
Planar Object Recognition Using Local Descriptor Based On
Histogram Of Intensity Patches.

Marek Jakab
Supervised by: Ing. Vanda Benešová, PhD.

Faculty of Informatics and Information Technologies.
Slovak University of Technology

Bratislava / Slovakia

Abstract

The purpose of our research is to develop an application
of augmented reality on mobile device that will be educa-
tive and entertaining for their users - children. User will
be asked for an input to take a picture from the book and
the application will draw a supplementary information in
the form of a 3D object on the screen. The key task of our
application is the problem of image recognition on mobile
platform using local descriptors. Currently available de-
scriptors included in OpenCV library are well designed,
some of them are scale and rotation invariant, but most of
them are time and memory consuming and hence not suit-
able for mobile platform. Therefore we decided to develop
a fast binary descriptor based on the Histogram of Inten-
sity PatcheS (HIPs) originally proposed by Simon Taylor
et al. To train the descriptor, we need a set of images de-
rived from a reference picture taken under varying viewing
conditions and geometry and therefore we have to take into
account different scales, rotations and perform perspective
transformations. Our descriptor is based on a histogram
of intensity of the selected pixels around the key-point.
We use this descriptor in the combination with the FAST
key-point detector, where the most occurring key-points
are used with the aim to reduce the computation time.

Keywords: augmented reality, mobile, descriptor, hips,
histogram, image recognition, keypoint

1 Introduction

Problem of the visual object recognition using feature
matching is one of the most challenging tasks in the com-
puter vision. Nowadays, there are several ways for suc-
cessfully match a template with an image. Lot of these
methods are quite robust, however they are still complex
and most of them are not capable of performing matching
in real time on large databases. In our paper, we describe a
method for image matching which could be promising for
the real time applications even on mobile devices.

The authors Taylor et al. have presented [1] a simple
patch feature with a binary mask representation which en-
ables very fast matching at runtime - Histogram of Inten-

sity Patches. Our approach presented in this paper is based
on this HIPs descriptor. In our algorithm we use meth-
ods of detecting local features and building a set of HIPs
descriptors. This algorithm is compatible with other al-
gorithms already included in OpenCV library, because it
uses the basic data structures defined in this library. The
basic idea how to decrease the computation time is to build
the descriptor in a way, that the training process includes
many viewpoints corresponding to varying rotation, scale
and affine transformation. Hence, rotation, scale and affine
invariance could be achieved in the training phase, the
matching runtime process directly use the descriptor and
no additional computation time is necessary. This is the
fact which makes some other methods slower and not ca-
pable for running in real time.

In the training process, we build a binary descriptor
of a patch around the detected feature key-point for all
viewpoints. All descriptors are stored for a later use, so
we do not need to go through the process of the training
again. For the simulation of different image views, we use
transformation provided by OpenCV library. However the
training process takes several minutes to complete and use
extra memory. We use the same approach on the acquired
camera image, and then match the features by counting of
the dissimilarity score, which is the result of bitwise opera-
tions between descriptors. The results with score less than
threshold = 5 will be selected as good matches and used
to find a homography using the RANSAC (Random sam-
ple consensus) algorithm. Selected threshold with value
of 5 gives good results for matching because the image
could be still recognized when random noise or other dis-
turbances occur in the camera image. For the lower thresh-
old, the probability of successful matches will decrease.

2 Related work

There are several descriptors providing well matching
probability. The most common are SIFT [11] [5]
[6] (Scale-invariant feature transform), SURF [10] [5]
(Speeded up robust features), BRIEF [8] (Binary robust
independent elementary features) or ORB [9] (Oriented
BRIEF). In this part we describe how SIFT and SURF

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

work, as we use them in comparison to HIPs in our tests.
SIFT descriptor use for key-point detection Difference

of Gaussian (DoG) [3]. DoG is used on two neighbour im-
ages from image pyramid. These two images are blurred
and then subtracted. Key-points are detected as we search
for local maxima/minima in the DoG pyramid. DoG is a
faster approximation of Laplacian of Gaussian (LoG) [2]
and also provide the scale invariance for SIFT descriptor.
Despite the fact, computation time of DoG is still high to
use it in real time tracking. SIFT descriptor divides sur-
rounding pixels into areas of size 4x4, and computes his-
togram of oriented gradients with 8 bins. Therefore the
resulting vector is 4*4*8 = 128 dimensional.

SURF descriptor also divide the area around detected
key-point into 4x4 smaller areas. For each area it computes
Haar wavelets in X and Y direction and their absolute val-
ues. Next, these values are normalised and stored in 64
dimensional vectors. To provide scale invariance, SURF
detector instead of making image pyramid scales the filter.

PhonySIFT [7] [6] is modified SIFT for tracking on mo-
bile devices. Authors replaced DoG method for detect-
ing key-points with FAST [4] detector. Scale invariance,
which was provided by DoG, was replaced by storing de-
scriptor from different scales. Area around the key-point
to fill descriptor was changed from 4x4 to 3x3. As in orig-
inal SIFT, they compute histogram of oriented gradients
with 4 bins, so the result vector is 36 dimensional instead
of 128. They observe only 10% worse matching in com-
parison to original SIFT according to experiments carried
out and presented by authors.

SIFT or SURF use floating point numbers for describ-
ing the area around the detected key-points. To optimize
time of computation, better approach is to use binary de-
scriptors as HIPs, which we describe below.

3 Image training and matching

To build a suitable descriptor to match selected image we
need to pass the process of training. This process con-
sists of detecting and describing the area around the fea-
ture key-point. To provide matching rotation and scale in-
variance, we build descriptors on more viewpoint bins of
an image, which we want to detect by the algorithm. These
viewpoint bins are simply created by warping of the refer-
ence image. For each bin, small rotations and transforma-
tions are performed with the aim of increased robustness.
Created images need next to pass through key-point de-
tector, then the binary descriptor of each key-point will be
calculated.

3.1 Feature detecting

For each image viewpoint in a bin, local features key-
points using FAST corner detector are detected. In the next
step, the appearance of each feature in all images of the bin
will be sorted and top detected 50 to 100 features, which

after de-warping the image back to reference position oc-
curs most frequently, are selected. The used parameters of
warping have to be stored since they are necessary to find
out a position of the feature in the reference image.

3.2 Patch extracting and building the de-
scriptor

After we have detected the top 50 to 100 feature key-points
in the current viewpoint bin, the descriptor could be calcu-
lated. We form a sample grid of 8 x 8 pixels around each
of most detected corners key-point on each image in view-
point. Pixels in the position given by the sample grid will
take a part in process of filling the descriptor. 8 x 8 pix-
els, i.e. 64 pixels will form the descriptor, which will be
enough to determine good or bad matches using dissimi-
larity score.

Figure 1. Sample grid around detected key-point. 8x8
highlighted pixels are used to create descriptor.

To provide the matching more robust to light variations,
the selected values are normalised and then quantised into
5 levels of intensities. Intensities of pixels in this grid are
used to form the histogram. Histogram is created in a way,
it represents frequency of intensity appearance at selected
position in all grids around corresponding key-point de-
tected on training images. The feature descriptor build-
ing process is as follows: we fill ”1” at selected position
of the selected intensity level, if the intensity appearance
in the histogram for this position is less than 5%. If se-
lected intensity appears more frequently than 5%, we put
”0” at the corresponding position. This boundary of 5%
is determined by authors of HIPs to be best for filling the
descriptor.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2. Process of forming the descriptor.

The finished feature descriptor will need to take 5 bits for
each one of 64 pixels. Therefore we need 40 bytes to store
the descriptor values and another 4 bytes memory to store
the feature position. For example, if we decide to form
the descriptor out of 100 features in a single bin, we need
4400 bytes of memory. To detect an image in various po-
sition, we need to calculate several hundreds of bins with
different transformations.

3.3 Matching

To match two descriptors we need to count the dissimilar-
ity score between them. After we have created the descrip-
tors for the detected features, we do the same procedure on
a captured image. Because we built the binary descriptor
in a way, that we filled it with 1 if pixel rarely felt into the
bin, we can match descriptors by a simple way of using bit-
wise operations and sum of set bits. We simply AND each
of descriptors level containing 64 bit number and then OR
all the results. This operation require 5 AND and 4 OR op-
erations. Then we need to count number of set bits in our
result which provides us information about dissimilarity of
descriptors.

Supposing, we have created a descriptor R for a feature
on an template image and we are looking for a descrip-
tor on camera image C. Descriptors contain 5 levels, each
level is 64 bit long. To sum the bits set to 1 and to get
information of a good match, we need to make AND op-
eration among each of the descriptor levels (first level of
R descriptor AND first level of C descriptor and so with
others). We get 5 numbers of 64 bit length which are then
ORed to get one 64 bit number.

s = ((R0&C0)‖(R1&C1)‖(R2&C2)‖(R3&C3)‖(R4&C4)) (1)

Where number Ri means i-th intensity level of the descrip-
tor made in the surroundings of a feature from the refer-

ence template image and Ci i-th intensity level of the de-
scriptor from the camera image.

dissimilarity score = sumO f OnesInBit f ield(s) (2)

To declare descriptors as a good match they need to have
this dissimilarity score less than some threshold, typically
5. After we select all good matches, we use them to
find homography using RANSAC found in OpenCV li-
brary. Next we draw matched features and show successful
match on screen.

4 Results

Our testing algorithm is made in C/C++ programming
language using OpenCV library and runs on laptop with
i7 3632 QM 2,20 GHz processor and 8GB of DDR5
1600MHz memory. We created 1 viewpoint bin consisted
of 3 different scales with step of 0,03 and 2 clockwise and
anticlockwise rotations from reference image with step of
2,5◦. Each of generated image were also 5 times perspec-
tive transformed from each of 4 sides by small amounts.
In sum, we got 315 transformed images to form the de-
scriptor. This option is no optimized yet and will be inves-
tigated in our future research.

For testing the algorithm we took an image reference
with the resolution 126 x 178 pixels and try to match it
with the image from camera with resolution 320 x 240
pixels. Next graph shows the average computation time
of the matched images using our implementation of HIPs
for 1 viewpoint bin and the average time of computation
for SIFT and SURF algorithm implemented in OpenCV
library.

Figure 3. Elapsed computation time for matching the
descriptors.

HIPs descriptor was created from top 100 key-points de-
tected on the reference image in a single bin, contain-
ing 315 images of small rotations, scales and perspective
transformations.

Related to the Figure 3, we can see that HIPs is running
more than twice faster than SIFT. However for possible
matching for different bins we have to pass through the
process for each viewpoint, therefore computation time

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

will rise. The presented algorithm is promising, but still
needs further optimization in case of mobile platform.

We have done the same testing on an image with the res-
olution 251 x 356 pixels and with the resolution of 640 x
480 pixels. We made same approach of creating viewpoint
bin and feature selection as in previous test with smaller
image. In this test, we want to observe how good each of
descriptors works with higher resolution images.

Figure 4. Elapsed time of computation for matching the
descriptors with bigger resolution of an image and

camera.

The result of our next test shows even bigger difference.
Our implementation of HIPs took two times more compu-
tation time than the implementation in previous test. The
difference between HIPs and SIFT / SURF is greater than
in previous test, so it seems HIPs works better for larger
images. However the computational time is still not suit-
able for real time applications.

Figure 5. Above: Image matched by HIPs. Bottom:
Image matched by SIFT

Next, we consider to improve the computation time by re-
ducing the number of detected features used for the de-
scriptor forming and matching. Taking less features and

therefore creating less descriptors could improve compu-
tation time, but also can reduce the probability of a suc-
cessful match. We have acquired 20 random images which
will takes part in our next test. Then we have set the num-
ber of features, which will be formed into descriptors, to
10, 25, 50 and 100. Next we have try to match a reference
image with the 20 images taken before. We have evaluated
the number of successful matches and also we have mea-
sured the computation time needed for each image. In the
next graph (Figure 6.) you can see the results in %.

Figure 6. Average computation time required for
successful matches.

We can see, that the duration of the matching part of the
algorithm increases significantly by increasing the num-
ber of selected features to form the descriptor. Otherwise,
if only 25 features are selected, we can see only a small
difference in successful matching ratio comparing with
100 selected features. Therefore we can decide, that for
our purposes with current rotations, scales and perspective
transformations, there is a good trade-off to form the de-
scriptor by using 25 to 50 selected features. Calculation
using 25 to 50 selected features is significantly faster and
give still acceptable matching results.

Next graph (in the Figure 7.) show average time in sec-
onds needed for the matching in our test. The difference
significantly grows with more features selected. We can
choose to make descriptors from less features, but this test
contains only one viewpoint bin and therefore the time of
computation seems to be still high. To decrease the match-
ing time, there is an opportunity of forming created de-
scriptors into a binary tree or making indexes in which we
can search faster than in our current tests, where the search
through the descriptors is linear.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7. Computation time for our test in seconds.

5 Conclusion and future work

We implemented the HIPs algorithm and evaluated its
speed in comparison to other well known descriptors. As
presented, the results achieved by using the HIPs descrip-
tor seems to be promising, however there are still possi-
ble improvements in the algorithm and also in the imple-
mentation. These improvements should make the algo-
rithm faster and suitable for real time matching in larger
databases. Data are stored in memory which refer to all
different image warps and therefore the memory require-
ment is higher. In our implementation the memory re-
quirement is still acceptable and manageable by mobile
devices (around 20 to 40 megabytes for training phase),
but also here is a need of an optimization. The pros of
this method is, that we do not need to save any of image
transformation during the evaluating process and it can be
done just once in the training phase. The next possible
improving which could be done in our future work is an
optimization of the algorithm by trying various transform-
ing conditions on each bin. Our algorithm has run-time
complexity of O(n*m) for matching now, where n is the
number of descriptors detected on reference image and m
number of descriptors created from image from camera.
Our goal is to make the presented algorithm faster in the
run-time and then integrate this method as a part of our
augmented reality application on a mobile device.

6 Acknowledgement

This work was supported by grant KEGA 068UK-4/2011
UAPI.

References

[1] Simon Taylor, Edward Rosten and Tom Drummond.
Robust feature matching in 2.3 us. In Proceedings
of Computer Vision and Pattern Recognition(CVPR)
conference, 2009, s. 15-22.

[2] Michal Dobeš. Image processing and algorithms in
C#. 1. edition. Praha. 2008. ISBN 978-80-7300-233-
6.

[3] Krystian Mikolajczyk and Cordelia Schmid. Scale &
Affine Invariant Interest Point Detectors. In Interna-
tional Journal of Computer Vision, vol. 60, 2004, no.
1, pp. 63-86.

[4] Edward Rosten and Tom Drummond. Machine learn-
ing for high-speed corner detection. In Proceedings of
9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006, pp. 430-443

[5] Michal Kottman. Planar Object Detection using Lo-
cal Feature Descriptors. In: Association of Computing
Machinery bulletin, June 2011, vol. 3, no. 2, pp. 59-
63.

[6] Daniel Wagner, Gerhard Reitmayr, Alessandro Mul-
loni, Tom Drummond and Dieter Schmalstieg. Pose
tracking from natural features on mobile phones. IS-
MAR ’08 Proceedings of the 7th IEEE/ACM Interna-
tional Symposium on Mixed and Augmented Reality,
2008, pp. 125-134.

[7] Daniel Wagner, Gerhard Reitmayr, Alessandro Mul-
loni, Tom Drummond and Dieter Schmalstieg. Real-
Time detection and tracking for augmented reality on
mobile phones. In Visualization and Computer Graph-
ics, vol. 16, 2010, no. 3, pp. 355-368.

[8] Michael Calonder, Vincent Lepetit, Christoph Strecha
and Pascal Fua. BRIEF: Binary Robust Independent
Elementary Features. In Proceedings of European
Conference on Computer Vision, Sep. 2010.

[9] Ethan Rublee, Vincent Rabaud, Kurt Konolige and
Gary Bradski. ORB: an efficient alternative to SIFT
or SURF. In Proceedings of Computer Vision (ICCV),
2011 IEEE International Conference , Barcelona, pp.
2564-2571.

[10] Herbert Bay, Tinne Tuytelaars and Luc Van Gool.
SURF: speeded up robust features. In Proceedings of
9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006, pp. 404-417.

[11] Lowe, David G. Object recognition from local scale-
invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, 1999,
vol. 2, pp. 1150-1157.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

