Design and Implementation of a Shader Infrastructure and
Abstraction Layer

Michael May*
Supervised by: Robert Tobler! Michael Schwiirzler

VRVis Research Center

Abstract

With current GPUs being more powerful than the CPU in
certain domains, shader programming has become more
important than ever. Although the tool-chain and language
features of shader languages have recently improved, they
are still not as sophisticated as those of common general-
purpose languages like C++, C# or Java. In order to ben-
efit from these existing features in shader programming,
a seamless integration into an application language would
be favorable.

In this paper, an integration of shader development into
C# is presented. An internal domain specific language was
created that uses the tool-chain of C# and makes shader
development part of the application language. Some of
the benefits are shader type checks at C# compile time,
use of the IDEs auto-completion feature for shaders and a
flexible backend that can support the creation of different
shader languages.

Keywords: domain-specific languages, shading lan-
guages, procedural shading, code generation, C#

1 Introduction

Shader development for programming the graphics
pipeline is a key element in the creation process of a mod-
ern 3d application. Although the flexibility of shader lan-
guages and the available feature sets have increased drasti-
cally over the last few years, the handling of a large num-
ber of shaders is still a challenge. An application might
have thousands of different effects for all the materials
used in its different scenes, but only accesses a few at a
time. This gives the challenges of both management and
optimizations.

The traditional approach is to use highly specialised
shaders, where each material is implemented by a shader
with just the effects that are needed. This approach is
optimized for runtime performance, but leads to a lot of
code duplication. A different approach is the use of a so-
called Uber-shader — a big single shader that implements

*may @vrvis.at
frft@vrvis.at
*schwaerzler@vrvis.at

all needed effects and creates permutations either at com-
pile (see Supershader [9]) or run-time. This omits code
duplication, but might have lower run-time performance
than the manually optimized code of the highly specialised
shaders.

Both solutions become hard to maintain and to extend
with a growing number of supported effects and permuta-
tions. This paper tries to tackle this challenges by present-
ing a design and implementation of a shader development
infrastructure in C#. With the help of well-established
software architecture patterns (see Section 3), code re-
usability, modularity and expandability is achieved. While
the semantic model describing the operations of a shader
in our framework is highly influenced by the shade tree
concept (see Section 4), an internal domain-specific lan-
guage (see Section 5) is used as an abstraction layer for the
shader development, making the use of IDE features like
auto-completion and type checks possible. A HLSL code
generator produces legacy shader code from the iDSL (see
Section 6). An example (see Section 7) demonstrates the
capabilities of the presented framework.

2 Background

This work is based on the concepts of shade trees and
domain-specific languages. Those roots and related work
are presented in this section.

2.1 Shade Trees

Robert L. Cook proposed a flexible shading model, he
called Shade Trees [2]. It describes a directed acyclic
rooted graph, where nodes represent operations like a dot
product and produce the final color in the root of the tree.
For different parts of the shading process shade trees can
be specified, e.g. for surfaces and light sources. A simple
language was created to define a shade tree. This made
shading more flexible, but it was still lacking higher con-
trol flow, like loops or conditional branching.

Pixel Stream Editor A more powerful language was in-
troduced by Perlin for his Pixel Stream Editor called a
Pixel Stream Editing Language [10]. It processes each

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

pixel of an image and has functionality similar to the pro-
gramming language C.

Shading Language Hanrahan and Lawson combined
the ideas of Cooks modular shading and Perlins higher
level shading language to create a language for Pixar’s®
RenderMan® and called it a Shading Language [5).

Shader Languages When hardware developers intro-
duced programmable graphics cards, they called their
languages Shader Languages. Three main hardware
shader languages exist: HLSL for Microsoft’s® DirectX,
GLSL for OpenGL® and Cg from NVidia® .

In this paper we are talking about Shader Trees, giving
credit to the roots in Cooks shade trees, but emphasizing
its connection to modern shader languages.

2.2 Domain-Specific Languages

A Domain-Specific Language (DSL) is a programming
language of limited expressiveness focused on a particular
domain [4]. Shader languages are such a languages with
graphics processing as their domain. Two types of DSL
can be distinguished:

External Domain-Specific Languages (eDSL) are inde-
pendent languages with their own tool-chain. They
can be specially tailored to their needs, but can only
rely on tools created for them. Examples of an eDSL
are shader languages like HLSL, SQL and XML.

Internal Domain-Specific Languages (iDSL) are em-
bedded into a general-purpose language. An iDSL
is valid code in its host language and can therefore
use the existing development tool-chain. This means
that the iDSL can use the debugger or type system
of its host, but also that it has to operate inside its
limitations. Functional languages like LISP have a
long history of using iDSLs, but also modern main
stream languages seem to rediscover their benefits,
like C# with LINQ.

2.3 Extending Shader Languages

Different projects extended shader languages with func-
tional or object-oriented designs by means of external or
internal DSLs.

Functional Programming It has been argued that
shaders map well on functional languages, with side-
effect-free shader stages working parallelly over a stream
of data, reminding of pure functions over lists. Renais-
sance is a functional approach for a shader language in
terms of an eDSL [1]. Vertigo [3] on the other side embeds
shader into the pure functional programming language
Haskell and facilitates partial evaluation and symbolic

optimization. An example for the good optimization is
the automatic avoidance of multiple normalizations of a
vector, facilitating expression rewriting.

Although functional programming has a lot of ad-
vantages and a long history of high level language
features, it is not considered as a popular main stream
application model. With shader languages feeling like
a procedural language, there might be a problem with
alienating shader programmers.

Object-Oriented Programming Kuck and Wesche in-
troduced object-oriented design into existing shader lan-
guages [6, 7] relying on the shader compiler to optimize
the added complexities. The introduction of shader in-
terfaces introduced object-oriented programming for dy-
namic linking natively.

McCool, Qin and Popa developed a system that inte-
grates shader into C++ and called it Sk [8]. The shader is
programmed as a sequence of function calls, where the
variables are smart reference-counting pointers that create
a parse tree. Preprocessor macros are used to make the
syntax cleaner.

Although shaders in Sh benefit from the C++ inte-
gration, C# offers additional features in the language and
tool-chain (e.g. Reflection and IntelliSense) that might
benefit shader development.

3 Concept

The design concept of the proposed framework is based
on the Model-View-Controller pattern (MVC), that uses a
shader tree as an internal presentation (see Section 4).

The MVC is a software architecture pattern that sepa-
rates user input (the controller), data storage (the model)
and representation of data (the view) as shown in Fig-
ure 1. By supplying an individual structure for shader def-
inition (iDSL/controller) and one for processing (semantic
model), they can each be optimized for their specific task.

C_ 8
Controller Semantic View
(iDSL) Model B (eg. HLSL)

generate

Higher level language

Figure 1: Concept based on the MVC pattern. A shader is
defined in the iDSL, which generates a semantic model for
further processing, that is mostly shader code in the end.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

The conceptual layout in regard of MVC is:

Controller The iDSL is C# code, that gives the feeling of
coding in a shader language. The defined shader code
is put in special classes for structuring and defining
shader stages. Connecting the shader to the applica-
tion is straight forward by assigning the right vari-
ables (see Section 5).

Model While the domain-specific language has defining
shaders and convenience for the programmer in mind,
the semantic model is meant for processing. It is a
shader tree, that represents the functionality of the
shader that was defined in the controller (see Sec-
tion 4).

View The semantic model is translated into a concrete
shading language, that is than compiled by a shader
compiler and sent to the graphics processor (see Sec-
tion 7).

4 Semantic Model

The semantic model is a shader tree implementation and
is the model in the MVC design. Its main functionality is
to represent the defined shader for further processing (see
Section 6).

Shader Tree A shader tree is a rooted directed tree with
the nodes being shader operations (see Figure 2a) and the
edges being the mappings between inputs and outputs (see
Figure 2b).

final Color
+
* Calc Light Inputs
Calc Light Normal ~ Camera-Direction Light-Direction

‘\/'

Camera-Direction

7N
world Camera

position position normal

Subtraction Outputs

(a) Shader tree (b) Mapping

Figure 2: A Shader tree consists of operations or shader
fragments as nodes (see (a)) and the edges are input/output
mappings between those fragments (see (b)).

There are four types of shader nodes (also called shader
fragments, see Figure 3). Atom and group fragments are
the basic building stones for a shader, while expression
and function fragments are used to introduce legacy shader
code for prototyping.

e Atom This node is used for all basic operations that
a shader supports. This can be dot product, matrix
multiplication or even swizzle operators. In Figure 2a
the + and - are atom fragments.

e Group This node can group together other fragments,
even other group nodes, to structure code and facili-
tate code reuse. In Figure 2a the Calc Light frag-
ment might be a group node.

e Expression This is a node to embed legacy shader
code for prototyping (see Section 5.3). It consists of
a short piece of code with only one return value.

e Function This is a node to embed legacy shader code
for prototyping (see Section 5.3). It can be several
lines of code long and can have multiple outputs.
In Figure 2a the Calc Light fragment could be a
function node.

5 Internal DSL

The iDSL is the interface to the programmer to define a
shader and represents the controller in the MVC design,
so usability is the prime directive. Based on this definition
the semantic model is created.

To define the later semantic model in the iDSL, the
iDSL has to have the same information stored as the
model, so it is by itself a shader tree. There are differ-
ent nodes for different purposes (see Figure 3 and Sec-
tion 5.1, Section 5.3 and ShGroup in Section 5.2), but
they are all based on ShFragment. The edges or con-
nection information between the nodes are handled by
ShAttribute. The class ShEffect binds together
code for different shader stages to one complete shader
(see Section 5.2).

ShAttribute All inputs and outputs of fragments are
ShAttributes. They are used to connect those frag-
ments with each other and later create mappings of the
semantic model (see Figure 2b). As outputs they hold a
reference to their parent fragment and are then used as in-
puts to connect nodes.

Additionally they are used to set default values or new
values during the runtime of the shader from the main ap-
plication. Therefore special variations for different types
exist of the ShAttribute.

interface IShAttribute;
abstract class ShAttribute:IShAttribute;

abstract class ShAttribute<T>:ShAttribute;

class
class
class
class

ShTexture2D:ShAttribute<Texture>;
ShTexture3D:ShAttribute<Texture>;
ShTextureCube: ShAttribute<Texture>;
ShArray<T> ShAttribute
where T IShAttribute,
ShSampler ShAttribute;
ShBool ShAttribute<bool>;
ShInt ShAttribute<int>;
ShFloat3 : ShAttribute<V3f>;

new () ;
class
class
class
class

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Basics

Group

final
Color

Atom

Expression

Prototyping
Function

void calcLigh(
8-\ float3 normal, float3 cameraDir,
2 = float3 lightDir,
} Dot CIamp(out float dif, out float spec)
Calc Light
cos(_0.x), {
pI'Od uct dif = abs(dot(normal, lightDir);
() 0, 1) float3 r = -reflect(lightDir, normal);
/ ""\ spec = abs(dot(r, cameraDir);
world camera

s .- normal
position position

Inputs ={..} Outputs ={..}

Figure 3: The most basic fragments are the Atom for all basic operations and the Group for modularization. To introduce
legacy shader code for prototyping there is also an Expression and a Function node.

class ShFloat4x4 ShAttribute<M44£f>;

5.1 Programming

Writing a shader program in the iDSL looks like program-
ming in any other programming language. Variables are
of the type ShAttribute and connecting two nodes is
done by calling the target like a function with the outputs
of the sources as inputs. Every such call generates a frag-
ment instance as node of the shader tree.

ShAtom The following code shows some examples of
shader code in the iDSL. These are all functions imple-
mented in one of the subclasses of ShAttribute which
create ShAt om nodes.

var bumpTexTS =
texture.Sample (sampler, inPos0S.XY/50);

var normWS =
new ShFloat3 (bumpTexTS.XY, inNormOS.Z)
.Mul ((ShFloat3x3) inMTrafoTI)
.Normalize () ;

var reflVec=vecVer2Cam.Reflect (normWs) ;

var transparency =
1.5f — normWS.Dot (vecVer2Cam) .Abs () ;

5.2 Structuring

A ShEffect represents a complete shader with all
needed shader stages. Each shader stage is a ShGroup,

which holds further iDSL shader code.

ShGroup To reduce code duplication the ShGroup can
encapsulate several lines of iDSL code to be called like
one fragment. An instance of the ShGroup is created in-
side iDSL code by invoking its Call method with the in-
puts as parameters. Outputs are defined as class fields.
The encapsulated iDSL shader code is defined inside the
Call method. The code sets output values by assigning
to the appropriate output fields of the created ShGroup
instance. The registration of input values at the end is also
important to be able to build the semantic model.

class TestShaderStage
{

ShGroup

public ShFloat4 ReturnValue;

public static TestShaderStage Call (
ShFloat4 inPosWS,

ShFloat3 inNormWs,
)

var group = new TestShaderStage();

group.ReturnValue =
inPosWS % inNormWS;

return group.InitInputs (
inPosWS, inNormWS) ;

ShEffect ShEffect binds all the code together for a
complete shader. The base class has defaults defined for

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Globals and inputs/outputs from different shader stages,
but each new effect can define their own values. The Link
method creates instances of the shader stages, which are
ShGroups and declares connections between the stages
and to/from the pipeline.

class SimpleNormalShader
public Globals Global;
public VertexInputs VertexInput;
public VertexOutputs VertexOutput;
public PixelOutputs PixelOutput;

ShEffect {

public override void Link ()
{
var vShader = vertexShader.Call (
VertexInput.Positions,
VertexInput.Normals,
Global.ModelViewProjTrafo);
var fShader = pixelShader.Call (
vShader.outNormOS) ;

VertexOutput.Position =
vShader.ReturnValue;
PixelOutput.ImageOutput =
fShader.ReturnValue;

Init (vShader, fShader);
}
public class vertexShader ShGroup;
public class pixelShader ShGroup;

5.3 Prototyping

These nodes are meant for prototyping and not for fi-
nal production code, because they introduce legacy shader
code into the system and therefore limit its usability to one
shader language. They still can be useful to test existing
shader code, that is finally rewritten with ShAt om nodes
for the final production code.

ShExpression An expression is used to ’inline’ a short
piece of shader code. It is not defined in which shader lan-
guage this code is written. The return type must be speci-
fied, but the input types are determined by the given inputs.
The legacy shader code is defined in a string, where the
output is the return value of the expression and the inputs
are represented by using an underscore and the position of
the input as identifier.

var randomTex =
ShExpression<ShFloat>.Call (
"clamp(cos(_0.x « 2 + _1.x),0,1)"
, noise.ReturnValue, inPosO0S);

ShFunction To test shader code that has multiple out-
puts or more than one line, a ShFunction is used. Out-
puts are defined as fields and inputs as parameters of the
Call method. In this method, a new node instance has to
be created, and the legacy code and inputs have to be reg-
istered. Also, the type of shader language is specified to
make early compatibility checks. To use the defined func-
tion, only the Call method has to be called in the shader
definition.

class NoiseFromStatic3D ShFunction {
public ShFloat ReturnValue;

public static NoiseFromStatic3D Call (
ShTexture3D tex, ShSampler sampler,

ShFloat3 texCoord, ShInt numOfSamples)

return Createlnstance
<NoiseFromStatic3D>
(Tokens.HLSL, HLSLFuncCode, tex,
sampler, texCoord, numOfSamples);

private static readonly string
HLSLFuncCode =
@n{
float perl = 0;
for (int i=0; i< (numOfSamples-1); i++)

return perl;
P
}

6 Processing

The Visitor pattern is used for processing the semantic
model (see Figure 4). This is a software design pattern that
separates an algorithm from the object it operates on. It
keeps the model simple and extending can easily achieved
by adding new visitors. Such processing tasks can be e.g.
optimizations, error checking and code generation.

HLSL Code Generation Each ShFragment and
ShEffect can generate its corresponding semantic
model. The ShAttributes are analysed for the con-
nection information and namings are gathered with reflec-
tion and passed through to the model. The iDSL is parsed
depth-first in pre-order.

The visitor creates HLSL code based on the semantic
model (See example in Figure 5). Effect model cre-
ates an HLSL effect, At om models are converted based on
a translation table and Expression models get inlined.
Group and Funct ion models become HLSL functions,
but their use gets logged, so that only one HLSL function
per model and per instance is created.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Optimizations,
Error checks,

iDSL

Developer
create

Semantic Model

process

Visitor

Shader

Code Generator

HLSL/GLSL/CG Code

read !

Compiler

Figure 4: Processing on the semantic model is based on the Visitor Pattern, to keep the model simple, but also extendible.

In the iDSL a programmer can name fragment instances
and this will be used to name its output variables in the
HLSL code. All other variables become a default name
with a sequential number as identifier. The Example Fig-
ure 5 shows named and unnamed instances.

7 Results

To demonstrate the capabilities of the proposed frame-
work, four examples have been implemented and compile
times have been taken to test the performance.

7.1 Example

To test the implementation four shaders have been im-
plemented (see Test-Fountain.cs as well as the generated
fx HLSL files in the accompanying additional material)
to demonstrate procedural textures, animated vertex dis-
placement, animated particle system with instancing and
multi texturing. The test scene is a water fountain on a
grass hill (see Figure 6).

Sprinkle Shader This shader generates drops of water
coming out of the top of the fountain by using a particle
system with instancing. The simulation of the water drops
is done on the CPU and produces one transformation per
drop. One model of a water drop is sent to the GPU, where
it is duplicated(instanced) and transformed by the numbers
of transformation from the simulation.

Water shader The water shader implements several fea-
tures in the vertex and pixel shader. All of this code is
independent of any concrete shader language and demon-
strates the power of the iDSL and ShAt om. A normal map
with wave patterns is read from a texture which is shifted
on the CPU to create a simple animation. Vertex displace-
ment is done in the vertex shader by adjusting the position
by the normal map. In the pixel shader reflections of an

Figure 6: Implemented example to demonstrate procedu-
ral textures, animated vertex displacement, animated par-
ticle system with instancing and multi texturing.

environment map and transparency is computed based on
the normal adjusted by the normal map.

Marble and grass shader The last two shader examples
have their main functionality in a ShFunction and a
ShExpression. They demonstrate how existing shader
code can easily be integrated. The marble shader gener-
ates a procedural texture with perlin noise based on a ran-
dom texture. In the grass shader a texture is sampled with
low pass filters in the ShFunction LowPassFilter
and then used as a black and white layer added to the orig-
inal texture in a different resolution, i.e. the filtered b/w
texture covers more space than the original texture. This
multi texturing hides artefacts created by patterns.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

var vecVer2Cam =

tloat3 atom = inCol.xyz;
float3 atom@ = inPosWS.xyz;
float3 atoml = inCamPos - atom®;

(inCamPos - inPosWS.XYZ).Normalize() float3 vecVer2Cam = normalize(atoml);

.SetInstanceName("vecVer2Cam");

group.ReturnValue =
new ShFloatd(inCol.XYZ,
vecVer2Cam.Dot(norm) - @.3F);

(a) iDSL

float atom2 = dot({vecVer2Cam, normWS);
float atom3 = atom2 - @.3;
floatd atomd = floatd(atom, atom3);
return atom4;

(b) HLSL

Figure 5: An iDSL converted to HLSL shader code. HLSL code pieces are generated from the iDSL with the same colour.

Overview Following table shows an overview of the
used shadertree fragments in the examples. Typically
two groups are used at least for the vertex- and fragment
shader, but they might as well be any other type of
fragment.

Shader Group Atom Func Expr
Sprinkle 2 15 0 0
Water 3 83 2 0
Marble 2 13 2 2
Grass 2 21 2 1

7.2 Code Analysis

To evaluate the presented framework the effects from the
examples where also implemented directly in HLSL to
compare with the generated versions from the iDSL.

Complexity The following table compares the shader
examples written in the iDSL with manual optimized
HLSL code. The first comparison takes a look at the
lines of code that define the algorithm and the second one
compares the necessary overhead like class and function
definitions. Comments and empty lines were removed and
the same formatting style was used for iDSL and HSL
code.

lines code lines overhead
Shader iDSL Man fac | iDSL Man fac
Marble 28 29 0,97 67 46 1,46
Grass 42 43 0,98 69 46 1,50
Water 29 39 0,74 68 47 145
Sprinkle 9 9 1,00 43 38 1,13

The comparison shows that algorithms can be de-
fined as compact in the iDSL as in legacy shader code and
involves less than one and a half as much overhead.

The smaller the fragment the more overhead it has with
the smallest function fragment having four times the over-
head in the iDSL compared to the HLSL code. These
smaller fragments are meant for heavy reuse, therefore the

overhead has lesser significance as seen in the comparison
table, where the mentioned function fragment is used in
all, but the sprinkle shader.

Compile Time Measurements were performed on an
Intel Core i7 3,4 GHz with 16 GB main memory. Times
were taken for the translation of the iDSL to the semantic
model (SM), from the model to HLSL shader code and
finaly the HLSL shader compiler (GPU).

Shader SM HLSL GPU factor
Sprinkle 2ms Ims 11ms 1.22
Water 11ms Sms 40ms 1.40
Marble 8ms 1ms 28ms 1,33
Grass 7ms Ims 85ms 1,09

Although we provide a much more convenient pro-
gramming model, the overall compile time impact is
moderate: The additional overhead introduced by our
framework to generate HLSL code is relatively low (a
fraction of a second) even for complex shaders, making
the approach feasible for interactive editing of material
parameters. Note that recompiling shaders each frame
is not applicable anyway, since the compilation time for
HLSL effects (from HLSL to GPU byte code) lies around
10-90ms for small programs as well).

Run Time The rendering time needed for a generated
shader was compared to a manual optimized one with
no noticeable difference. The presented examples where
used, but neither them nor the used scene was meant for
performance testing. Therefore testing of bigger scenes
with more shader effects would be necessary for a repre-
sentative performance study.

Debugging The proposed framework introduces addi-
tional possibilities for debugging shaders:

Host language The development environment of C# Vi-
sual Studio supports finding errors in the iDSL al-
ready while writing code, e.g. by highlighting type

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

errors or typos. Basic error checking of the shader
tree structure is done during conversion to the seman-
tic model, but can be extended with any type of run
time checking with new visitors. This can even be
used to run the shader code on the CPU in a software
renderer to use CPU tools for debugging.

Shader language The generated code is legacy shader
code and therefore it can be debugged as any other
HLSL code. The readability of the generated code
is key to understand the location of the problem and
is the responsibility of the visitor. Another key fea-
ture to trace an error from the shader code back to the
iDSL is the ability to name a fragment call, which is
used in the generated HLSL code to name the output
variables of that fragment accordingly. This supports
matching parts of shader code to the iDSL it is based
on.

8 Conclusions

In the presented work, a framework for integrating shader
development into the host language C# has been proposed,
facilitating the generation, management and re-usability of
shader code. This is achieved by embedding the concept
of shader trees into an internal domain specific language,
allowing well-know and often-used IDE features like auto-
completion and type safety to be used in the otherwise tire-
some generation of HLSL code.

Although this approach introduces a small overhead in
terms of the overall compile time, the advantages gained
from this convenient programming model may prevail in
many situations where rapid and reliable shader develop-
ment is of importance.

Future improvements in the proposed system could be
the support of other shader languages (GLSL, CG, We-
bGL), basic control structures (branching and looping) and
further shader pipeline features (stages like geometry or
tesselation shaders, or multipass rendering).

References

[1] C.A. Austin. Renaissance: A Functional Shading
Language. lowa State University, 2005.

[2] Robert L Cook. Shade Trees. In ACM Siggraph Com-
puter Graphics, pages 223-231. ACM, 1984.

[3] Conal Elliott. Programming Graphics Processors
Functionally. In Proceedings of the 2004 Haskell
Workshop. ACM Press, 2004.

[4] M. Fowler. Domain-Specific Languages. Addison-
Wesley Signature Series. Pearson Education, 2010.

[5] Pat Hanrahan and J Lawson. A Language for Shad-
ing and Lighting Calculations. ACM SIGGRAPH
Computer Graphics, 24(4):289-298, 1990.

[6] Roland Kuck. Object-Oriented Shader Design. Eu-
rographics Short Papers, pages 65-68, 2007.

[7] Roland Kuck and Gerold Wesche. A Framework
for Object-Oriented Shader Design. Assembly, pages
1019-1030, 2009.

[8] Michael D. McCool, Zheng Qin, and Tiberiu S.
Popa. Shader Metaprogramming. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 57-68. Eurographics
Association, 2002.

[9] Morgan McGuire. The SuperShader. In Wolfgang
Engel, editor, ShaderX4, chapter 8.1, pages 485-498.
Charles River Media, Inc., 2005.

[10] Ken Perlin. An Image Synthesizer. ACM SIGGRAPH
Computer Graphics, 19(3), 1985.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

