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Abstract

We present a complex approach to 3D scene
reconstruction using both RGB images and depth
maps provided by a Microsoft Kinect sensor. The
sequence of frames recorded by the freely moving camera
fully controlled by human user is processed in order to
obtain point cloud representation of the recorded scene.
An ICP method is used to align point clouds of subsequent
frames, using matched SURF descriptors extracted from
RGB images as the initial alignment estimate. Nearest
neighbour search for an ICP is accelerated by a kd-tree.
The alignment of subsequent frames allows to fully
reconstruct camera movement in 3D space and thus
to create a complex, colored point cloud model of the
recorded scene or object.

Keywords: 3D reconstruction, Microsoft Kinect, point
cloud, ICP, SURF, k-d tree, quaternions

1 Introduction

In recent years, the advance in portable computers
and micro-electronics brings demand for 3D content,
real-time augmented reality applications and natural
human-computer interfaces like gesture control. It is
therefore necessary to efficiently capture the shape, color
or other properties of the objects or the whole scene, what
often includes the need of 3D reconstruction.

Currently, there are multiple 3D reconstruction methods
available, varying from the active approaches including
mechanical contact with the object or laser scanning, to
the passive methods able to create the scene model from
the video or multiple photographs. The 3D reconstruction
is usually intended for professional use due to high
price of required hardware and its difficult manipulation.
However, in recent years, multiple cheap and widely
accessible devices have been introduced, especially
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motion input sensing devices like Microsoft Kinect or
Asus Xtion. Thanks to their ability to simultaneously
capture RGB images and depth maps, they have become a
popular tool for the 3D reconstruction.

The most notable work using such devices for the 3D
reconstruction is the Kinect Fusion [10][13], where
authors have presented a complex approach to the
real-time 3D scene reconstruction using depth maps
provided by Kinect. The detailed reconstructed model
provides an interaction with the user, allowing him to
interact with individual objects of the scene.

In this work, we will present a complex method for 3D
scene reconstruction which uses both the RGB images and
depth maps, captured by freely moving camera controlled
by user, in contradiction to the usual approach taking
only depth maps into consideration. This can bring an
advantage in cases, when the standard approach would not
work efficiently or would not work at all.

2 Rigid body registration

The data obtained by an input device can be viewed as
a sequence of frames, where each frame consists of an
RGB image and the corresponding point cloud obtained
from the depth map. Our goal is to create the 3D model
representing the scene captured by the frame sequence.
In order to incorporate multiple point clouds into into a
single one, relative transformations between subsequent
frames has to be known. This is called the rigid body
registration problem. The basic outline of this approach is
described in the Algorithm 1.

To estimate the transformation between two frames, the
corresponding point pairs have to be found. They are the
points of two point clouds that represent the same spot of
the scene. The searching methods of the corresponding
point pairs are described in Sections 2.1 and 2.2. After
obtaining corresponding pairs, transformation can be
estimated, as presented in Section 2.3. The idea of the
transformation estimate is depicted on Figure 1.
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Algorithm 1: 3D scene reconstruction algorithm
outline
Input: Sequence of recorded frames F1, . . . ,Fn
Output: Resulting point cloud R representing 3D

model of the recorded scene

// Total transformation representing
camera position change between
the first frame and the current
frame in each iteration

Ttotal ← Identity;
// Initially, the resulting model

contains only data from the first
frame.

R← F1;
for i← 2 to n do

T ← transformation estimate that aligns the point
cloud of Fi with the point cloud of Fi−1;
// composition of two spatial

transformations
Ttotal ← T +Ttotal ;
Fi← Ttotal(Fi);
R← R∪Fi;

end
return R;

Figure 1: A simplified model reconstruction example in
2D space, using two frames.

2.1 ICP

The ICP (Iterative Closest Point) method [3] is based on
a simple idea of iterative distance minimization between
two frames. For each point from the first point cloud,
the nearest neighbour in the second cloud is found,
establishing a correspondence between them. These point
pairs will in most cases not represent the same physical
point of the scene. However, considering many iterations
and thousands of corresponding pairs, we are able to align
two point clouds by obtained transformation estimate. The
implementation of the ICP algorithm is included in the
final Algorithm 2 describing the whole process of the rigid
body registration.

2.2 Initial estimation

Since the ICP minimizes distance between two point
clouds, this approach is not sufficient in all cases.
Consider the camera moving along the wall (Figure 2),
which forms, regarding the spatial distribution of points
in the point cloud, a plane in the 3D space. Distance
minimization between two point clouds obtained from
such a frame sequence would neglect the translational
movement of the camera, which would lead to severe
inaccuracies in the resulting model (Figure 3). For this
reason, an initial transformation estimate is often made
before applying the ICP itself. We will use RGB images
to make the first step when aligning two point clouds.

An appropriate method allowing to establish
correspondences between points of two frames is the
SURF (Speeded Up Robust Features) [1]. This feature
extractor is able to detect specific, characteristic parts of
the RGB image – edges, corners, blobs or ridges. These
are usually described by a 64-dimensional descriptor
vector. Thanks to the method’s invariance to rotation,
scaling, viewpoint change, blurring and other image
transformations [8], it is possible to detect the same
features on two subsequent RGB images of the input
sequence. The obtained descriptors from two images
are paired by searching for the closest neighbours again,
this time in the 64-dimensional descriptor space using
Euclidean distance. After obtaining corresponding pairs
on two RGB images, they are associated to the points of
the point clouds. This can be used to effectively estimate
the transformation, giving the initial step before applying
the ICP. This not only helps to avoid situations when
two point clouds are incorrectly aligned (Figure 3), but
also can reduce the required number of ICP iterations,
speeding up the reconstruction process.

2.3 Absolute orientation problem

Having established associated point pairs, a
transformation approximating spatial transformation
between two point clouds can be found. Multiple methods
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Figure 2: Two frames of the sequence recorded by the
camera moving along the wall.

Figure 3: Incorrect alignment using only ICP (left) and
correct alignment with the initial estimation using SURF
method (right).

have been described and compared considering estimate
precision and computational efficiency [5][11]. In this
work, the Horn’s method [9] has been chosen due to
satisfying results comparable with other known methods,
good description in numerous other works in the field of
3D reconstruction and its simple implementation in our
resulting application. Chosen method exploits properties
of quaternions and minimizes mean square error of
transformation estimation. We will briefly explain key
steps of this method and present the resulting algorithm,
taking into account specifics of our approach to 3D
reconstruction.

Consider two sets of associated points in 3D space
A = {a1, . . . ,an} and B = {b1, . . . ,bn}, such that ai ∈ A

forms a corresponding pair with bi ∈B ∀i = 1, . . . ,n. We
search for the best transformation estimate T such that
B = T (A) = R(A)+~t. Error estimation for a point pair
can be expressed as ei = bi−R(ai)−~t ∀i = 1, . . . ,n. Our
goal is to minimize mean square error, which means we
search for a transformation T minimizing ∑

n
i=1 ‖ei‖2.

The key idea of Horn’s method is based on rotation
represented by quaternion. Quaternions are an “extension”
of complex numbers by another two imaginary parts. By
reffering two sets of associated points to their respective
centroids and by using useful quaternion properties,
Horn has shown that the transformation R is given by the
eigenvector corresponding to the maximal eigenvalue of
the matrix


Sxx +Syy +Szz Syz−Szy Szx−Sxz Sxy−Syx

Syz−Szy Sxx−Syy−Szz Sxy +Syx Szx +Sxz
Szx−Sxz Sxy +Syx −Sxx +Syy−Szz Syz−Szy
Sxy−Syx Szx +Sxz Syz +Szy −Sxx−Syy +Szz


Here, Sαβ = ∑

n
i=1 a′iα b′iβ

, where a′iα and b′iβ
represent x,y

or z-coordinates of the input points from A and B referred
to their centroids. After that, the translational component
of the transformation can be easily found by substituing
the found rotation R in the original equation B= R(A)+~t.

2.3.1 Transformation composition

Storing all the transformations found in the individual
steps of the algorithm and then successively transforming
all the points of the point cloud would be inefficient.
Since transformation estimate consists of rotation and
translation, it does not represent linear transformation
and thereby cannot be composed by the simple matrix
multiplication. Using homogenous coordinates, the
total transformation T composed from T1, . . . ,Tn can be
represented by 4×4 matrix

MT =


a b c ~tx
d e f ~ty
g h i ~tz
0 0 0 1


whose elements ~tx,~ty,~tz and a, . . . , i are to be found.
Consider points v0 = (0,0,0,0), vx = (1,0,0,0), vy =
(0,1,0,0), vz = (0,0,1,0), which are successively
transformed by each of Ti for i = 1, . . . ,n during individual
iteration of the algorithm and T (v0),T (vx),T (vy),T (vz)
are obtained in the end. We know that MT v0 =
T (v0), MT vx = T (vx), MT vy = T (vy), MT vz = T (vz) and

T (v0) = (~tx,~ty,~tz,1)
T (vx) = (a+~tx,d +~ty,g+~tz,1)
T (vy) = (b+~tx,e+~ty,h+~tz,1)
T (vz) = (c+~tx, f +~ty, i+~tz,1)

Elements of matrix MT can be thus easily found using
resulting coordinates of only four additional points, which
are successively transformed in each iteration of our
algorithm.

The resulting, complete iterative algorithm finding the
transformation estimate between two succesive frames
from the input sequence is described in Algorithm 2.

3 Implementation

All data have been provided by Microsoft Kinect camera,
which represents a simple and very cheap (currently with
a e100 price) source of data for the 3D reconstruction
and many other applications in the augmented reality and
especially gaming industry. Kinect provides the standard
RGB camera with 640× 480 resolution and the infared
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Algorithm 2: Estimation of the transformation
aligning two frames
Input: D1,D2,RGB1,RGB2 : Depth maps and

corresponding RGB images of two frames
ICPmax : maximum number of ICP steps
errlimit : acceptable mean squared error of
transformation estimate

Output: T : transformation aligning two frames

// SURF descriptors described in
Section 2.2

desc1← find desccriptors(RGB1);
desc2← find desccriptors(RGB2);
pts1, pts2← empty point lists ; // list of
associated point pairs
foreach d in desc2 do

closest← closest desc(d,desc1);
// reversed descriptor

correspondence check
if closest desc(closest,desc2) = d then

pts2← pts2 ∪ get3Dpoint (d,D2);
pts1← pts1 ∪ get3Dpoint (closest,D1);

end
end

// initial estimation using Horn’s
quaternion method

T ← find transform(pts2, pts1);
pts← T (get3Dpoints(H2));
v0,vx,vy,vz←
T (0,0,0), T (1,0,0), T (0,1,0), T (0,0,1);
kd←build kd(get3Dpoints(H1));

for i← 1 to ICPmax do
// find closest point pairs
pts1, pts2← empty point lists;
foreach p in pts do

neighbour← closest neig(p,kd);
pts2← pts2 ∪ p;
pts1← pts1 ∪ neighbour;

end
// Horn’s quaternion method
T ← find transform(pts2, pts1);
pts← T (pts);
v0,vx,vy,vz← T (v0), T (vx), T (vy), T (vz);
if estimate err(pts1,T (pts2))< errlimit then

break;
end

end

// find total transformation
T.translation← (v0[1],v0[2],v0[3]);
T.rotation←vx[1]− v0[1] vy[1]− v0[1] vz[1]− v0[1]

vx[2]− v0[2] vy[2]− v0[2] vz[2]− v0[2]
vx[3]− v0[3] vy[3]− v0[3] vz[3]− v0[3]

;

return T ;

sensors capable of producing 320× 240 depth map of
the scene. Since in movement both RGB pictures and
depth maps tend to contain more noise and inaccuracies,
the individual frames of the input sequence were rather
captured by a stable camera (like photographs).

A presented method for the 3D reconstruction have been
implemented in C# running on .NET4, using Kinect SDK
(Software Development Kit). Multiple applications with
the user-friendly interface have been created, providing
scene recording and storing for later processing, removing
superfluous frames, and the reconstruction itself with
the possibility of setting reconstruction parameters. To
achieve good performance and ensure needs of our
application, the most of the code have been written form
the very beginning, including the kd-tree (see below) and
Horn’s quaternion method. For SURF features detection
OpenSURF library have been used and for the matrix
manipulation and eigenvalue/eigenvector search we have
chosen Math.NET library.

3.1 Nearest neighbour search

With Microsoft Kinect, it is possible to obtain
320 × 240 = 76800 points for each frame, while
many other devices are able to produce more detailed
depth maps. It would be then very inefficient to search
for the nearest neighbours for ICP using only brute force
approach. It is then necessary to speed up the search
process, which can be achieved by a suitable space
partitioning data structure – a kd-tree [2][7].

Kd-tree (k-dimensional tree) is a binary tree, where
each node represents one point of the input point cloud.
This data structure splits space into two half-spaces by
a hyperplane perpendicular to one of the dimensions’
axis in each non-leaf node. Points located in those two
half-spaces form two subtrees of the node. The axis
regularly alternates for each level of the tree using the
same pattern until reaching the last level with leaf nodes.
It is proven in [12] that the nearest neighbour query works
in O(kn1−1/k), where k is the number of dimensions and
n the number of points stored in the tree. In our case of
k = 3, the complexity is then O(3n2/3). However, in most
of the queries with real data, the number of nodes to check
is significantly lower than the upper bound.

In order to speed up kd-tree traversal, the tree should
be balanced, having at most dlog(n)e levels where n is
the total number of points stored in the tree. This can
be achieved by selecting points in a way that subtrees of
the point’s node will have approximately the same size.
It is therefore required to find a median of the points
with respect to the dimension defined by the splitting
hyperplane. First, three lists of points are created, each
sorted by one of the points’ dimension, which can be
achieved in O(n ∗ log(n)) time. Then in each node, a

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



median can be easily found by simply picking the point in
the middle of the right list in O(1) time. New point lists
are then created for both subtrees, preserving the order
from current point list (three lists for both subtrees, each
in O( n

2 )) and subtrees are then recursively constructed.
Analyzing time complexity T (n) of the (sub)tree
construction in each of the node, having n points, we
obtain T (n) = O(1) + 6O( n

2 ) + 2T ( n
2 ) = O(n) + 2T ( n

2 ),
resulting in a total O(n ∗ log(n)) complexity of kd-tree
construction, which can be proven by master theorem [4].

Constructed kd-tree can be then used for an efficient
closest neighbour search of the point P:

1. First, an initial estimate is made by recursively
traversing the tree from its root in logarithmic
time, always choosing the subtree which ensloses
half-space where P is located until reaching a leaf
node.

2. Second tree traversal uses the estimate obtained in
previous phase. All subtrees that can possibly contain
some point with a distance to P lower than the first
estimate are checked, while the others are skipped.

In addition to standard approach, each node stores
boundaries of the space part where its subtree points can
be located. When building the tree, the node stores not
only point itself, but also the information about how the
space was partitioned in its parent nodes. This allows to
omit subtrees that would be checked using the standard
approach.

4 Results

Since Kinect sensors allow capturing depth map data
only in 0.8− 4m distance range, our method has been
tested mainly in the interior environment, allowing us to
reconstruct room interiors, furniture or small and medium
sized objects. The additional challenge to deal with is
given by the low resolution of depth maps and constant
amount of noise, which does not allow to describe the
scene with all of its details. However, our proposed
method itself can be applied widely for many different
data sources of varying character and quality.

Our test have shown the capability of the presented
method to create scene models preserving its geometry
and correctly mapping the “texture” (assigning color to
each point of the resulting point cloud). Without the initial
step, (see Section 2.2), the ICP required from 20 to 50
iterations (depending on the scene) to align two point
clouds. With the initital step, this number decreased to
6-20 and in addition, it provided better alignment for some
cases. The alignment of two frames has taken from one to
two seconds on the mediocre hardware (Intel Core2Duo
E7200 @ 3.5GHz with 4GB RAM). Time requirements

of the individual parts of the reconstruction algoritm were
tested on the kitchen input set consisting of 23 frames and
are shown in Figure 5.

5 Conclusions

We have presented and practically tested a method for
the 3D reconstruction leading to the colored point cloud
scene model. The input consists of the sequence of
corresponding RGB pictures and depth maps captured by
the user-controlled, freely moving camera. Since method
uses both RGB pictures and depth maps in the process of
reconstruction, it can be applicable in conditions when
many other methods using only geometry of the scene
would fail.

Using only cheap and common hardware, we have
provided the simple and accessible 3D reconstruction tool
even for non-professional users in the home environment.
Thanks to its ability to create models of room interiors
or medium-sized objects, it can become a good starting
point to the 3D modeling, providing basic geometry of a
scene or object that can be further manually corrected and
enhanced.

The created application can be further accelerated by
lower-level programming using C++ language or massive
parallelization provided by GPU computing. This could
lead to real-time 3D reconstruction with an on-fly model
creation during the recording itself. Another improvement
could be based on more advanced variations of the ICP
method or on a different initial transformation estimate.

Figure 4: Reconstructed 3D model of the balcony scene.
The irregularities of the wall color are caused by varying
light conditions when capturing the individual frames.
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Total time
[ms]

Time per
frame [ms]

SURF pairing 6906 310
Initial transformation

estimation 60 2

Kd-tree construction 7137 310
Nearest neighbour search

(all 8 ICP iterations) 23432 1065

Transformation estimation
(all 8 ICP iterations) 5462 248

Point cloud creation 1859 80

Figure 5: Time requirements of the individual parts of the
reconstruction algorithm tested on the kitchen input set.

Figure 6: Reconstructed 3D model of the complex kitchen
interior, based on 23 input frames. Resulting point
clouds contains more than one million points and the
reconstruction itself takes less than one minute to complete
on the common today’s hardware.
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