Real-time Rendering of Parametric Skin Model

Stanislav Fecko*
Supervised by: Martin Madaras'

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
Bratislava / Slovakia

Abstract

When a ray of light enters a translucent material, it starts
to move through an optically non-uniform environment,
resulting in scattering of the light under the surface of the
object. After traversing the material, the light eventually
leaves the object. This happens not at the point where
it entered though, but in slightly different. Visual effect
called the sub-surface scattering is often visible on materi-
als like marble or wax. Human skin is formed of multiple
layers of different skin tissues. That is why effects, usu-
ally seen on other translucent materials also occur on the
skin. If we want to render highly realistic skins, we need
to include this knowledge into our lighting model. For
this we have developed a real-time method using various
techniques used in existing papers. We use an offscreen
buffer, into which we render the entire object in texture-
space and perform the diffusion to simulate the effect of
sub-surface scattering on human skin. Our aim is to extend
this method even further. We are going to make a model
capable of rendering also non-human skins, often used on
sci-fi or fantasy characters. Their skins have qualities that
human skin does not and thus we need special approach to
their realistic rendering.

Keywords: Real-time rendering, Skin rendering, Sub-
surface scattering, Texture-space Diffusion, Deferred
Shading, Screen-space Ambient Occlusion

1 Introduction

We present here our approach to highly realistic real-time
skin rendering. We describe the methods used in our
pipeline as well as both their advantages and disadvan-
tages. Our rendering system uses the concept of the de-
ferred shading, supports high dynamic range rendering
and takes advantage of the methods like texture-space light
diffusion, screen-space ambient occlusion or environment
mapping technique.

Our aim here is to design and implement a working ren-
dering system, that, apart from rendering human skin, is
capable of rendering also various non-human characters.

*stanislav.fecko@gmail.com
Tmartin.madaras @ gmail.com

These can be often seen in games or movies and to ren-
der them appropriately, we need to use special methods.
We present techniques we have used and show the results
these allowed us to achieve.

2 Related work

We are using the concept of the deferred shading in our
program. It is widely used in various real-time applica-
tions to avoid a loss of performance on shading hidden
pixels. The approach also allows the using of many local
lights and directly supports numerous image-based post-
processing effects. The idea of the deferred shading is
rather old already, first time presented (although not yet us-
ing the ’deferred shading” name) by Michael Deering [3].
Implementation in the Killzone 2 computer game, as well
as many interesting details are described in [13]. The con-
cept and its limitations are explained in a presentation by
Hargreaves and Harris [12]. Koonce in his chapter in GPU
Gems [9] describes different extensions and effects avail-
able when using deferred shading.

An important part of the project is the simulation of
the sub-surface scattering effect. There are different ap-
proaches to rendering translucent objects. An offline
method described in an article by Donner and Jensen [5]
is based on the photon mapping technique, which takes
about 15 minutes (on an Intel Core 2 Duo 2.4GHz) to gen-
erate the resulting image, but it is capable of producing
such advanced effects as volumetric caustics, translucent
inter-scattering between surfaces and volumetric shadows.
A rapid hierarchical integration of irradiance computed at
selected points on the surface is used in [7]. Depending
on the model, it can deliver results in under one minute.
The technique presented by D’Eon et al. [4] uses texture-
space diffusion to compute the scattered lighting in real
time. Shah, Konttinen, and Pattanaik [11] use dual light-
camera space technique, computing the area integral via a
splatting approach in image-space. Also GPU Gems have
a chapter on rendering of this phenomenon [6]. The fast
methods do not produce result of the same quality as the
previously mentioned techniques, but their huge advantage
is the speed making the methods suitable for real-time ren-
dering applications.

There are also various methods used for estimation of

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

ambient occlusion. For static scenes this factor can be pre-
computed for fast later use. Every decent modeling soft-
ware is capable of baking the ambient occlusion maps and
the process usually takes seconds to minutes. For dynamic
objects, however, these maps can not be used and the oc-
clusion has to be computed every frame. In offline render-
ing this factor can be obtained by ray-tracing, which gives
good results, but the more complex the scene is, the longer
it takes to estimate the occlusion. Mittring describes in his
article [10] a real-time method they used when develop-
ing the computer game Crysis. This calculation is done
in screen-space, needs no preprocessing and is indepen-
dent from the geometric complexity of the rendered scene.
Other screen-space implementations are described in an
article by Bavoil and Sainz [1], where the authors face
the precision issues of existing real-time ambient occlu-
sion methods. Bavoil, Sainz and Dimitrov [2] introduce
another similar technique for the estimation of the ambi-
ent occlusion based on image-space information.

3 Sub-surface scattering

Sub-surface scattering (SSS) is a natural phenomenon ob-
served on the translucent materials. Light entering the vol-
ume of the object interacts with the material, scatters, and
exits the volume at a different point and a different direc-
tion. This causes even the areas that are not directly lit, to
receive some amount of lighting. The effect is most no-
table in the scenes where an translucent object is lit by a
back light. Despite the fact that a perfectly opaque ob-
ject would be black from our point of view, the translucent
object will have a bright silhouette due to the light that tra-
versed through the material and left on the other side. The
effect is very well visible on materials like wax or milk.

A human skin is a much more complex material than it
may look. It consists of many thin layers with different
optical properties. This is why the light penetrating the
skin is scattered under the surface, resulting in the very
same effect described earlier.

-

Figure 1: Sub-surface scattering on translucent materials.
The first image is from [5], the second is from [6].

3.1 Sub-surface scattering via texture-space
diffusion

The method proposed in [4] approximates the effect of the
sub-surface scattering using techniques affordable in real-
time rendering. The idea is to render the entire scene into a
off-screen buffer, process this data and then, in the second
pass, use it to render the final image.

First phase of the algorithm is rendering of the object
into the texture space. To perform this task, a special ver-
tex shader is used. It projects each vertex (x,y,z) from
the world space to its texture coordinates (u,v), therefore
into the texture space. The result of this pass is a shaded
texture, or rather a lightmap, of the entire object. It con-
tains light information for every point on the surface of the
model, including the areas that are not in a viewing volume
of the camera, nor the light volume of the light source. Im-
portant note is that only the ambient and the diffuse com-
ponents of the Phong’s lighting model are used in this light
calculation.

The second phase is where the the data is processed, as
mentioned earlier. This is actually the part where the sim-
ulation of the sub-surface diffusion takes place. We blur
the light intensity values captured on the surface of the ob-
ject, making the bright spots to bleed into the darker areas.
Therefore, also the points with little direct light can be lit,
provided that they are close to some bright ones. In reality,
the metric for this ’closeness’ is a three-dimensional dis-
tance of two points. Our approach uses a two-dimensional
distance in the texture space. This difference leads to dif-
ferent results, but the fact that we can compute this value
very quickly outscores the precision drawback.

The second phase consists of a few blurring shader
passes applied on the lightmap. What is important here
is the fact that all this blurring is done in the texture space.
Therefore the result is also, as in the first stage, a lightmap.
After the blurring, these are blended together forming one
resulting lightmap carrying all the information about the
ambient and the diffuse light.

Figure 2: Image from [4] describing the phases of the sub-
surface scattering rendering process. From left to right:
Albedo; Diffuse light component; Blurred versions with
different kernel size used; specular highlights and the final
composition.

The third phase requires another geometric pass. Here
we render the whole scene again, but instead of comput-
ing every pixel’s brightness, we use the blurred lightmap.
The diffuse and the ambient components of the pixel’s il-

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

lumination are read from the lightmap, and the specular
component is added for the pixel separately.

We compute specular highlights separately due to the
fact that the specular component of the Phong’s illumina-
tion model represents the light reflected from the surface.
That is why this light does not interact with the deeper ma-
terial structure and is not scattered, merely mirrored off the
topmost layer. The fact that we treat this component apart
from the other two results in a soft translucent look of the
rendered objects while the fine details on their surface are
visually preserved thanks to the specular highlights.

4 Our approach

Our implementation of the skin-rendering pipeline is done
in C++ and OpenGL. Because of the features we use to
achieve our results we require OpenGL 3+ capable hard-
ware. We are making use of the framebuffer objects, which
allow us to easily take advantage of the deferred shading
concept in all stages that require the lighting, HDR render-
ing and high-presicion image manipulation, as well as the
screen space ambient occlusion effect.

Default OpenGL pipeline outputs its results into the
backbuffer, which is a memory segment used for collect-
ing the pixel values of the final image. However, OpenGL
3 gives the programmer the opportunity to change this de-
fault behavior of the pipeline and exchange the backbuffer
with a special target called framebuffer object. This fea-
ture allows us to redirect the output of our rendering into
textures. The same textures that we can later read from
as from any other textures. This functionality has a wide
range of applications, amongst others also the HDR ren-
dering, the deferred shading or the texture-space diffusion
effect.

4.1 Our extension for non-human skins

Our aim in this paper has been to extend the concept also
for the non-human skins. The texture-space diffusion tech-
nique gives the nice results for human skin, because it
gives it the look of a translucent material. However, there
are situations when we need to render also the non-human
characters like aliens, undead, dragons and others, with
highly realistic features. This is where we may need to
extend the method to fit the particular type of skin.

The model used for the testing of our rendering tech-
niques is the head of Davy Jones, a character from a well
known movie. The mesh and the texture were created and
are the property of Luis Manuel Morillo '. This character
model suits our needs because of its rather specific skin,
which is pretty much like the skin of an octopus - there-
fore wet, slimy and oily. Since human skin rarely has such
attributes, we had to slightly extend the method for human
skin rendering to achieve the satisfactory results with our
Davy Jones.

Uhttp://luima.com

We added the environment mapping feature, which is
a rather quick method used to approximate the reflections
on the object. It does not give the actual mirrored image,
rather relies on the fact that the user is not focused on par-
ticular details of the reflected light. It uses a texture, which
it maps onto the surface of the scene objects. We will de-
scribe the feature in detail in section 4.2.3.

4.2 Implementation details
4.2.1 Texture-space diffusion

In the first phase we are going to map triangles from the
world space into the texture space. Therefore our out-
put framebuffer ought to be resized to the dimensions of
the texture. Due to the performance load of working with
resolutions over 4096x4096 pixels, we decided to use the
framebuffer sized up to 2500x2500 pixels. This reduces
the quality only slightly while significantly improving the
speed of the rendering.

Figure 4: Bumpiness parameter of the skin. The left col-
umn has the value 0, middle column 0.75 and the right one
is rendered with the parameter set to 3. Top row is with-

out color and environment mapping, the bottom row are
complete renders.

Since we are using the deferred shading approach, we
do not render the intensity values into the buffer straight
away. First we transform each vertex to its texture coor-
dinates and into the buffer write only its world-space po-
sition and normal. Note that in this pass we do not need
to capture per-pixel depth information. Since we are us-
ing the bump-mapping effect on the surface of our model,
we are performing this normal vector transformation in
this phase. Our calculation uses a greyscale texture as a
heightmap in the tangent-space, from which the world-
space normal is determined every frame. This process is
controlled by a bumpiness parameter describing how much
the heightmap affects the final normal vector. The lowest
valid parameter value of O corresponds to unchanged nor-
mal, therefore a smooth surface. The higher the value is,
the more featured the bumps become. In all figures in this
paper, except for the Figure 4, the value 1 was used.

Only after the entire scene is rendered, we proceed to
the shading. For every light source one pass is required

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Content of the framebuffer textures. From left to right: world-space normal, world-space position, computed
lighting (ambient and diffuse) and the last is the blurred version of the previous.

and the additive blending is used for merging the separate
passes. The result of this pass is a texture containing the
light intensity values for every texel of the original texture.

8 8R
Rk R-

Figure 5: Amount of blurring and it’s impact on the look
of the surface. From left to right used kernel size: 3x3tx,
8x8tx and 13x13tx. Top row contains only ambient and
diffuse light components, the bottom one is also with spec-
ular highlights and SSAO.

The second phase uses the separable gaussian blur to
simulate the diffusion process. The amount of blurring de-
pends on the skin parameters. The more translucent look
we desire, the wider kernel has to be used. Currently the
skin is parameterized by one real number describing the
radius of the blurring effect. After the two shader passes
we have the resulting blurry lightmap in one of the frame-
buffer’s textures (see Figure 3). This texture can be, at
the beginning of the phase three, bound to the texture unit
and, the same way as any other texture, used as a source.
Finally, in the last part of the algorithm we use the light
intensity information contained in the processed texture to
determine the ambient and the diffuse components of the
pixel’s illumination. After adding the specular highlights
in a separate pass, the diffusion method is at an end (see
Figure 14).

4.2.2 Screen-space ambient occlusion

Screen-space ambient occlusion (SSAO) is a technique
used in real-time rendering to achieve more realistic look-
ing scenes by darkening the areas where only limited
amount of light can get due to the geometric obstacles in
the point’s neighborhood. The proper ambient occlusion
factor is viewer-independent, therefore it can be precom-
puted and stored with the model in a separate texture. This

approach allows for the very high quality results, but if the
scene changes, the occlusion factors change as well, and
therefore the precomputed data cannot be used.

A

Figure 6: Left: static set of sample positions. Right: Posi-
tions applied on the examined pixel’s surroundings.

A screen-space approach trades accuracy for speed. The
results produced by this technique are no longer viewer-
independent, tend to be noisy and suffer from various
aliasing-related artifacts. The advantages of the method
are the speed and the versatility. Occlusion can now be
produced in real-time, for any dynamic scene, regardless
its geometric complexity. With a few optimizations, the re-
sults are produced quickly and with rather sufficient qual-

1ty.

Figure 7: Sampling pixel’s neighborhood and comparing
the depths of the samples against the scene geometry. The
dark circles contribute to the examined pixel’s occlusion,
while the bright circles decrease the amount of the occlu-
sion. The green circles correspond to the values in the
depth map.

The main idea of the method is sampling every screen
pixel’s neighborhood and by comparing the depth values
of these samples we determine the amount of the occlu-
sion the sampled points cause onto the examined pixel.
Every sample that falls behind the geometry of the scene

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

(its depth value is greater than the value in the depth map)
contributes to the examined pixel’s occlusion (pixel will
be darker) and every sample closer than the depth map re-
duces the occlusion (brightness increases).

Figure 8: Screen-space ambient occlusion using only
depth information (left) compared to the method using per-
pixel screen-space normals (right). In both cases the num-
ber of taken samples was the same. Note the difference
caused by the bump-map.

A technique taking advantage of the screen-space nor-
mals is often used to both speed up the ambient occlusion
computation and make it more accurate. Provided that
we have a normal vector in the examined pixel, we can
choose to sample only the points inside the hemisphere
in the normal’s direction. This way we need merely half
of the samples we would have to use otherwise. More-
over, due to the fact that the normal vectors are pro-
jected into the screen-space after the normal/bump map-
ping takes place, the method generates the ambient oc-
clusion also on flat surfaces enhanced by bump-mapping.
Since the bump-mapping is computationally pretty cheap
effect, this improvement of the ambient occlusion estima-
tion algorithm is particularly useful for applications re-
quiring a high framerate. Also scenes containing rather
low-polygon models are efficiently rendered with satisfac-
torily good results.

Figure 9: High (left) and low-frequency (right) ambient
occlusion factors.

SSAO = “*{/(High)“ - (Low)? 1)

We use a static set of sample positions, but to avoid ar-
tifacts, we rotate this set by different angle for each pixel.
This way we trade artifacts and visible patterns over the

image for a rather uniform noise. Afterwards we reduce
the noise by blurring the occlusion map a little. To achieve
the occlusion on both small details and larger areas, we
use one sampling pattern for high-frequency features and a
different one for low frequency. When combined together,
these give a satisfactory quality of the occlusion, while the
cost of the effect is affordable.

In our implementation of ambient occlusion we used
different parameters for high and low-frequency maps.
Figure 9 shows the intermediate results. In the first case,
16 samples were taken and then the texture was blurred by
3x3 pixels gaussian blur. In the low-frequency case, the
number of samples was 28 and the size of the blur was
15x15 pixels. The mixing formula we use for blending
these two maps is in Equation 1. We achieved best results
with parameters a = 1 and b = 2,42.

Figure 10: Final screen-space ambient occlusion map de-
termining the amount of the ambient light at the pixel.

4.2.3 Environment mapping

To achieve wet or slimy look of the rendered surfaces, we
added the effect called environment mapping. It approxi-
mates mirror reflections on the objects in the scene. The
method requires a environment texture, which is usually
a panoramatic photograph and describes the surroundings
of the object or the entire scene. The technique uses every
scene point’s normal vector, reflects the viewer-to-pixel
vector from the surface and computes the reflected direc-
tion vector. This direction determines which texel from the
environment texture is to be used. This value is then added
to the pixel. The method is in a combination with the
deferred shading very fast, requires only one full-screen
shader pass that reads only one filtered texel value for ev-
ery screen pixel.

This mechanism is described in the Figure 11. The en-
vironment texture, which encircles the scene objects, is

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 11: Concept of environment mapping.

drawn here as a thick black circle. Ray reflects from the
object’s surface and from the point where it hits the back-
ground we sample the texture. This color is then multi-
plied by a reflectance of the skin and added to the current
pixel’s value. We use the reflectance parameter to con-
trol how much environment illuminance is reflected by the
skin, therefore to determine how much (on scale O to 1)
the surrounding scene affects the object’s look. In Figure
12, this value is 0.75, while in Figure 13 the used value of
the parameter is 0.1.

Note the thick red ray, which after the reflection crosses
the volume of the object on its way to the background.
Properly calculated ray would reflect a few more times
before reaching the environment texture. However these
bounces are ignored in order to receive a fast rendering
method.

Since this approach does not take self-reflections into
consideration, it may produce unconvincing results when
used on complex objects. And as our testing model could
be considered somewhat complex due to the numerous
tentacles, we had to deal with this problem. Our easy and
fast solution uses the result of the SSAO procedure and
modifies the amount of the reflection based on the amount
of the occlusion. The idea is that the more occluded the
pixel is, the more reflections the ray has to undergo to
reach it. Therefore, its energy is strongly reduced and that
is why we decided to reduce its contribution.

5 Performance and results

In Equation 2 is described how the effects are combined
into the final image composition. First, the line 1 takes
place in the framebuffer (in texture-space; all the other
lines are in the screen-space). During the second geom-
etry pass, lines 2 and 3 are evaluated (in that order). Last
two lines describe the application of the environment map-
ping and the final fusion of all the effects. Meaning of the
High and Low, as well as a and b is shown in the Figure 9.
Parameter Skin describes the properties of the particular
type of skin. Ambient, Diffuse and Specular are the com-

Figure 12: Environment mapping enhanced by the SSAO
term. Left is untreated, right is with the improvement. The
reflection intensity is intentionally very high to make the
difference more visible.

ponents of the widely used Phong’s shading model. Values
EnvMap and Albedo are color vectors read from textures.

AmbDif = (Ambient - Skin,mp, + Diffuse - Skingf)p;ur
SSAO = “%{/High?-Low”
SSS= AmbDif- SSAO + Specular - Skingpec 2
Reflection = EnvMap - Skinq - SSAO
Final = SSS- Albedo + Reflection

Figure 13: The final image output of our rendering system.

Our skin rendering pipeline has been tested on Win-
dows 7 Home Premium system with GeForce GTX560
graphics card, Intel Core 17-950 processor and 12GB of
physical memory. When all effects are switched on and
the application runs in 1920x1080 resolution with no mul-
tisampling, we achieve average pace of the rendering
above 20fps. As we use many screen-space and texture-
space techniques, the time required to process one frame
strongly depends on the screen and the texture resolutions.
But since this is still a work in progress, we expect to intro-
duce certain optimizations and to improve the frame rate.

Table 1 presents the performance of the application
based on two parameters: the geometric complexity of the

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 14: Sub-surface scattering process on our model. From left to right with additional effects: ambient and diffuse
lighting; blurred lighting; with screen-space ambient occlusion; with specular highlights.

Figure 15: Composition of the effects. From left to right: Sub-surface scattering alone; SSS with environment mapping;
SSS with screen-space ambient occlusion; SSS with both environment mapping and ambient occlusion.

Mesh complexity | Screen resolution | Framerate
65 K 640 x 480 63
65K 800 x 600 63
65K 1280 x 720 47
65 K 1920 x 1080 31
259K 640 x 480 46
259 K 800 x 600 35
259 K 1280 x 720 31
259 K 1920 x 1080 21

Table 1: Performance of our solution.

scene and the screen resolution. Since the pipeline consists
of two geometric passes, we have to draw over half a mil-
lion polygons per frame (with the more complex mesh),
what also reflects on a lower framerate in scenes with the
higher complexity of the geometry.

As is also clear from both the table and the descrip-
tion of the used methods, time needed to render one frame
strongly depends on the used resolution. This is why cases
with lower screen dimensions scored double the framerate
of the scenes with higher resolution. However, in all used
scenarios we still reach real-time rates, therefore satisfying
results. Even in the most complex scenes and the highest
resolutions we rarely dropped below 20fps. Here the aver-
age was slightly over 21 frames per second.

6 Conclusion

The result of our project is a C++ class dedicated to real-
time skin rendering. It bases on the deferred shading con-
cept utilizing the benefit of the HDR rendering. It imple-
ments the sub-surface scattering effect via texture-space
diffusion technique, estimates the ambient occlusion using
a fast, screen-space approach and simulates the surface re-
flections by the environment mapping method. At its cur-
rent state it delivers real-time results even for the complex
model we are using.

There are also effects we have not implemented yet and
features we would like to add to the project as a future
work. Our plan is to create a procedural skin generator for
an automatic production of various non-human skins. We
are also searching for and experimenting with the imple-
mentation of other real-time methods that would improve
the translucent and slimy look of the rendered character
while retaining the high framerate.

The area we are now mainly focusing on is building a
texture generator capable of producing different types of
skin textures as well as bump or reflection maps. Our idea
is to use various pre-made images and by blending these
to create new ones. The prototype uses the framebuffer
objects and OpenGL shaders to process the source images
and output the final textures based on a given description.
We aim to generate these skins in real-time. This way the
application could be used for both designing and rendering
of the characters.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

7

Acknowledgements

We would like to express our thanks to Luis Manuel Mo-
rillo for providing us both visually nice and geometrically
complex model of Davy Jones’s head that we have been
using.

References

[1]

(3]

[4]

[10]

(11]

Louis Bavoil and Miguel Sainz. Multi-layer dual-
resolution screen-space ambient occlusion. In SIG-
GRAPH Talks. ACM, 2009.

Louis Bavoil, Miguel Sainz, and Rouslan Dim-
itrov. Image-space horizon-based ambient occlusion.
In ACM SIGGRAPH 2008 talks, SIGGRAPH ’08,
pages 22:1-22:1, New York, NY, USA, 2008. ACM.

Michael Deering, Stephanie Winner, Bic Schediwy,
Chris Duffy, and Neil Hunt. The triangle processor
and normal vector shader: a vlsi system for high per-
formance graphics. In Richard J. Beach, editor, SIG-
GRAPH, pages 21-30. ACM, 1988.

Eugene d’Eon, David P. Luebke, and Eric Enderton.
Efficient rendering of human skin. In Kautz and Pat-
tanaik [8], pages 147-157.

Craig Donner and Henrik Wann Jensen. Render-
ing translucent materials using photon diffusion. In
Kautz and Pattanaik [8], pages 243-251.

Simon Green. Real-time approximations to subsur-
face scattering. In Randima Fernando, editor, GPU
Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics, chapter 16. Pearson Higher Ed-
ucation, 2004.

Henrik Wann Jensen and Juan Buhler. A rapid hierar-
chical rendering technique for translucent materials.
ACM Trans. Graph., 21(3):576-581, 2002.

Jan Kautz and Sumanta N. Pattanaik, editors. Pro-
ceedings of the Eurographics Symposium on Render-
ing Techniques, Grenoble, France, 2007. Eurograph-
ics Association, 2007.

Rusty Koonce. Deferred shading in tabula rasa. In
Hubert Nguyen, editor, GPU Gems 3, chapter 19,
pages 429-457. Addison-Wesley, 2008.

Martin Mittring. Finding next gen: Cryengine 2. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,
pages 97-121, New York, NY, USA, 2007. ACM.

Musawir A. Shah, Jaakko Konttinen, and Sumanta N.
Pattanaik. Image-space subsurface scattering for
interactive rendering of deformable translucent ob-
jects. IEEE Computer Graphics and Applications,
29(1):66-78, 2009.

[12] Mark Harris Shawn Hargreaves.

[13] Michal Valient.

Deferred
shading. https://developer.nvidia.com/-
sites/default/files/akamai/gamedev/docs/-
6800_Leagues_Deferred_Shading.pdf.

Deferred rendering in kill-
zone 2. Online, accessed Feb. 20th, 2012,
2007. Develop Conference, http://www.guerrilla-
games.com/publications/dr_kz2 rsx_devQ7.pdf.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

