
Efficient VAL-based Real-Time Global Illumination

Christoph Weinzierl-Heigl∗

Supervised by: Reinhold Preiner†

Institute of Computer Graphics & Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

Due to recent advances in consumer grade graphics hard-
ware the field of global illumination techniques are not
limited to offline rendering anymore. Current real-time
techniques to approximate global illumination are mostly
based on rendering large amounts of virtual point lights
(VPLs), however without considering indirect shadows.
One of the popular examples that includes indirect shad-
ows are the imperfect shadow maps (ISMs) which are
based on VPLs and point-based shadow maps. In our pa-
per, we reduce the number of required light sources and
imperfect shadow maps by using virtual area lights (VALs)
instead of VPLs. A PCSS based filtering of the visibility
information allows to maintain the quality of the indirect
shadows in spite of the much smaller number of ISMs.
This way, the computational effort is heavily reduced, re-
sulting in rendering speedups of up to 50%.

Keywords: global illumination, imperfect shadow maps,
real time, instant radiosity, virtual area lights

1 Introduction

Global illumination (GI) describes the process of lighting
in computer graphics in a precise and complete manner,
in which not only the light coming from an emitter (direct
illumination) is considered, but also the numerous reflec-
tions of the light rays between objects within the scene (in-
direct illumination). The problem of global illumination
was first formalized by Kajiya [10]. His rendering equa-
tion (RE) solves the entire image synthesis process in a re-
cursive way. Since both sides of the equation are coupled,
the RE is analytically unsolvable. It is however possible to
approximate the RE by several approaches (Ray-tracing-
[21] or Radiosity-based [7]) from which some even allow
rendering GI scenes in real-time.

One efficient group of algorithms are based on instant ra-
diosity [11] which employs virtual point lights (VPLs) to
approximate indirect illumination. To account for fast in-
direct visibility calculation, Ritschel et al. [19] proposed to

∗c.weinzierl-heigl@live.com
†rp@cg.tuwien.ac.at

use point-based shadow maps, so called imperfect shadow
maps (ISMs).

The problems with the usage of VPLs and ISMs are:

a) The usage of VPLs can lead to point singularities due
to the fact that the lights need to be positioned close
to scene geometry. This is often tackled by clamping
the geometry term which in fact reduces singularity-
artifacts but also leads to energy loss (see Figure 1).

b) In order to achieve soft indirect shadows, the number
of VPLs and corresponding ISMs usually needs to
be high, which increases the rendering cost for the
indirect illumination considerably.

Prutkin et al. [16] eliminates the lighting artifacts in a) by
using virtual area lights (VALs) for illumination. These
area lights are computed by clustering the pixels of a re-
flective shadow map (RSM), wich also reduces the amount
of virtual light sources. However for these clustered area
light sources, they do not account for indirect visibility at
all, which still poses an open problem. Dong et al. [5] pro-
poses clustered visibility by using convolution soft shadow
maps (CSSMs), which provide soft indirect shadows of
much higher quality than ISMs. However for indirect illu-
mination, they still use ordinary VPLs, not taking advan-
tage of the clustering at hand.

We propose an integrated real-time global illumination ap-
proach, that

a) performs VAL-based indirect illumination, using
RSM clustering similar to Prutkin et al. [16], and

b) uses easy-to-compute ISMs for the indirect visibil-
ity of these VALs, while still providing smooth soft

Figure 1: Lighting artifacts when shading with VPLs
(left), compared to geometry-clamped VPLs (right). Im-
age courtesy of Hasan et al. [9].

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

shadows of considerably higher quality by employing
a percentage closer soft shadow (PCSS) sampling [6]
based on the VAL area.

Reducing the number of indirect light sources and circum-
venting the need for a large amount of shadow maps by
instead using ISMs coupled with a sophisticated sampling
method, we can achieve similarly looking soft shadows
while reducing the computational cost for indirect illumi-
nation considerably.

The remaining paper is structured as follows: Section 2
gives an overview of related work done in the field of real-
time global illumination. In Sections 3 - 6 we describe our
method in detail. Results and performance measurements
are presented in Section 7. We will conclude our paper and
also give outlooks into possible future work in Section 8.

2 Related Work

The original reflective shadow maps (RSMs) [4] method
describes a way of indirect illumination where every pixel
of the RSM is considered to act as a one-bounce indirect
light source. The RSM was invented as an extension to
simple shadow mapping which, besides the depth, also
stores surface normals and the radiant flux per pixel from
the point of view of the light source. We use the term
reflective shadow map in our paper as just the means of
storing extended information for the direct light emitter
that is later used for indirect illumination calculation. Al-
though included in the original paper, we do not use their
suggested indirect illumination procedure.

Instead, we build our method on the instant radiosity
[11] algorithm. In instant radiosity, VPLs are positioned
throughout the scene at intersections of light rays emit-
ting from the primary light source and the rendered scene
geometry. To apply fast indirect illumination for these
VPLs we use interleaved sampling [12], which assigns
each VPL to a subset of the scene’s pixels and only shades
those pixels in order to save shading cost. This method is
also used in incremental instant radiosity [14] who apply a
geometry-aware box-filter to merge the interleaved shaded
pixels and gain a smooth indirect illumination.

In order to account for fast indirect visibility computation,
our approach relies on imperfect shadow maps [19]. In-
stead of using multiple render passes to create shadow
maps for each VPL, ISMs allow to use a point-based scene
representation which can be rendered into a single large
texture atlas containing every ISM using just one render
pass.

Another approach to further speed up rendering, is to clus-
ter a bunch of VPLs together and then treat the cluster as
just a single area light source. Dong et al. [5] suggest to
cluster the VPLs to VALs for indirect shadowing, however

still use all VPLs for illumination of the scene. To com-
pute indirect shadows they use a soft shadowing algorithm
based on convolution shadow maps which is only calcu-
lated for the actual VALs. The work by Prutkin et al. [16]
uses a point-to-disk formfactor to approximate a virtual
area light but ignores indirect visibility.

3 Algorithm Overview

Figure 2 shows an overview of the main stages of a real
time GI pipeline. In each frame, we generate our reflective
shadow map (RSM) [4] which stores all the relevant infor-
mation per pixel from the point of view of the light source.
We use a spotlight for direct illumination, but the algo-
rithm could easily be extended to work with every other
type of illuminant. We perform a similar G-Buffer pass
from the eye-point from which we generate a split/tiled G-
Buffer [14, 13] where each tile only represents a subset of
the pixels of the entire G-Buffer.

After these G-Buffer passes, our algorithm initializes seed
points for the VALs within the RSM by using a Halton-
sequence [8]. In the same step we employ importance
warping [3] to those initial seeds based on the importance-

Fill G-Buffers
Camera + Split

Light/RSM

Distribute

Importance Warp

Clustering

Map

Average

ISM Generation

Indirect Illumination

Pull/Push

VAL Lighting

Indirect Soft Shadows

Direct Illumination

Composition
Merge + Filter Indirect

Add Direct

Tonemap

Figure 2: The shading pipeline of our algorithm.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

+ =

Pos
Normal
Flux

x y z x
x y z x
r g b r

...

...

...

...

...

...

z
z
b

Halton Seq. Importance Warped

(a) Initial seed points generated from a Halton sequence are com-
bined with an importance map. After performing importance
warping the seed points are concentrated at highly specular mate-
rials. Clusters are finally initialized with attributes from the RSM
at their new, warped position.

Warped RSM
Depth Normal Flux

c

c

1

2

Mapping

μ1

μ2

= w + n + f
Ɐ ∩pixel | c1 c2

dist dist dist1 1 1

= w + n + fdist dist dist2 2 2
{ min(μ , μ)1 2

(b) Clusters are then rendered as point splats with a custom point
size. µ is calculated for each fragment. Overlapping cluster frag-
ments are assigned to the cluster that has the lowest µ-value.

Figure 3: Initialization (a) and mapping (b) behavior of the clustering pipeline.

information stored in the RSM, concentrating the VALs on
specular materials. For each seeded VAL/cluster we store
its position, normal, flux as well as a count of pixels as-
signed to it and the cluster’s area. The clustering itself
is inspired by k-means clustering [15] which we adapted
to run in a frame-by-frame iterative manner. This way,
the clustering algorithm will converge to the final solution
over the course of a few frames.

Given the position and direction (normal) of each VAL
we generate the imperfect shadow maps [19, 18] for them.
Since the ISM is a point-based shadow map, we are able to
render every single shadow map in just one pass by storing
all ISMs within one large texture atlas.

During the final stage of the algorithm the direct and in-
direct lighting is gathered and composited. Direct light-
ing for the spotlight happens straight-forward with simple
shadow mapping applied. The indirect lighting is calcu-
lated using an areal light approximation. During this step
we also query the ISMs for indirect visibility information
and perform soft shadow mapping [6]. The final image is
composited by applying tone-mapping [17].

4 Clustering

The clustering of RSM pixels is inspired by k-Means clus-
tering [15] which in our case performs an iterative nearest-
pixel averaging. After the clustering, each VAL has to
store all the information necessary for indirect illumina-
tion. For a given number of N clusters, we therefore store
the relevant cluster data in six 1D-textures of size N× 1:
world-space position, normal, flux, position as texture co-
ordinate, number of RSM-pixels assigned to that cluster
as well as the cluster area in world-space. The first three

attributes are necessary to generate the light source infor-
mation (eg. position, direction and color). We also store
the position of the cluster as an RSM texture coordinate in
order to allow immediate sampling of the cluster’s RSM
center pixel. This is necessary since a cluster’s flux is not
averaged by the k-Means method but instead updated from
the RSM after the cluster’s position and normal has been
averaged. The number of RSM-pixels that are assigned to
a cluster is required to compute the average during the k-
Means step, while the cluster’s area is used to perform in-
direct illumination using a VAL approximation. The clus-
tering itself is actually a three-step algorithm:

Initialization: Here we initialize the cluster’s seed posi-
tion (i.e. its initial position in the RSM) by using a
Halton-sequence [8] to get a pseudo-random distri-
bution of clusters within the reflective shadow map.
Based on an importance value stored in the RSM,
we perform importance-warping [3] to redistribute
the clusters such that they are concentrated at materi-
als with higher specular terms. Once we have those
importance-warped seed positions in texture-space,
we can sample the RSM at those coordinates and
store the first part of the relevant information for each
cluster (world-space position, texture-coordinate po-
sition, normal and flux). Please note that this step is
only required for clusters that need to be initialized,
which always happens in the very first frame and can
occur in consecutive frames whenever there are no
RSM-pixels assigned to a cluster (see Figure 3a).

Mapping: During this step, the algorithm maps RSM-
pixels to clusters within its vicinity. To achieve
this, we render point-splats at the previously seeded
cluster positions with a user-defined point size that
can range between 32− 128 pixels. In the frag-
ment shader we compute a distance µ based on

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

world-space distance, normal- and flux-difference
(see Equation 1) from the currently shaded pixel to
the cluster’s center. We use a metric inspired by
Prutkin et al. [16], which is given by a convex sum of
different distances

µ = dp ·wp +dn ·wn +d f ·w f (1)

between a RSM pixel and the cluster. dp denotes
the world-space distance in euclidean space, dn the
distance in normal-space defined by the magnitude
of the dot-product of their normals and d f is their
distance in RGB color-space. The convex weights
wp,wn and w f ensure a proper weighting of the partial
distances in this metric. The resulting µ is then used
as a custom-output to the depth-buffer. This way, the
depth-buffer automatically assigns the RSM pixel to
its nearest cluster with respect to the metric in Equa-
tion 1 (see Figure 3b), yielding a so called cluster
map.

Averaging: In order to perform averaging in the last step
of the k-Means clustering algorithm [15], we need to
compute the total number of pixels assigned to each
cluster beforehand. To that end we check each pixel
of the cluster map for its assigned cluster’s index and
increment the pixel-count for the respective cluster by
utilizing the hardware’s additive blend capabilities.
From the generated per-cluster pixel-count, we com-
pute the new, averaged cluster positions and normals.
Since we do not average the cluster fluxes, these are
updated in a separate step in which we simply sample
the RSM at the new cluster texture coordinates.

5 Imperfect Shadow Maps

The huge amount of visibility information required for
the correct illumination from all virtual light sources is
approximated by using imperfect shadow maps (ISMs)
[19]. The generation of ISMs requires a pre-processing
step that generates a point-sampled representation of the
scene geometry. Therefore, the algorithm generates ran-
dom barycentric points within the mesh triangles, which
are then used for splatting during ISM generation. The
points are stored in the object space of the meshes they
were created from to be able to correctly transform this
representative points along with their meshes. This al-
lows us to translate/scale/rotate the scene’s objects dynam-
ically at runtime but does however not permit deformable
meshes.

The ISMs are generated per cluster/VAL and are stored
within one large texture atlas. A resolution of 4096×4096
was chosen for the texture atlas and 128×128 for the ISMs
contained in it, which allows up to 1024 clusters at once.
During the ISM rendering, the point-sampled scene geom-
etry is drawn to the texture atlas and each point is assigned

Figure 4: Example of an ISM with holes (left). The same
ISM after 2 iterations of the pull-push algorithm fills small
holes (right).

to a different ISM in a round-robin fashion: The current
vertex’s id vid and the number of clusters N are used to
compute mod(vid ,N) to assign the point to the respective
ISM. Points closer to the cluster position should be ren-
dered larger, while points farther away should be smaller.
To this end, the point-size is calculated in the vertex shader
based on the distance from the current cluster. Unlike the
shadow map for a directional- or spot-light the ISM should
actually cover the entire hemisphere of the direction it is
looking at. Hence, a parabolic mapping [1] is applied to
project the points onto the paraboloid that represents the
hemisphere around the cluster.

The resulting texture atlas contains all ISMs required to
shade the scene. Due to the nature of point sampled ge-
ometry, it is likely that the point-based ISMs contain holes
simply because the sampling density was too low or the al-
gorithm to produce the points in the first place did not pro-
vide evenly distributed samples. This can manifest itself
during the indirect shading stage as jagged shadow arti-
facts and irritating shadow leaks. To alleviate this problem
a pull-push algorithm is employed, as suggested by [19],
to fill small holes inside the ISMs (see Figure 4).

6 Indirect Lighting & ISM Sampling

Although we have now greatly reduced the number of in-
direct light sources, the cost of shading every pixel of the
G-Buffer with every VAL would still be too expensive.
We follow an approach derived from interleaved sampling
[12], where each pixel is only shaded by a subset of all
available VALs. To this end, we generate a split G-Buffer
[14] from the initial G-Buffer, with n×m tiles. Each tile
represents an interleaved set of pixels of the initial G-
Buffer: Consider the pixel (x,y) in the tile (i, j), where
0≤ i < n and 0≤ j < m. The content of this pixel is read
from the initial G-Buffer pixel at position (xn+ i,ym+ j).

In order to shade the resulting tiles, we build up a tiled
mesh geometry [13]. This is basically a representation of
screen-space positioned quads aligning with the tiles of the
split G-Buffer. Each tile of this tiled mesh geometry is as-
signed either a number of VALs or just one VAL, depend-
ing on whether the shading should be done in a single-pass
or in a blended multi-pass setting. The allocation of VALs

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

Camera G-Buffer

Light G-Buffer Clustering

+

=

ISM Atlas

Scene Point-Rep.

Indirect Illumination

M
er

gi
ng

Final Composition
F

ilt
er

in
g

T
on

em
ap

pi
ng

D
ire

ct
 Il

lu
m

in
at

io
n

Figure 5: Overview of the complete lighting composition chain including involved buffers.

to tiles is again done in a round-robin fashion: A VAL v
is assigned to a tile T by Tv = mod(v,n×m), where n,m
follow the declaration from above. We can then render
the tiled mesh geometry and shade each pixel with the as-
signed VALs.

The actual illumination of a point from a VAL is based on
a point-to-disk formfactor, similar to Prutkin et al. [16],
to approximate a VAL from a disk-shaped region which
acts as the area light. Remember that we calculated an
approximate area Ac for each cluster in the clustering step,
which is used to calculate the formfactor [20]

∫
Ac

≈ cosΘx · cosΘc

π · ‖x− c‖2 +Ac
(2)

where Θx is the angle between the surface normal at x and
the incoming light vector and Θc is the angle between the
surface normal at c and the outgoing light vector (see Fig-
ure 6).

Using this formfactor, we can perform soft indirect illu-
mination without the downsides of regular VPL shading.
However, until now we have not considered indirect visi-
bility at all. Soft indirect shadows would normally result
automatically by blending a sufficient amount of contribu-
tions from multiple ISMs together. As we have however
dramatically reduced the number of indirect light sources
and corresponding ISMs, the shadow term would suffer
from severe artifacts (see Section 7 for comparison screen-
shots) stemming from the low resolution nature of the
ISMs, as well as from the naive shadow lookup involved.

To minimize the artifacts and in order to get similar soft
shadows as when using much more indirect light sources,
we apply the percentage closer soft shadows technique [6]
during shadow lookup. Instead of taking just a single sam-
ple from the shadow map and applying the result to the
lighting term, multiple samples are taken at once in order
to calculate a soft shadow term. Three steps are involved
in this process:

Blocker search: Searches a finite region of space be-
tween the light source and the receiver for occluding
geometry whose depth values are closer to the light
source than the receiver’s depth zreceiver. The size of
the search region depends on the light size (which we
calculate from the VALs area) and the receiver’s dis-
tance from the light source. If the search finds any
occluder points we average their depths zblocker and
continue to the next step. Otherwise, we can abort
the calculation and return full visibility.

Penumbra estimation: The size of the penumbra (soft
shadow region) is estimated using similar triangle
calculations. We simply assume that the light source,
blocker and receiver are arranged on parallel planes.
This way we can calculate the penumbra ratio as

rpenumbra = (zreceiver− zblocker)/zblocker. (3)

Filtering: Finally, a simple PCF computation is applied
on the shadow map using Poisson-disk-sampled off-
sets [2] scaled by the estimated penumbra ratio.

Since the indirect illumination shading is done on the tiled

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

N

x

c

Ac

Θ

Θ

x

L

I

c

Figure 6: The point-to-disk formfactor for the receiving
pixel x is computed from the angle Θx between the surface
normal N and indirect light direction I as well as the angle
Θc of emitter c between its surface normal L and I with
corresponding area Ac.

mesh geometry, the tiles need to be merged back to a sin-
gle fullscreen texture. This involves inversing the calcula-
tion done when building the split G-Buffer from the initial
G-Buffer, as described at the beginning of this Section.
The resulting merged picture needs to be filtered using
a geometry-aware filter [14] of size n×m to get the fi-
nal, smooth indirect illumination. Geometry-awareness is
achieved by checking the similarities between the kernel’s
center pixel and the pixel at the current offset. We use two
thresholds α,β to vary the allowed similarity differences.
α is used as the threshold for maximum world-space dif-
ference between two sample points, while β is used as
a threshold for surface normal differences. The filtering
only occurs for samples that lie below both thresholds.

The last step is to combine direct and indirect lighting con-
tribution and perform tonemapping [17]. Figure 5 depicts
an overview of the entire lighting process.

7 Results

This chapter gives a visual and numerical overview of our
results. The entire program was written in C++ using
OpenGL 3.3. We measure the performance of our new
approach and compare the frame timings in different se-
tups. Measurements were achieved on an Intel Core 2 Duo
E6600 processor with 2.4 GHz using an AMD Radeon HD
6850 with a frame buffer resolution of 1280×720 pixels.

As we have already outlined in the introduction, our goal
was to improve the rendering performance of an instant
radiosity-based GI algorithm to gain even higher perfor-
mance as when using a traditional VPL-based approach.
To achieve this, we chose the following two subjects to
improve upon:

a) Use VALs instead of VPLs for indirect illumination
in order to remove artifacts (mainly singularities) and
gain performance (see Section 7.1).

b) Reduce the overall number of indirect light sources
without degrading indirect shadow quality (see Sec-
tion 7.2).

7.1 Indirect Illumination

The usage of a point-to-disk formfactor (refer to Equation
2) allows us to reduce typical artifacts that occur when
shading with VPLs. It further allows us to reduce the num-
ber of indirect lights used for shading without degrading
the quality of the indirect illumination. Simultaneously,
this also reduces the shading cost of the indirect illumina-
tion since less indirect light contributions need to be com-
puted. On the other hand our VAL-based approach needs
to perform a per-frame clustering step which is not neces-
sary for VPL-based illumination.

Hence, we compare achievable indirect illumination re-
sults for VPL-shading with our VAL-shading approach. In
this arrangement the frame timings for the complete indi-
rect illumination process are kept constant to perform a fair
comparison: For VPL-shading we only count the indirect
illumination timings, while for our VAL-based approach
we also need to consider the time it takes to perform the
clustering. Using 256 VPLs and only considering the indi-
rect illumination timings of 13 ms is therefore comparable
to our VAL-based approach using 128 VALs considering
both, indirect illumination (8 ms) and clustering (5 ms)
timings yielding a total of 13 ms. Figure 7 shows that our
method produces much less artefacts at the same perfor-
mance than a VPL-based approach.

256 VPLs 128 VALs

13 ms 13 ms

13.5 ms 13.5 ms

Figure 7: VPL-shading results on the left, VALs on the
right. The top row shows VPL positions on one side and
VAL clusters on the other side. Second row shows indirect
illumination only, while the third row shows combined di-
rect and indirect lighting contributions. VPL singularities
are clearly visibile on the left, diminsh on the right.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

7.2 Indirect Shadows

Since the reduced number of indirect light sources also re-
sults in a reduced number of indirect visibility information
stored in less ISMs, we perform a soft shadow lookup that
is similar to PCSS in order to achieve similarly looking
and visually pleasing indirect shadows as when compared
to using much higher amounts of indirect light sources and
ISMs using only a simple shadow lookup.

Our tests not only show that we are able to gain per-
ceptually equivalent results with our PCSS-based method
(see Figure 8), but also, that it is possible to simultane-
ously achieve rendering speedups of up to 50%. Table 1
shows timings for the important algorithm stages, compar-
ing 64 PCSS-sampled VALs versus 512 simple-sampled
VALs. All measurements were taken in our Cornell Box
test scene. Complete frame timings for different VAL
amounts, comparing single- vs PCSS-sampled timings are
shown in Figure 9.

64 PCSS VALs 512 simple VALs
Clustering 5 ms 5 ms

Indirect Illum. 11 ms 30 ms
ISM Generation 10 ms 17 ms

Complete 26 ms 52 ms

Table 1: Comparison of 64 PCSS-sampled VALs with 512
simple-sampled VALs. Rendering time is clearly domi-
nated by the generation of the ISMs (incl. 2 iterations
of Pull/Push) and the indirect illumination stage. The
speedup of 50% considering the complete timings is still
significant.

512 VALs 64 VALs

256 VALs 32 VALs

Figure 8: Comparison of indirect shadows using simple
shadow lookups (left) and PCSS lookup (right).

Figure 9: Statistics of complete frame timings for our
approach using different VAL counts comparing single-
sampled versus PCSS-sampled shadow lookups.

8 Conclusion and Future Work

In this paper we present an efficient, high quality global il-
lumination method based on instant radiosity that is capa-
ble of producing real-time frame rates. Our work is com-
prised of various methods to reduce the required number
of indirect light sources, while at the same time producing
plausible indirect soft shadows. To that end we integrate
a clustering algorithm that groups RSM pixels together in
order to form area lights. By computing the cluster areas
we can further apply a point-to-disk formfactor to perform
indirect illumination using the approximated VALs. A big
advantage of clustering the light sources is the reduction
of shading costs due to less overdraw and blending.

On the other hand, the reduction of the number of indi-
rect light sources and corresponding shadow maps results
in shadowing artifacts that manifest themselves due to the
low resultion nature of the ISMs and because too less
shadow contributions might be accumulated. Therefore,
we propose to use percentage closer soft shadows during
shadow map sampling, taking multiple samples per shaded
pixel to smooth out the indirect shadow term. Although
taking multiple ISM lookups comes with a higher com-
putation cost per indirect light source, this is easily out-
weighed by the overall reduced number of visibility com-
putations necessary by using VALs.

As our algorithm is currently only capable of producing
first-bounce indirect lighting, it would be interesting to ex-
pand the approach to incorporate multiple bounces in fu-
ture work. This could be done by further producing RSMs
for the indirect lights and performing a similar illumina-
tion for these higher-bounce indirect light sources. Fur-
thermore our method is currently also limited to diffuse
indirect bounces. The behavior when performing specular
indirect bounces (for instance to produce caustics) would
be an interesting topic of future work.

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

References

[1] S. Brabec, T. Annen, and H.P. Seidel. Shadow
mapping for hemispherical and omnidirectional light
sources. In Proc. of Computer Graphics Interna-
tional, pages 397–408, 2002. 4

[2] R. Bridson. Fast poisson disk sampling in arbitrary
dimensions. In ACM SIGGRAPH, volume 2007,
2007. 5

[3] P. Clarberg, W. Jarosz, T. Akenine-Möller, and H.W.
Jensen. Wavelet importance sampling: efficiently
evaluating products of complex functions. ACM
Transactions on Graphics (TOG), 24(3):1166–1175,
2005. 2, 3

[4] C. Dachsbacher and M. Stamminger. Reflective
shadow maps. In Proceedings of the 2005 sympo-
sium on Interactive 3D graphics and games, pages
203–231. ACM, 2005. 2

[5] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.P.
Seidel. Real-time indirect illumination with clus-
tered visibility. In Vision, Modeling, and Visualiza-
tion Workshop 2009, 2009. 1, 2

[6] R. Fernando. Percentage-closer soft shadows. In
ACM SIGGRAPH 2005 Sketches, page 35. ACM,
2005. 2, 3, 5

[7] C. M. Goral, K. E. Torrance, D. P. Greenberg, and
B. Battaile. Modeling the interaction of light be-
tween diffuse surfaces. SIGGRAPH Comput. Graph.,
18(3):213–222, January 1984. 1

[8] J. H. Halton. Algorithm 247: Radical-inverse quasi-
random point sequence. Commun. ACM, 7(12):701–
702, December 1964. 2, 3

[9] M. Hašan, J. Křivánek, B. Walter, and K. Bala.
Virtual spherical lights for many-light rendering of
glossy scenes. ACM Transactions on Graphics
(TOG), 28(5):143, 2009. 1

[10] J. T. Kajiya. The rendering equation. In Proceedings
of the 13th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’86, pages
143–150, New York, NY, USA, 1986. ACM. 1

[11] A. Keller. Instant radiosity. In Proceedings of
the 24th annual conference on Computer graph-
ics and interactive techniques, pages 49–56. ACM
Press/Addison-Wesley Publishing Co., 1997. 1, 2

[12] A. Keller and W. Heidrich. Interleaved sampling.
In Proceedings of the 12th Eurographics Workshop
on Rendering Techniques, pages 269–276. Springer-
Verlag, 2001. 2, 4

[13] M. Knecht. Real-time global illumination using tem-
poral coherence. Master’s thesis, Vienna University
of Technology, Jul 2009. 2, 4

[14] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen,
and T. Aila. Incremental instant radiosity for real-
time indirect illumination. In Proceedings of Euro-
graphics Symposium on Rendering, pages 277–286,
2007. 2, 4, 6

[15] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
California, USA, 1967. 3, 4

[16] R. Prutkin, A. Kaplanyan, and C. Dachsbacher. Re-
flective shadow map clustering for real-time global
illumination. In Eurographics 2012-Short Papers,
pages 9–12. The Eurographics Association, 2012. 1,
2, 4, 5

[17] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda.
Photographic tone reproduction for digital images.
ACM Transactions on Graphics (TOG), 21(3):267–
276, 2002. 3, 6

[18] T. Ritschel, E. Eisemann, I. Ha, J.D.K. Kim, and
H.P. Seidel. Making imperfect shadow maps view-
adaptive: High-quality global illumination in large
dynamic scenes. In Computer Graphics Forum. Wi-
ley Online Library, 2011. 3

[19] T. Ritschel, T. Grosch, M. H. Kim, H. P. Seidel,
C. Dachsbacher, and J. Kautz. Imperfect Shadow
Maps for Efficient Computation of Indirect Illumina-
tion. ACM Trans. Graph. (Proc. of SIGGRAPH ASIA
2008), 27(5), 2008. 1, 2, 3, 4

[20] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A
ray tracing algorithm for progressive radiosity. SIG-
GRAPH Comput. Graph., 23(3):315–324, July 1989.
5

[21] T. Whitted. An improved illumination model for
shaded display. Communications of the ACM,
23(6):343–349, 1980. 1

Proceedings of CESCG 2013: The 17th Central European Seminar on Computer Graphics (non-peer-reviewed)

	Introduction
	Related Work
	Algorithm Overview
	Clustering
	Imperfect Shadow Maps
	Indirect Lighting & ISM Sampling
	Results
	Indirect Illumination
	Indirect Shadows

	Conclusion and Future Work

