Learning OpenGL and shader programming

Irvin Stevic*

Supervised by: Dr. Jasminka Hasic Telalovic'

Faculty of Engineering and Natural Sciences
International University of Sarajevo
Sarajevo / Bosnia and Herzegovina

Abstract

OpenGL is an API(Application Programming Interface)
used for rendering 2D and 3D computer graphics. It can
interact with the GPU and allows shader programming
with the OpenGL Shading Language (GLSL). This pa-
per serves as a summary of a student’s experiences while
studying an introductory computer graphics course. The
paper will cover the contents of the course, starting with
the basics of computer graphics and eventually moving to
shader programming, describe the challenges and issues
that appeared and how they were overcome. Examples,
codes and outputs related to the lessons will also be in-
cluded.

Keywords: OpenGL, shaders, programming, glsl

1 Introduction

The introduction of computer graphics courses to com-
puter science degree programs was greatly helped by the
development and spread of available graphics hardware.
‘When mainstream machines were able to process graphics,
it allowed computer graphics to become more widely ac-
cepted. Availability of graphics APIs, like OpenGL, meant
that almost everyone could use it and program graphics in
a higher level language. These advances and developments
led to the introduction of computer graphics courses into
the degree program for computer science majors.

Today most of universities offer an introductory course
to computer graphics that all the computer science ma-
jors can take, as well as some advanced courses for those
whishing to specialize further in the graphics field. This
paper is about the undergraduaduate Computer Graphics
course taught at IUS in Spring 2011/2012. Two main ap-
proaches to teaching this type of courses are top-down and
the more traditional bottom up. The top-down approach
which was used for this course starts teaching an overview
of the system and then moves to each subsystem for de-
tailed analysis.

Purpose of this paper is to describe the experiences of
computer science students taking an introductory course in

*irva.stevic@gmail.com
Tjhasic @ius.edu.ba

computer graphics. The paper could be used by professors
so they can see how the teaching methods used reflected
by the students, which were the biggest challenges and the
best ways for students to master OpenGL and shader pro-
gramming. It could also benefit other students taking a
similar course, so they can see an approach that might be
different than theirs.

2 Related work

First introduction of Computer Graphics (CG) topics
within Computer Science (CS) undergraduate programs
came in late 1980s [7].

The basis for creating contemporary Computer Sci-
ence curricula is defined in [8]. Within the undergrad-
uate curriculum, 14 knowledge focus groups are identi-
fied. The one that encompasses Computer Graphics ed-
ucation is named Graphics and Visual Computing (GV).
CG was clearly outlined in this report as the new field
whose topics need to be expanded within the undergradu-
ate curriculum (through topics such as Graphics and Mul-
timedia, and Human-computer interaction). Furthermore,
the following topics are identified as relevant with GV:
fundamental techniques in graphics (core), graphic sys-
tems (core), graphic communication (elective), geometric
modeling (elective), basic rendering (elective), advanced
rendering (elective), advanced techniques (elective), com-
puter animation (elective), visualization (elective), virtual
reality (elective), computer vision (elective), Computa-
tional Geometry (elective) and Game Engine Program-
ming (elective) [8]. From the four major directions of
Computer Science undergraduate program, CG undergrad-
uate course was identified as required for the two of them
(1. A system-based approach and 2. A web-based ap-
proach). In addition, the following advanced CG courses
are identified: Advanced CG, Computer Animation, Visu-
alization, Virtual Reality, Genetic Algorithms. It was sug-
gested that CG courses are taken in the second year (out of
three that require CS classes). Also, the need to introduce
GPU and its ability to accelerate performance in computer
graphics was outlined as a topic in required Computer Ar-
chitecture course.

In 2008 an update for CS program was given in [9].

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



One of the reasons that initiated this update was the intro-
duction on three major new focuses in undergraduate CS
education, one of them being on games and entertainment
software. This gave CG greater relevance within the CS
program.

At International University of Sarajevo there are three
elective courses from GV knowledge focus group: CS405
Computer Graphics, CS414 Computer Vision, CS445 Hu-
man Computer Interaction [6]. Each of these courses is
worth six European Credit Transfer System (ECTS) cred-
its out of 240 ECTS needed to graduate with the under-
graduate degree in computer science. The CS405 CG
course has the following prerequisites: Discrete Mathe-
matics, Linear Algebra, Algorithms and Data Structures,
Advanced Programming and Introduction to Programming
[6]. Out of the CG undergraduate course topics proposed
in [8], the course aimed at covering the following ones:

e Graphic systems: Raster and vector graphics sys-
tems; video display devices; physical and logical in-
put devices; issues facing the developer of graphical
systems

e Fundamental techniques in graphics: Hierarchy of
graphics software; using a graphics API; simple color
models; homogeneous coordinates; affine transfor-
mations; viewing transformation; clipping

e Graphical algorithms: Line generation algorithms;
structure and use of fonts; parametric polynomial
curves and surfaces; polygonal representation of 3D
objects; parametric polynomial curves and surfaces;
introduction to ray tracing; image synthesis, sam-
pling techniques, and anti-aliasing; image enhance-
ment

The rest of the CG topics proposed in [8] are covered in
other CS courses within the program.

Introducing shaders programming in CG education is
described in [5, 2, 4] and more recently in [1] at introduc-
tory level and in [3] on intermediate level.

3 Contents of the course

The course was given in the Spring 2011/2012 semester at
the International University of Sarajevo, and the textbook
used for the course was [1]. The grading was done based
on assignments, two exams and student participation in the
classes.

Programming assignments were made of two parts, one
part which was done in labs with the help of the instructor,
and the second part was done as homework individually by
the students. The assignments were related to the lectures
and the chapters covered that week. Some of the assign-
ments were programming a random maze generator and
making a 3D object that responded to various user inputs.
For the final assignment, we used a camera and did a brief

project related to HDR (High Dynamic Range) photogra-
phy.

The course was started with some basic definitions and
introduction to computer graphics. Applications, history,
the basics of how imaging systems and display devices
work were covered, as well as hardware architecture of
graphic processors and the graphics pipeline. All of these
basics helped us comprehend and understand what was
following in the course.

Figure 1: The Sierpinski Gasked generated with 5000 ran-
dom points

After the introduction, we moved to OpenGL program-
ming. We used Microsoft Visual C++ IDE, with the GLUT
(OpenGL Utility Toolkit) which enabled easy writing of
OpenGL programs. Both the Visual Studio(Express ver-
sion) and GLUT were freely available for download on the
internet, so there was no need for us to spend any money
on software. Since the course was based on a top-down
approach, we started with a premade code that drew a Sier-
pinski gasket, which can be seen in Figure 1. At first the
code was overwhelming but after going through it a few
times with the help of the instructor, it all started to make
sense. Using this code we learned about the coordinate
system used in OpenGL, polygons, triangulation, approx-
imating curved objects and simple coloring functions.

After the Sierpinski gasket, we moved on to simple 3D
primitives and objects and used a sample code for a col-
ored cube. Using this code we learned about the 3D coor-
dinate system, modeling the faces of the cube and coloring
the faces differently. After we finished with a simple pro-
gram that just diplayed the cube, we added some function-
ality to the program, so the user could interact with it and
also perform transformations on it. The program allowed
the cube to be moved, rotated and scaled. Using this new
program we learned the basics of transformations.

Although the translation, rotation and scaling can be
done using C++ coding and OpenGL functions, shader
programming and GLSL were introduced at this point. We

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



learned how to pass information to the shader and GPU, as
well as how to process them using GLSL. In the end, the fi-
nal results, computed using the GPU, were displayed. For
exercise and as an assignment, we wrote programs that
implemented rotating, scaling and translating using both
OpenGL functions as well as GLSL. Although the end re-
sult looked the same, we were able to see the difference
between programming the shaders and just passing already
computed data to the shaders.

From this point, the course focused on viewing and
ways of displaying the scene. Differences between differ-
ent types of viewing were covered, as well as their repre-
sentation in OpenGL. Camera position as well as different
projections were explained and covered. Near the end of
the course, we learned about the lighting techniques, light
sources, reflection models and shading.

Finally, we covered the field of HDR photography. Al-
though brief, this section introduced the basics of HDR
photography and some of its applications. We also used a
camera and created some of our own HDR photos by using
Adobe Photoshop in the computer labs.

4 Assignments

Perhaps the most important part of the course were the as-
signments. Most of the assignments involved and were
focused on programming and the final one was oriented
toward photography. The assignments gave us the oppor-
tunity to apply what we learned and see how it all comes
together. Programming was done in C++ with GLUT, and
in total, there were five major assignments.

Figure 2: Random maze drawn using simple outputs

4.1 Random maze generator

The first assignment that we were given was programming
a random maze generator using C++. The program was to
randomly generate a maze of user selected size that would
then be drawn using simple line characters such as under-
score and vertical line. Although the program was writ-
ten using only C++ functions, it would later be used for
a more complex 3D assignment. This program served as
a good starting point and a good way to get familiar with
C++ and Microsoft Visual Studio, especially for students
that didn’t have a chance to work with it before. The result
can be seen in Figure 2. Also, this assignment was a good

test of student knowledge from prerequisite classes (Data
Structures and Algorithms and Advanced Programming).

4.2 Turtle graphics

The second assignment involved making an API of graph-
ics functions, which would use an object to draw various
shapes using API functions. The program required imple-
mentation of functions that imitated the movements of a
turtle with a pen attached. The turtle would turn in place
and then move forward, the process would be repeated un-
til the desired shape was finished. The functions imple-
mented were turning left and right by a certain degree and
moving forward a certain length. The program also al-
lowed the pen to be lifted up in order to move the turtle
to a new position without a line trail. This assignment al-
lowed us to get familiar with the coordinate system and
basic of drawing primitives.

Figure 3: Modeled 3D cube using shader programming for
rotation, translation and scaling

4.3 Cube transformations

After the turtle graphics assignment, we were given the
task of modeling a 3D cube that responded to user input,
so that it could be rotated, zoomed in or out and moved.
This task was to be accomplished in two ways, the first one
using OpenGL functions for rotation, scaling and translat-
ing, and also by implementing those functions in GLSL
and programming the shaders directly. The user could in-
teract with the cube using combinations of mouse move-
ments and button clicks. Directions and length of mouse
movement determined the direction and degree of trans-
formation while mouse buttons determined what type of
transformation was being performed(e.g. left-click for ro-
tation). The final output of this assignment is shown in
Figure 3. This assignment was the first encounter with
shader programming, and although the language was rela-
tively easy to get used to, the biggest challenge was send-
ing of data to the GPU for processing. The functions used

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



to accomplish this looked messy and complex, and it took
some time to get comfortable with using them.

Figure 4: Interactive 3D maze with different colored walls
for easier differentiation

4.4 Interactive 3D maze

The next programming assignment was to use the random
maze generator from the first assignment to generate a 3D
maze using OpenGL. First part of the assignment was to
display the 2D maze using primitives and then modify it to
3D and upgrade it to so it could be navigated and explored.
This task helped us understand the basics of viewing and
camera positioning, since the maze needed to be interac-
tive. The result of this assignment is shown in Figure 4.
This assignment was probably the hardest of all since the
viewing functions were challenging and hard to use in the
code.

4.5 HDR photography

The final assignment was related to HDR photography. We
needed to write a short essay on the topic and include pho-
tos that we took, as well as the produced HDR photo that
we made using Adobe Photoshop. This assignment was
a nice change of routine of programming and allowed us
to explore this interesting field more on our own, as there
was not much time for it during the classes. The process
of finding good scenes and taking the pictures proved to
be the most interesting since we spent some time with the
instructor outdoors in a more relaxed atmosphere. Our end
results looked great and this proved to be a great experi-
ence. One of the results is shown in Figure 5.

5 Course Evaluation

The course was a good addition to the Computer Sci-
ence degree and gave us the opportunity to learn about the

Figure 5: A HDR photo created from multiple LDR photos

graphics and the basics of how the stunning graphics we
see in video games are created. Although most of the stu-
dents were not interested in exploring this topic in depth
and specializing in computer graphics, it still proved to be
beneficial for all.

The best part of the course was its diversity, and cov-
ering different aspect of CG including software as well as
hardware principles and HDR photography. This way, the
course remained interesting and kept our attention. A lot
of exercises and practical examples helped us understand
the theoretical concepts we studied and make sense of it
all. The tutorials gave us the opportunity to work on the
exercises with the instructor, discuss different ideas and
compare them with our peers.

Unfortunately, when the course was offered, it did not
get much attention from students since the majority con-
sidered it to be too difficult. As a result we ended up with
a small group of students, but all of us that took the final
exam, passed the course. The pre-requisites for this course
were Linear Algebra and Algorithms and Data Structures
courses [6]. Linear Algebra course prepared us for the ma-
trix operations used in transformations as well as usage of
homogenous coordinates, and after a short review all of us
were comfortable with matrix operations. Unfortunately,
not many of the previous courses used C++ for program-
ming(but Java) and some of the students were not familiar
with it. However with some help from the instructor, soon
all of us were able to start programming in it. The pre-
vious courses involving math and programming courses,
were of great help in learning computer graphics and all
of its aspects.

The computer graphics course itself was very interesting
and well adjusted for everyone able to take it. It was very
well organized and was not extremely difficult, but still
managed to cover all the main areas and give us a good
basis of computer graphics knowledge to build upon. Top-
down approach was well suited for our needs and allowed
us to start writing some programs and experimenting as
soon as possible, which was much better, since most of
the students were more programming oriented.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



6 Conclusions

This paper summarized an introductory computer graph-
ics course, and told the story of learning computer graph-
ics basics from a student’s perspective. The course used
already written codes and entire programs to teach us how
to use OpenGL and how to apply the theory we studied.
Although different approaches probably work better or
worse depending on the students, the approach used in this
course helped us easily master computer graphics basics
and prepared us for advanced computer graphics courses.

References

[1] Angel E. and Shreiner D. Teaching a Shader-Based
Introduction to Computer Graphics. Computer Graph-
ics and Applications, IEEE, 2011.

[2] Owen G.S. and Zhu Y. Teaching programmable
shaders: lightweight versus heavy-weight approach.
SIGGRAPH 2005 Educators program, 2006.

[3] Fink H., Weber T., and Wimmer M. Teaching a Mod-
ern Graphics Pipeline Using a Shader-based Software
Renderer. Eurographics 2012 Education program,
2012.

[4] Talton J.O. and Pitzpatrick D. Teaching graphics with
the OpenGL shading language. ACM SIGCSE Tech-
nical Symposium on Computer Science Education,
2007.

[5] Bailey M. and Cunningham S. A hands-on environ-
ment for teaching GPU programming. ACM SIGCSE
Technical Symposium on Computer Science Educa-
tion, 2007.

[6] Haris Memic, Rasit Koker, Emir Karamehmedovic,
Kanita Hadziabdic, Akif Yaman, and Alma Husagic-
Selman. COMPUTER SCIENCE AND ENGINEER-
ING PROGRAMS. International University of Sara-
jevo, 2012.

[7] Ohlson M.R. The Role and Position of Graphics
in Computer Science Education. SIGCSE Technical
Symposium on Computer Science Education, 1986.

[8] The Joint Task Force on Computing Curricula. IEEE
Computer Society and Association for Comput-
ing Machinery. Computing Curricula 2001 Computer
Science. IEEE CS and ACM, 2001.

[9] The Joint Task Force on Computing Curricula.
IEEE Computer Society and Association for Com-
puting Machinery. Computer Science Curriculum
2008:An Interim Revision of CS 2001. 1EEE CS and
ACMI, 2008.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



