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Abstract

In this paper, we present image segmentation algorithms
based on tools from computational algebraic topology and
Morse theory. We build our implementations on a very
general clustering algorithm [4], developed by Chazal et
al., which has been adapted for both grayscale and color
image segmentation. By building up a simplicial complex
incrementally - filtering its simplices by values of a scalar
function - we can assign a quantity called persistence to
its topological features, measuring their ’lifetime” in the
construction. Combined with concepts from Morse the-
ory, this allows us to construct and simplify a watershed-
type segmentation of the complex using a Union-Find al-
gorithm, guided by a single intuitive scalar parameter and
supported by theoretical guarantees for topological consis-
tency and robustness. In the case of grayscale images, the
complex is an 8-connected pixel adjacency graph which
is filtered by pixel values or the absolute value of the im-
age gradient. For color images a point cloud in an appro-
priate color space is clustered by filtering a Vietoris-Rips
neigbourhood graph via Gaussian density estimation and
taking spatial proximity into account.

Keywords: Image Segmentation, Computational Topol-
ogy, Clustering

1 Introduction

Segmenting an image to meaningful parts is a fundamen-
tal operation in image processing. Despite tremendous
progress in recent decades, the problem remains challeng-
ing, with the quality and reliability of hand-made segmen-
tations still unsurpassed by fully automatic methods and it
is probably safe to assume that no simple, straightforward
algorithm can realistically aspire to solve the problem in
general.

General and algebraic topology are usually regarded
as highly abstract branches of pure mathematics, see
[20],[18] for accessible introductions; but the last decade
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or so saw the development of computational topology,
which has made it possible to utilize powerful mathemat-
ical concepts. The field in its current form was initiated
by Edelsbrunner, Letscher and Zomorodian in [16], which
introduced the concept of persistence and Morse simpli-
fication of spaces. Since then, topological methods have
found many applications, including but not limited to data
analysis, image processing, Computer-Aided Geometric
Design and reverse engineering, shape recognition, signal
processing, machine learning and sensor networks.

In this paper we present segmentation algorithms for
both grayscale and color images, based on the concept
of topological persistence. In both cases we base our ap-
proach on a general point cloud clustering algorithm de-
veloped by Chazal et al. of INRIA Saclay [4]. On an ab-
stract level this method takes as input any simplicial com-
plex (e.g. a graph or mesh) with a scalar function defined
on its vertices and produces a watershed-type segmenta-
tion of it. Simplification is carried out on-the-fly, con-
trolled by a single intuitive scalar parameter called per-
sistence.

For grayscale images an adjacency graph is segmented
by the values of a gradient filter. The resulting method is
similar to that of Topological Watersheds, introduced by
Bertrand, Couprie et al. [9[,[3],[10]]; but it is formulated
in a drastically different framework, has a more general
appeal, and arguably leads to more straightforward im-
plementations. Our approach also bears a resemblance to
the Maximally Stable Extremal Regions (MSER) method
of feature detection [24]],[13]], which assesses the impor-
tance of image regions based on their persistence along a
range of intensity threshold levels.

For color images we apply the general algorithm as pro-
posed by Chazal et al., on the neighbourhood graph of the
point cloud representing the image in color space, which is
filtered by Gaussian density estimation. The resulting al-
gorithm has high computational complexity and requires
careful tuning, but shows considerable potential from the
viewpoint of general unsupervised machine learning.
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2 Related work

Image segmentation is a long-standing problem with a
massive literature, see [30],[22],[1] for thorough surveys
on the topic. The methods presented in this paper can be
interpreted as an online simplification scheme for the clas-
sic watershed transform [36],[31].

Our work is primarily based on the results of Chazal,
Guibas, Oudot, and Skraba [4]], who presented a very gen-
eral point cloud clustering algorithm, suitable for data ly-
ing in general Riemannian manifolds and a wide class of
point cloud density estimators and applied it for color im-
age segmentation and data analysis.

The method we have implemented based on the previ-
ous article for color images is in the vein of mean-shift
methods [6]]. A similar algorithm has also been proposed
earlier by Paris and Durant [29] in a less general frame-
work.

Gu, Zheng and Tomasi [17] use Morse-Smale com-
plexes simplified by persistence to segment video data.

The same approach has also been used for the purposes
of mesh segmentation, based on curvature estimation
[141],[35]] and the simulation of heat diffusion [[12],[32].

For grayscale segmentation, Letscher and Fritts [21] uti-
lize persistent homology in a different way, by generating
a sequence of alpha-complexes from an edge graph and
identifying segments with persistent regions in the com-
plements.

Parallels can be drawn between persistence and Total
Variation methods [34]. This connection is elaborated
from a signal processing viewpoint in [2].

3 Mathematical background

The theory of computational topology depends on a long
chain of definitions and results, so most technical details
are omitted here. For comprehensive, application-oriented
treatments see [37]],[L15]].

Topology is - informally speaking - study of the most
general properties of spaces that are invariant with respect
to deformations in some precise sense. Algebraic topology
uses abstract algebraic structures (vector spaces, groups,
rings, etc.) to represent this information in a quantita-
tive way. Homotopy groups are the most natural such ob-
jects, consisting of equivalence classes of closed k-spheres
(points, circles, spheres, for k = 0,1 and 2 respectively)
embedded in the space, with respect to continuous defor-
mations. Although they are very strong and important in-
variants, their structure is extremely complicated even for
simple spaces like the sphere.

By restricting ourselves to simplicial complexesEI, ie.
spaces defined as topologically consistent collections of
simplexes - points, edges, triangles, tetrahedra, etc. (well
known examples arising from applications are undirected

IThere is a practically equivalent homology theory for cubical com-
plexes.

graphs and triangular or tetrahedral meshes), we can con-
struct the more practical homology groups as quotients of
cycles - ’closed’ collection of simplices of a given dimen-
sion - by the boundaries of sets of higher-dimensional
simplices. Thus, homology groups contain equivalence
classes of ’loops’ whose ’difference’ is a boundary of a
higher dimensional subset, which is analogous to the intu-
itive notion of being able to deform them into each other.
The rank of the k-dimensional homology group is called
the k-th Betti number and is, informally speaking, a mea-
sure of the number of k-dimensional holes, i.e. topologi-
cal features of the space. The well-known Euler number is
equal to the alternating sum of Betti numbers.

Homology groups are powerful topological invariants EL
but their combinatorial nature also allows for practical al-
gorithms for their computation. The k-th boundary map
can be trivially represented as a matrix encoding the adja-
cency relation between k and k — 1 simplices in the com-
plex. We can infer on the structure of homology groups
using basic linear algebra, by reducing the boundary ma-
trix to the so-called Smith Normal Form.

Figure 1: Simplicial torus with generators of the 1st ho-
mology group.

When our space has a smooth differentiable structure,
the topology of the manifold is closely related to the
sublevel-sets of scalar functions defined on it. Morse the-
ory [25]] makes this connection precise, by stating that by
considering the sublevel sets for increasing threshold val-
ues, changes in topology can only occur at so-called criti-
cal points, where the gradient of the function vanishes. A
critical point could correspond to a *hill’, a *basin’ or a
’saddle’ depending on the definiteness of the Hessian, see
The critical points and integral lines between
them give a cell decomposition of the manifold called the
Morse-complex.

The connection between Homology and Morse theory
is given by persistent homology. Extending the results of

2In general they are considerably weaker than homotopy groups. To
see this, consider a loop around the central part of a two-holed torus: this
is the boundary of both halves and thus null-homologous, but obviously
cannot be shrinked to a point along the surface.
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Figure 2: The 3 types of nondegenerate critical points on
a 2-manifold: minima (a), 1-fold saddle (b), and
maxima (c).

Morse theory to simplicial complexes, i.e. to a piecewise-
linear context is relatively straightforward, and in this case
the critical points correspond exactly to changes in the
structure of the homology groups. It turns out that only
two kinds of change could happen at each step, as we
build up our complex: a new homology class (topolog-
ical feature) can be created, or an existing class can be
destroyed (can be made homologous to zero) by adding
a new simplex. This allows us to define the persistence
of a topological feature as the difference (e.g. in function
value or ordering index) between its death and its birth in
the construction, and also to organize the critical points in
pairs of creators and destructors of topological features.
The history of changes in the homology classes thus give
a compact multiscale description of the topology, e.g. as a
barcode or a so-called persistence diagram.

Besides having attractive theoretical properties like sta-
bility [5]], persistence can also be computed very effi-
ciently. Even in the most general case, only a simple ma-
trix elimination procedure is required to compute persis-
tence information induced by a given simplex ordering,
i.e. it can be computed (in worst cas in time cubi in
the size of the problem, but empirically the running time
is found to be only slightly supralinear for non-artificial
data. If we are only interested in connectivity information
(by symmetry arguments, this applies to both the 0- and
2-dimensional homology of a 2-dimensional simplex), we
could use a Union-Find data structure [11], reducing com-
putational complexity to O(o(n)n), where ¢ is the inverse
of the Ackerman function and is less than 5 for any con-
ceivable problem size.

4 Watershed Segmentation with
Persistence-based merging
The watershed transformation is a classical tool for image

segmentation. The basic idea is very intuitive: consider a
porous landscape getting filled by water from the bottom.

3 Although this bound is known to be sharp in theory, it is currently
known to be achieved only in case of artificial degeneracies. [26]

4The exact theoretical bound is that of matrix multiplication, i.e.
O(n*37%) by current knowledge [7], but the algorithm realizing this
asymptotic growth rate is highly impractical.

Lakes start to form at basins, i.e. local height minima,
and as the water level rises, two adjacent lakes might get
merged when their water reaches a saddle point. By ele-
vating dams along the lines where adjacent lakes *meet’,
we get a network of "watershed lines’, and thus a segmen-
tation of the landscape. It can be shown that the lines are
(excluding some degenerate cases) always integral lines of
the height gradient and connect height maxima with sad-
dles, and each region corresponds to a local height min-
ima/basin. A naive implementation of this idea is highly
sensitive to noise for obvious reasons, so oversegmenta-
tion is inevitable, making simplification necessary.

By comparing the description of the watershed trans-
form and that of Morse theory and persistence the analo-
gies are quite straightforward. To utilize this connection
we adopt the following variant of the abstract algorithm
from [4], originally devised as a point-cloud clustering
method for the purposes of constructing a simplified wa-
tershed segmentation:

1. First, a simplicial complex (e.g. a graph, or a triangu-
lar or tetrahedral mesh) is generated from our data.

2. Next, a scalar function is defined on the complex, e.g.
at each vertex.

3. We compute a watershed transform sequentially, by
processing the vertices by increasing function values

4. If the vertex is a local function minima (every neigh-
bouring vertex has larger function value) it represents
a new segment.

5. If a vertex is not a local function minima, it gets
added to the component of the neighbour with the
smallest function value.

6. If a vertex is adjacent to several components, i.e. it
is a saddle, a merging step is performed: if the dif-
ference in function value between the saddle and a
representative local minima is smaller than some pre-
scribed threshold 7, we merge given segment with the
one with the smallest representative local minima.

This algorithm is provably correct, and defines a strict
hierarchy of segmentations, guided by a simple merging
threshold. Due to the lack of space, detailed pseudocodes
and in-depth algorithmic analysis are omitted here; the in-
terested reader shall consult [4] for reference.

We use the Union-Find data structure to store and ma-
nipulate the hierarchy: the segments are represented as
(non-binary) trees, with the ability to find the root of the
tree to which a node belongs, and to merge two such trees
by connect one’s root to the other’s. There are two widely
used optimizations to the naive implementation: path com-
pression, i.e. connecting each node we traverse to the root,

SIf segments correspond to local maxima, they are processed by de-
creasing values and the rest of the algorithm should be modified accord-
ingly.
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and union-by-rank: always merging the smaller tree into
the larger one. Of these, we implement only the former,
as our merges shall be carried out in a strict order, which
results in a theoretical complexity of O(n log(n)) [8].

By setting the persistence threshold to infinity (or any
sufficiently large value, where every segment get merged
together) and plotting the time of birth of a segment on the
horizontal and its time of death on the vertical axes, we get
a scatterplot called the persistence diagram of the image,
see|Figure 3
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Figure 3: (a): Grayscale image, (c): persistence diagram,
(b): segmentation with persistence threshold 7 =
75. Dashed line separates features with shorter
or longer lifetimes than the persistence thresh-
old.

5 Grayscale image segmentation

In the context of grayscale images, we consider the 8-
connected pixel adjacency graph as a simplicial com-
plex. It is obvious that using the pixel values as a Morse-
function gives valid segmentations only in special cases,
as it is only capable of isolating darker regions separated
by lighter boundaries (or vice versa), see Thus,
as it is common with watershed techniques, we use the ab-
solute value of the image gradient instead, computed with
arobust variant [[19] of the well-known Sobel-filter:

-1 -2 0 2 1
FF=| -2 —4 0 4 2

-1 -2 0 2 1

F,=F/

6 Color image segmentation

For color images we have implemented the method of the
original article [4]], inspired by the so-called mean-shift
methods. We first build a nearest neighbour graph from
the point cloud representing the image in color space. It is
widely known, that Euclidean distances in common color
spaces like RGB do not correspond well with perceived
color differences, so, the image is first transformed into
the more suitable L*a*b* color space. Then, the so-called
Vietoris-Rips graph is generated by connecting points that
are closer to each other than some given parameter 0. The
segmentation is produced by clustering the point cloud, i.e.
by finding the basins of attraction of its significant local
density maxima. Density approximation of point clouds is
a well-developed, active research field in statistics and data
analysis, with a huge variety of methods available, but for
our purposes a simple truncated Gaussian estimator was
sufficient:

fw= ¥
(d(x,p)<h)

where d(-, ) is the metric defined on the space and h € R
is called the bandwidth of the estimator. Given the graph
and the density estimation, the vertices are processed in
descending order by the algorithm. As of yet we have con-
sidered color information only, which is obviously insuf-
ficient to produce meaningful segmentations in a general
case. Following the advice of [4] we take spatial prox-
imity into account in the graph construction phase: only
those points will be connected that are sufficiently close as
pixels in the image. The size of the neighbourhood con-
sidered around each pixel gives another degree of freedom
to the algorithm.

Graph generation and density estimation both require
the computation of pairwise distances and nearest neigh-
bour searches for the point cloud. As these operations are
prohibitively expensive to carry out directly, we store the
point cloud in a k-d tree data structure [27]].

7 Implementation and Results

We have implemented the algorithms in C++. For the han-
dling of images and for the nearest neighbour searches in
color space we have used the CImg [33]] and the ANN [28]
libraries respectively.

In the grayscale case, results for selected images in the
Berkeley Segmentation Database [23]] are given in
[ure 5| [Figure 6| and |[Figure 7| Segments with cardinality
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smaller than a given threshold (set to 100 for our experi-
ments, based on trial-and-error) are candidates for further
merging, and are painted black.

demonstrates the noise robustness of the
grayscale algorithm. illustrates how the segmen-
tation depends on the choice of persistence threshold 7.
Runtime results are given for a wide range of image sizes

in[Table 11

©

Figure 6: (a): Image 42049 of the BSD, (b): gradient,
(c)(d): segment lines and segment coloring for
T=32.

Figure 4: From left to right, and top to bottom: Ura-
nium oxide picture and segmentations for 7 =
1,6,13,19,36. @) (b)

Figure 7: (a): Image 100007 of the BSD, (b): gradient,
(c)(d): segment lines and segment coloring for
T=237.

(a) ()

- “
(©) (d)
Figure 8: (a): Image 100007 of the BSD with Gaussian
Figure 5: (a): Image 4096 of the BSD, (b): gradient, noise of zero mean, 0.01 normalized variance,
(c)(d): segment lines and segment coloring for (b): segmentation with T = 36. Compare with

t=24,

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (b

©

Figure 9: (a): Geranium image, (b): segmentation with
0 =8, 71 =4500, and 7 x 7 local patch size, (c):
clustered point cloud in L*a*b* color space.

Results for the color method on some common bench-
mark images are given in|Figure 9|and [Figure 10}

We note that in our implementations, the persistence di-
agrams turned out to be of limited use for inferring on
the optimal value of the persistence threshold, thus it is
necessary to resort to trial-and-error in most cases. In the
grayscale case the main reason for this might be that with
the very simple gradient filter that we use for edge de-
tection, it is hard to discriminate between significant de-
tails and fine texture or noise, which results in very narrow
noise margin. It might be possible to overcome this limi-
tation and also improve the overall performance of the al-
gorithm by combining our method with a more intelligent
edge detection scheme, e.g the ones considered in [1]]. In
the color case, the generally ill-defined nature of the im-
age segmentation problem could be be blamed for the lack
of an unambiguous separation between signal and noise
(this is in contrast with the unsupervised learning and data
analysis problems the method have been devised for orig-
inally).

(@ (b)

©

Figure 10: (a): Mandrill image, (b): segmentation with
6 =8, 7=6000, and 5 x 5 local patch size, (c):
clustered point cloud in L*a*b* color space.

The color method is highly experimental in its current
stage. The density estimation step could take consider-
able time (well up to several hours for larger images)
and the parameters of the algorithm (persistence thresh-
old, Gaussian bandwidth, graph parameter, local neigh-
bourhood size, etc.) almost always require fine tuning by
heuristics ]

8 Conclusions

We have presented segmentation algorithms for both
grayscale and color images based on the watershed trans-
form and concepts from computational topology.

In the grayscale case the algorithm produces useful re-
sults for simpler images even in the very straightforward
way we have implemented it, although the threshold pa-
rameter requires tuning by trial-and-error for each im-

SIn our experiments we fixed the Gaussian bandwidth to 25, following
the advice of the original article.
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’ Image \ Size \ Time (ms) ‘

Uranium 141 x 148 13
Blob 256 x 254 31
BSD-42049 | 481 x 321 73
Lena 512 x 512 145
Emblem 1080 x 1080 | 440
PET 1800 x 1741 | 1041
Truck 3753 x 2775 | 6805

Table 1: Grayscale segmentation timings on an Intel
Core2Duo E8400 3.00 GHz, 2GB DDR2 RAM
machine, excluding image I/O and gradient com-
putation.

age. We conjecture that much better performance might be
achieved by more sophisticated pre- and post-processing.

For color images, persistence-based clustering yields
acceptable results if there is a strong correlation between
color information and semantics, but requires computa-
tionally expensive pre-processing and non-trivial fine tun-
ing of its parameters. It should be noted that the algo-
rithm has been devised as a general point cloud clustering
or mode-analysis tool, thus it might be of considerable in-
terest for more general data analysis or machine learning
applications.
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