefficient. After obtaining the entry,
the algorithm descends to P3 level. Here the same opera-
tion takes place, except that the polar angle θv of view di-
rection is used to find the corresponding entry in the row.
As before an index in the lower level M codebook and a
scaling coefficient is retrieved.

As described in Section 2, starting from 2D level a more
perceptually uniform color model is used and luminance
and chrominance data start to be treated separately. The M
codebook is used to merge the separate color model com-
ponents back to the original representation. Each entry in
the M codebook contains two indices - one used to index
the P2 codebook with luminance data and one to index the
I2 codebook with chrominance data. No scaling coeffi-
cients are stored at this level. A color conversion back to
RGB color space then needs to take place after obtaining
both the luminance and chrominance data from the lower
level codebooks.

On lower levels, the BTF evaluation remains essentially
the same as on the higher levels. The illumination direc-
tion, transformed into the ’onion-slices’ parametrization,
is used to index the lower level codebooks. To transform
ordinary spherical coordinates of the illumination direc-
tion into the new parametrization, the following equations
can be used [4]:

β = arcsin(sin θi · cos(ϕi −ϕv))

α = arccos
(

cos θi

cos β

)
(1)

Upon reaching the bottom-most level codebooks P1 and
C, the representative BTF values are directly taken from
the 1D array. Returning the codebook hierarchy back to
the top, all the scaling coefficients need to be applied to
the values. As stated before, a color conversion to the RGB
color space takes place after returning to the M codebook.
When the top-level P6 codebook is reached, the evaluation
process is complete and the resulting value is returned.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

3.1 BTF coordinate interpolation

To simplify the algorithm description, we mention that
only a single entry is used from each codebook. Although
this approach would work in theory, it would produce vis-
ible artifacts in the resulting image, as the number of dis-
crete steps used to quantize each dimension of BTF is rela-
tively small. To overcome this problem, at least two entries
closest to the specified coordinates need to be used at all
level codebooks. Interpolation then needs to be performed
on the values to minimize the quantization artifacts. A
simple linear interpolation proved to be good enough to
provide satisfactory results. On the 6D level, the inter-
polation is not necessary, but improves the overall quality
of the result (similar to use of filtering with ordinary tex-
tures).

4 OpenCL specifics

4.1 Memory layout

To successfully evaluate a BTF sample, the codebooks
containing the compressed data need to be accessible by
the GPU. Since the data size of the codebooks is rela-
tively small (tens of megabytes, depending on the mate-
rial used), it is best to store them directly in the avail-
able device based memory (further we use the terminol-
ogy used in OpenCL [6]). To reduce the number of mem-
ory regions and therefore the number of arguments in the
function calls, we decided not to store each codebook in
a separate memory region, but to pack all the codebooks
into one continuous address space. Since the individual
codebooks form a tightly connected database and should
never need to be updated separately, this approach should
not bring any major drawbacks.

Because two different types of information have to be
stored, two separate memory regions with distinct data
types are used. The first region uses a single precision
floating point data type and stores the scaling coefficients
of the higher-level codebooks (namely P6, P4, P3, P2), as
well as the representative BTF data vectors contained in
the bottom level P1 and C codebooks. The second region
is of 32-bit unsigned integer data type and is used to store
data indices for the P6, P4, P3, M, P2, I2 and I1 codebooks.

For both memory regions, we remember offsets to the
beginning of the individual codebooks. This allows us to
directly index throughout the original data by only adding
the corresponding offset. Another approach would be to
recompute the indices to incorporate the offset directly
into the codebooks, which would eliminate the need to
store the offsets. Since additional information about the
material (such as the number of quantization steps in in-
dividual dimensions) is still required to be known by the
implementation, we decided to keep the offsets separately.
This also reduces the amount of preprocessing required to
load the material. A third memory region is therefore used
to store all the additional information about the material,

Region Data type Size Address space
Scales float by material global
Indices uint by material global
Constants float/uint fixed constant/private

Table 1: OpenCL memory regions used by the evaluation
process

as well as the offsets of the individual codebooks. Since
this memory region is only a few tens of bytes in size, it is
created within the constant address space and later trans-
ferred into the private address space to achieve fast access.

These three memory regions contain all the information
required to successfully evaluate the BTF directly from the
compressed data. A quick summary is provided in Table 1.

4.2 BTF evaluation

The evaluation algorithm is based on chained indexing
through all the codebooks. Upon reaching the lowest lev-
els, a representative value is obtained, which is then mul-
tiplied by all the scaling coefficients acquired during the
descent through the codebooks. A recursive approach may
seem like a good solution to this problem, which however
is not directly supported by the OpenCL standard. There
are also several additional caveats with this approach. Lu-
minance and chrominance components are evaluated dif-
ferently in lower levels followed by color model conver-
sion. Furthermore, interpolation between the two dis-
crete values closest to the required coordinate must be per-
formed in order to obtain visually appealing results. This
proves even more difficult, as some of the variables need to
be treated as cyclic (such as the view azimuthal angle ϕv),
while other need not to (such as the view direction polar
angle θv). As a result, the evaluation process is slightly
different for each codebook.

For all these reasons, we have decided to implement ac-
cess to each individual codebook by the means of separate
functions. This also provides the resulting code a more
human-readable structure. The basic purpose of each of
these functions is to return the (partially) reconstructed
BTF data at the specified coordinates and level. This pro-
cess starts by indexing the codebooks at the given level
and calling the lower level evaluation functions to obtain
the two values closest to the required position. The values
are scaled using the appropriate scaling coefficients and
then a linear interpolation is performed to obtain a single
resulting value. To obtain the final BTF value, this process
needs to take place on all the codebook levels. Addition-
ally, a color conversion to the RGB color model happens
during access to the M codebook.

In our implementation, the BTF evaluation is computed
by a single function. By providing locations of the 3 ma-
terial memory regions and values for all the 6 BTF coor-
dinate arguments, the sampling function returns the result-
ing BTF value at the given planar location as a color triplet

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

in the RGB color space. A conversion from the standard
spherical coordinates to the ’onion-slices’ notation is han-
dled directly inside the function. This allows easy inte-
gration of the MLVQ compressed BTF evaluation process
into a custom project. We support this statement by pro-
viding an OpenGL based demonstration application.

4.3 Memory bandwidth requirements

As two closest samples need to be interpolated on each
level of codebooks, the number of memory accesses in-
creases exponentially with the increasing codebook level.
To evaluate a single BTF query, a total of 47 integer and
63 float memory read operations is required [4], resulting
in 440 bytes read per evaluation, if stored using 4 byte
data types. If a bilinear interpolation is also performed on
the 6D-level, then four times more data are read per eval-
uation. Additionally, when not computed on the fly, the
input coordinates need to be read from a memory location
and a result written, resulting in an additional increase in
the required memory bandwidth.

5 Sample application

Figure 2: A geometric model covered by Wool BTF ma-
terial, lit by an environment map, rendered by our sample
application.

To verify the correctness and performance of our
OpenCL-based MLVQ-compressed BTF evaluation code,
we have designed and implemented a sample application.
As shown on figure 3, the basic functionality of the appli-
cation is to rasterize a scene containing a specified model,
perform BTF evaluation on the rasterized data and finally
to display the resulting image.

5.1 Rasterization process

To perform the BTF evaluation, all the input parameters
required by the BTF are required for all the pixels. These

parameters include the planar position on the material sur-
face, view direction and illumination direction. All these
six coordinates need to be specified in a local coordinate
system of the material surface at rendered pixel. Pro-
grammable shaders are used to compute all these coor-
dinates. In the vertex shader, the view and illumination
direction vectors are transformed into tangent space and
sent to the fragment shader. Projective transformation of
the basic geometry is also handled by the vertex shader.
In the fragment shader, the view and illumination vectors
are reparametrized over the hemisphere, as required by the
BTF evaluation function. A set of texture coordinates is
used to define the planar material position.

Figure 3: Basic workflow of the sample application.

5.2 Memory arrangement

To store the rasterized data, two floating point
(GL RGBA32F) render buffers are used. These buffers
are of the same size as the main render buffer of the
application window. In the first buffer, the planar position
and view direction information is stored. In the second
buffer, the illumination direction is stored. Since there
are only six variables required to evaluate the BTF, two
channels remain unused. We use multiple render targets
(MRT) technique to fill both the buffers in a single pass.

To store the resulting image, a texture of the same size
as the main render buffer is used. To correctly display the
appearance of HDR materials and to be able to use this tex-
ture as an accumulation buffer for environment-map based
lighting scheme, we use floating point data type for this
texture as well. To display the result, we apply this texture
to a full-screen quad and render it to the screen.

5.3 OpenGL-OpenCL communication

As the whole rasterization process is computed via
OpenGL and our BTF evaluation function is written in
OpenCL, a way to pass data between these two platforms
is required. As OpenCL provides functions operating
directly over OpenGL-owned data, this is the preferred
way, since no copy operations is required. The OpenCL-
OpenGL interoperability however is an optional feature,
without guarantee of being supported by all the available
OpenCL platforms. For this reason, an alternative data

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Resolution Total pixels BTF evaluations Coverage
800×600 480000 210848 43.9%
1280×720 921600 303636 32.9%
1920×1080 2073600 683088 32.9%

Table 2: Image resolution, count of BTF evaluations (i.e.
rendered pixels), and screen coverage.

Single frame rendering time [ms]
Implementation

Material CPU CLCPU CLGL RawCL GLSL
800×600 px resolution

Impalla 281.2 26.3 12.5 5.1 1.9
FtHDR 483.2 28.7 14.9 6.3 2.0
Wool 295.4 29.2 13.7 5.7 2.3

WwHDR 494.7 28.3 14.8 6.4 2.0
WoolX 698.0 97.5 41.2 32.8 40.8

WwHDRX 1009.9 100.0 41.1 31.4 27.3
1280×720 px resolution

Impalla 408.8 47.4 22.5 7.5 2.1
FtHDR 711.5 51.5 24.7 9.6 2.0
Wool 422.4 51.4 21.3 9.1 2.5

WwHDR 708.2 52.1 26.1 11.3 2.0
WoolX 1008.8 172 55.7 51.8 46.7

WwHDRX 1428.6 179.4 54.4 45.3 31.6
1920×1080 px resolution

Impalla 998.5 106.3 42.3 13.9 4.2
FtHDR 1739.3 115.6 49.5 19.7 3.8
Wool 1022.9 112.8 43.5 15.1 4.4

WwHDR 1835.8 117.1 49.6 20 4.3
WoolX 2048.9 369.4 125.3 120.2 68.4

WwHDRX 3472.2 620.4 120.6 117.8 43.6

Table 3: Single frame rendering times for different imple-
mentations and image resolutions.

path, routed through the system memory, also exists. Here
the prepared data first need to be downloaded from the
GPU (OpenGL) to the system memory and then uploaded
back to the GPU (OpenCL). After this, the same data trans-
fer needs to take place to return the processed results from
OpenCL back to the OpenGL display chain. We decided
to implement both of these variants to compare the perfor-
mance difference of both approaches. The system mem-
ory variant additionally demonstrates the use of the GPU-
based BTF evaluation code from a CPU-based environ-
ment.

6 Results

6.1 Testing environment

To measure the performance of our implementation, we
created a sample application, as described in Section 5.
All the results were measured directly inside the applica-
tion, using the built-in benchmark utility, with the excep-

tion of raw OpenCL kernel execution times, which were
measured externally, using the gDEBugger [7] utility. In
both cases, we measured the average time taken (out of
100 measurements) to fully render a single frame of a
scene, consisting of a 3D geometry with surface covered
by BTF. We used this approach mainly because it is the
only performance metric available in the reference GLSL
implementation.

We studied the performance of the following implemen-
tations of the BTF reconstruction algorithm:

• CPU - Original CPU-based implementation, pro-
vided by the authors of [4].

• CLCPU - Our OpenCL-based implementation, with
the OpenGL-OpenCL communication routed through
the system memory, simulating the use of the
OpenCL evaluation kernel from within a CPU-based
environment.

• CLGL - Our OpenCL-based implementation, with
direct OpenGL-OpenCL communication.

• RawCL - Raw execution time of the BTF evaluation
kernel of our OpenCL implementation (excluding the
rasterization time and OpenCL-OpenGL communi-
cation overhead).

• GLSL - The reference GLSL-based implementation,
obtained from the BTFBase project webpage [5].

The test scene we used consisted of a sphere model cov-
ered with a BTF sample, as shown in Figure 4. Both the
light and the camera were positioned at a fixed location,
which remained the same throughout all the tests. The
number of individual BTF evaluations per frame therefore
changed only when changing the resolution. The list of
measured resolutions and the total number of individual
BTF evaluations required per frame are shown in Table 2.

Figure 4: The test scene as rendered by our sample appli-
cation, using the WalkwayHDR material.

We used two different test setups to measure the perfor-
mance on different hardware. The primary test setup rep-
resented a mid-level class computer and consisted of the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Resolution Eval. time Eval. rate
[px] [ms] [MEval/s]

800×600 19.9 24.12
1280×720 37.1 24.84
1920×1080 70.0 29.62

Table 4: Peak compressed BTF evaluation rates of our im-
plementation for different batch sizes (resolutions).

following components: Intel Core i5 3570K @ 3,4GHZ,
nVidia GeForce GTX 560 Ti, 16GB DDR3 666 MHz
RAM. The secondary test setup represented a low-end
computer and consisted of the following components: In-
tel Pentium E2160 @ 3.0GHz, nVidia GeForce 8800 GTS
512, 4GB DDR2 333 MHz RAM.

The performance was evaluated on four different mate-
rial datasets - Wool (Wool), Impalla (Impalla), Walkway-
HDR (WwHDR), FloortileHDR (FtHDR). On the sec-
ondary test setup, only the Wool and WalkwayHDR mate-
rials were tested, marked WoolX and WwHDRX in tables
with results. The compressed datasets for these materials
are a part of the publicly available GLSL-based implemen-
tation [5].

6.2 Measured performance

In Table 3, the results for all the evaluated implementations
are shown, measured for the individual resolutions. We
show, that highly interactive framerates can be achieved
using our implementation even when working in high res-
olution. Further comparison with the CPU-based imple-
mentation shows an order of magnitude decrease of the
time required to render a single frame. Using our second
test setup, we also demonstrate, that interactive framer-
ates can be reached even on a low-end computer hardware
and that no special features available only on contempo-
rary hardware are required by our implementation.

As visible in Table 3, comparison of rendering times
for both LDR and HDR material data yields roughly the
same results. This is expected, as the code for each variant
differs only in the color-model conversion function used
when returning from the M codebook. A significant drop
of performance for HDR material data is only reported for
the CPU-based implementation.

Comparing the performance of CLCPU and CLGL
implementations on our primary test setup, we find the
CLGL variant to be approximately 2 times faster in all
cases. Highly interactive results were obtained even when
using the CLCPU variant, which indicates that our im-
plementation provides good performance even when sup-
plied data from a CPU-based environment. The bandwidth
of the system memory bus is of key importance in this
case, as visible on the result obtained from the secondary
test setup, where the performance difference between the
CLCPU and CLGL implementations is more visible.

To find out the peak BTF evaluation performance of
our implementation, we measured the execution time of

Single frame rendering time [ms]
Material / implementation

Mapped Impalla WwHDR
BTF resolution GLSL CL-GL GLSL CL-GL

512×512 1.9 11.2 2.0 13.7
1024×1024 1.9 12.5 2.0 13.9
2048×2048 2.9 14.1 2.9 14.8
4096×4096 4.7 15.3 5.2 16.3
8192×8192 6.0 16.3 7.4 17.7

Table 5: Comparison of single frame rendering times for
different mapped BTF resolutions.

the evaluation kernel operating on a full-screen quad
fully covered by the Wool BTF material. To minimize
the amount of under-the-hood caching of the GPU, the
mapped BTF resolution was increased to the level, were
a full BTF evaluation is required to be performed for each
separate pixel. To find out the level of additional process-
ing overhead, we performed the test using three different
resolutions. As shown in Table 4, we were able to achieve
peak performance of roughly 30 million compressed BTF
evaluations per second. To provide a fair result, we used
the same OpenCL kernel as in all the other tests, although
the condition whether or not to evaluate the BTF for the
given pixel could have been removed from the kernel for
this specific case (resulting in a small performance in-
crease).

6.3 Comparison of OpenCL and GLSL im-
plementation

As separate applications are used to evaluate the OpenCL
and GLSL implementations performance, we would like
to point out some key differences relevant to the measured
timings. First, our application executes the BTF evaluation
kernel over the whole rasterized image (similar to a post-
processing effect), even on the parts where no BTF evalu-
ation is required. The decision whether or not to evaluate
the BTF for a pixel can thus first be made at the begin-
ning of the evaluation kernel. In the GLSL implementa-
tion, the decision is made directly during the rasterization
stage, since shading is not performed on pixels not belong-
ing to the object. This brings additional overhead for our
application and gives the GLSL application some perfor-
mance advantage.

The GLSL application can also perform the BTF evalua-
tion directly in the fragment shader. Since it is not possible
to invoke OpenCL code directly from within a shader, our
application needs to store the rasterized data into an inter-
mediate buffer, perform BTF evaluation over the data and
then use another buffer to copy the computed data back to
the visualization chain. This additional overhead can be
seen by comparing the raw execution time of the kernel
(RawCL) and the time required to render the whole frame
(CLGL). Consequently this also decreases the measured
performance of our application.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

When comparing the performance of both applications,
we have also noticed the GLSL application to have a
strong dependence on the image resolution, in which the
BTF material is mapped onto the object. As shown in Ta-
ble 5, by increasing the BTF mapped resolution, the per-
formance of the application decreases rapidly. This be-
havior can also be observed in our application, where the
performance drop however is not so steep.

For these reasons, we would like to point out that our
results cannot be interpreted as a direct comparison of
OpenCL and GLSL, since the differences between both
sample applications are significant. As the GLSL applica-
tion does not provide any way to accurately measure the
raw BTF evaluation performance (excluding the rasteri-
zation and display overhead), we believe that the direct
performance-wise comparison would be unfair. We how-
ever decided to present the results we obtained for the two
sample applications, as they show the fitness of either ap-
proach for the specific task of integrating the BTF evalua-
tion stage into a standard OpenGL rendering pipeline.

Below we would like to comment on the results. While
still maintaining interactive framerates, our sample ap-
plication with OpenCL is much slower than the refer-
ence GLSL one. This is expected, as there is much
additional processing required to successfully use the
OpenGL-generated data within the OpenCL context and
vice-versa. As a result, we find our OpenCL-based imple-
mentation not well suited for the integration as a stage into
the common OpenGL rendering pipeline and recommend
using the GLSL variant. We however believe our imple-
mentation is more general than the GLSL one, hopefully
showing its full potential as a part of a different pipeline.

7 Conclusions

After studying the evaluation process of BTF compressed
using the multi-level vector quantization method, we were
able to successfully implement this method in a GPU-
based environment, choosing OpenCL as a platform of our
choice. Using our sample application as a test platform,
we were able to achieve interactive framerates even on a
low-end computer setup, thus proving the method to be
well suited for GPU environment and real-time use. With
our implementation, we were able to achieve a peak per-
formance of 30 million individual BTF evaluations per
second, with no preprocessing of the compressed data
codebooks required. In our sample application, we also in-
vestigated the topic of OpenGL-OpenCL communication
and resource sharing, finding this feature to provide sig-
nificant performance benefits. Our implementation also
proved to be an order of magnitude faster than a basic
CPU-based variant. This holds even when feeding data
to the OpenCL implementation from within a CPU con-
text. By direct comparison, our sample application was
shown to be slower than the reference GLSL-based appli-
cation. We however state several points as to why a direct

comparison is not appropriate. As a result of our work, we
provide our implementation and all its source code to be
freely used. In our codebase, the whole BTF evaluation
process is covered by a single function call, which makes
it very easy to integrate into an application code.

8 Acknowledgements
We would like to thank the authors of [4] for provid-
ing us with the source codes. This project has been
partly supported by Czech Science Foundation under
research program P202/12/2413 and Grant Agency of
the Czech Technical University in Prague, grant No.
SGS13/214/OHK3/3T/13 (Research of Progressive Com-
puter Graphics Methods). Finally, we would like to thank
BTF database Bonn for providing their data sets.

References

[1] P. Cozzi and C. Riccio. OpenGL Insights. Taylor &
Francis Group, 2012.

[2] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J.
Koenderink. Reflectance and texture of real-world
surfaces. ACM Trans. Graph., 18(1):1–34, January
1999.

[3] J. Filip and M. Haindl. Bidirectional Texture Func-
tion Modeling: A State of the Art Survey. Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on, 31(11):1921–1940, Nov 2009.

[4] V. Havran, J. Filip, and K. Myszkowski. Bidi-
rectional Texture Function Compression Based on
Multi-Level Vector Quantization. Computer Graph-
ics Forum, 29(1):175–190, jan 2010.

[5] V. Havran, J. Filip, and K. Myszkowski. Imple-
mentation of Bidirectional Texture Function Com-
pression based on Multi-Level Vector Quantization,
2010. Project webpage http://dcgi.felk.
cvut.cz/home/havran/btfbase/.

[6] A. Munshi, B. Gaster, T.G. Mattson, and D. Gins-
burg. OpenCL Programming Guide. OpenGL Series.
Pearson Education, 2011.

[7] Graphic Remedy. gDEBugger - OpenGL and
OpenCL Debugger, Profiler and Memory Analyzer,
2010. http://www.gremedy.com/.

[8] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibil-
ity to structural similarity. Image Processing, IEEE
Transactions on, 13(4):600 –612, april 2004.

[9] G.L. Ward. LogLuv encoding for full-gamut, high-
dynamic range images. Journal of Graph. Tools,
3(1):15–31, March 1998.

[10] D. Wolff. OpenGL 4.0 Shading Language Cookbook.
Packt Publishing, Limited, 2011.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

