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Abstract

The exploration of medical imaging datasets often requires
a segmentation of the images according to different mate-
rials or structures. Model-based algorithms excel in find-
ing closed boundary contours enclosing the structure to
be segmented. However, porose structures like Spongiosa
have a complex topology and do not exhibit a unique sin-
gle closed boundary contour. In order to enable segmen-
tation of such complex structures we suggest a new algo-
rithmic framework based on a Reeb graph representing the
topological information. Each node in the graph corre-
sponds to a connected region of voxels in a specific image
slice while edges indicate connected regions between adja-
cent slices. Starting with a coarse segmentation, the corre-
sponding graph is refined at critical nodes and the result-
ing connected components of the graph provide the final
segmentation. We present two strategies for identifying
critical nodes, one solely based on dynamic thresholding
and one based on a single user specified pre-segmentation.
The approach is evaluated on a dataset of 193 uCT scans
of rodent skulls which are segmented into skull, left and
right mandible.

Keywords: Reeb graph, Image segmentation, Computed
tomography

1 Introduction

Image segmentation is required for all applications ex-
amining individual structures in 3D image data. The in-
creasing trend of statistical approaches (including model-
based segmentation) requires simultaneous segmentation
of many images. This makes automatic methods highly
needed. Automatic classification of different materials
based on Hounsfield scale [6] is only sufficient for simple
structures. To deal with more complex structures, state-of-
the-art algorithms require at least additional manual inter-
action for initialization, making them cumbersome in use
for large databases. This motivated the presented fopo-
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Figure 1: Segmentation of rodent skull 4 CT scan into cra-
nium, left and right mandible computed with the presented
automatic method.

logical segmentation method, where we keep track of the
global topology during the optimization to resolve other-
wise ambiguous segmentation problems.

Formally the task of image segmentation is to divide an
image volume [ into regions 7; (segments) according to
different materials or structures. For instance, partitioning
of bone structures should ideally produce an anatomical
decomposition into individual bones as shown in Figure 1.
An image volume is a parallel stack of images, generated
with a medical imaging device like CT/MRI scans where
each single image represents a slice through the scanned
object. The segmentation of bone structures in the rodent
skull is considered a particular challenging example [13].

In contrast to simple thresholding, the goal of this paper
is to find a segmentation where each bone structure is as-
signed to its own component 7;. To this end we represent
the topology of the bone structures in a Reeb graph [5]
which naturally leads to the formulation of the segmen-
tation problem in terms of graph operations like vertex-
splitting and computation of connected components. Par-
ticularly, each node in the graph corresponds to a con-
nected region of pixels in a specific image slice, while
edges indicate connected regions between adjacent slices.
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A segmentation can now be derived from the connected
components of the graph by taking the union of the corre-
sponding regions for all nodes in a particular component.

Adopting the topological segmentation method, two ap-
proaches for bone segmentation are developed and evalu-
ated. An example-based approach proofs its performance
on a dataset of 193 rodent skull uCT scans from which
64% are segmented fully automatic with a very high ac-
curacy as confirmed by a Morphometrics expert (A.C.
Schunke, pers.comm.). Considering, that only a single
manually segmented left mandible was required to pro-
duce this outcome, we consider this a particularly good
result. A second approach demonstrates that for moder-
ately challenging datasets, a segmentation can be achieved
even without any prior knowledge about the topology (e.g.
in form of an example).

The paper is organized as follows: After reviewing re-
lated work first, the topological segmentation method and
the discrete Reeb graph will be introduced. Based on this
method, two approaches will be presented in detail and re-
sults for a human skull and a foot dataset are presented as
well as an evaluation on a larger rodent skull database.

2 Related work

Reeb graphs were made popular in Computer Graphics
by Hilaga et al. [5], who present a multi-resolution vari-
ant with applications to shape matching and retrieval.
They were previously used for segmentation of point
clouds [14], where human body scans are divided auto-
matic into 6 parts: head, body and 4 limbs. The segmen-
tation is obtained from connected paths between critical
points in a discrete Reeb graph. The approach presented in
Section 4 is inspired by the level of detail hierarchy (LOD)
as presented by Hilaga et al. [5]. In contrast to a global
LOD hierarchy [5], a local hierarchy of nested segmenta-
tion candidates is evaluated in our approach, as similar as
to dynamic thresholding and the watershed-algorithm [1].

Model-based segmentation approaches are state-of-the-
art in Medical Imaging [4] but usually require a large
amount of examples to establish a profound model. In or-
der to support model-building, fully automatic [9], man-
ual [13] or semi-automatic segmentation methods similar
to the one described in this paper were developed.

Graph cut approaches comprise another large class of
image segmentation algorithms. They are used for ob-
ject extraction, after an initial user-labeling of some fore-
ground and background pixels. For an overview of those
approaches we refer to the survey of Boykov and Funka-
Lea [2]. Recently, graph cut techniques have also been
successfully applied to bone segmentation [9]. However,
the here presented methods explicitly optimize the global
topological structure of the segmentation and it is un-
clear how such global topological information could be
included in an energy function for optimization via graph
cut [8].

In Medical image processing a classification into dif-
ferent materials can be obtained through thresholding
the image with specific intensity values [11] according
the Hounsfield range of the corresponding material. An
overview of thresholding techniques is given by Sahoo
et at. [12]. From such classification a segmentation can
be obtained by finding the connected regions via a re-
gion growing process [10]. Often these segmentations are
topologically invalid and contain severe artifacts since the
Hounsfield scale is ambiguous and thresholding is not ro-
bust to noise.

The most similar work concerning the field of appli-
cation by Xiao et al. [13] is where rodent skull uCT
datasets are interactively segmented to build a statistical
model of shape variability. The interactive segmentation is
highly accurate but manually intensive and does not scale
to dataset sizes as presented in this work.

3 Topological segmentation

This paper deals with 3D image volumes given as stacks
of 2D images as acquired by a uCT device. Each 2D im-
age represents a slice S;: R* — R through the scanned ob-
ject, while the 3D image /: R3 — R is given (in discretized
form) by their union I = {J_, S;.

Based on the Hounsfield scale, the contents of a CT scan
can be classified roughly according to their density into
different materials like air, soft tissue, fat and bones. For
our application we are interested in bones which have a
higher magnitude in terms of Hounsfield units. The sim-
plest “segmentation” procedure via classification, is to ap-
ply a global threshold A, as follows: Let L; be all voxels
in the image slice S; which have a higher magnitude than
lmi,,, i.e.

Li={v|Si(v) > Anin} (1)

leading to a thresholded image /; . := (Ji_; L;. Note that
thresholding is only a classification of pixels and does not
provide a real segmentation into separate bone structures
as we desire. Formally, we define a segmentation of the
input image I ,,;, as a decomposition into connected re-
gions T, C I,,;, which are disjunct, i.e. T, NT; = @ and
provide a complete partitioning of the thresholded image
asly = Ui:l T;.. Further we will denote a group of sim-
ply connected voxels of a segment 7, in a specific slice i
as aregion R.

A classification of pixels like Eq. (1) induces a segmen-
tation into the connected components of the thresholded
pixels. In particular the segmentation induced by Eq. (1)
provides an under-segmentation for a small enough cho-
sen A, which serves as initialization and is further re-
fined by the methods presented in the remainder of this
paper. Since this initial under-segmentation is computed
by (global) thresholding, it exhibits typical thresholding
artifacts. Note that because of image artifacts like fuzzy
region borders, a segment 7, of the initial segmentation
may contain nodes which require a further separation as
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Figure 2: Reeb graph of a torus adopted from [5] and a
corresponding discrete Reeb graph.

well as connections between nodes which should not be
connected. This is also true for other global initializa-
tions [3, 7].

In the presented approach the topological segmentation
problem is solved by extracting artifacts and separate bone
structures from Eq. (1) via refining the Reeb graph at crit-
ical nodes, i.e. applying vertex-splitting (in the graph) and
corresponding region-segmentation (in the image slice). In
the following sections we introduce the Reeb graph con-
struction and present two different strategies for identify-
ing critical nodes, employing different heuristics for auto-
matic and example-based segmentation.

3.1 Reeb graph

In our application we address the segmentation process in
terms of graph operations. The structure of a Reeb graph
reflects the topological and skeletal structure of an object.
It can be defined on an object X via a continuous func-
tion u : X — R. The Reeb graph is the quotient space of
the graph of p in X x R [5]. The simplest variant of a
function, is the function, where the z-coordinate of a voxel
v(x,y,2) €1, is returned:

,LL(V()C,y,Z)) =z 2

This choice of u is naturally related to medical image data
which is given as a stack of 2D image slices. It is obvious
that the graph for an object changes when u changes. In
Figure 2 an example Reeb graph of a torus is illustrated.

We define a discrete Reeb graph as an undirected graph
G = (N,E) where N is the set of nodes representing con-
nected pixel regions on single slices and £ C N x N is the
set of edges derived from relating adjacent regions across
slices. An edge (n;,ny) is introduced for each pair of re-
gions R; and Ry on adjacent slices S; and Sy which are
overlapping, i.e. R;NRy # 0. Note that E is thereby re-
stricted to pairs of nodes in adjacent slices and there are
no edges inside a specific slice. In a Reeb graph criti-
cal points are locations where the topology of the object
changes. Accordingly a critical node n of the graph G is
identified when its in- or out-degree of connections deg(n)
is greater than one.

Further we introduce a traversal direction d* = +1 and
d~ = —1 in which the graph G is iteratively traversed
slice-by-slice. For a specific traversal direction we define
deg™ (n) as the number of edges to nodes in the next adja-
cent slice i/ = i +d* and deg~ (n) analogously for nodes
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Figure 3: Classification of nodes in a Reeb graph accord-
ing to a traversal direction z.

in previous slice i’ = i —d*. According to the traversal
direction each node n can be classified in three classes:

1. Simple node: deg™ (n) and deg™ (n) in {0,1}
2. Merge node: deg—(n) > 1

3. Splitnode:  degt(n) > 1
Critical nodes are identified as merge- and split-nodes in-
dependent from the traversal direction.

4 Simple automatic segmentation

Starting from an under-segmentation, an object is divided
by the connected components of its initial Reeb graph into
segments {7, }. The segments are refined at critical nodes
of their graph by a dynamic threshold process. The largest
connected components will contain the structures of in-
terest, while noise and other artifacts can be identified in
small connected components of the refined graph.

For the automatic approach only merge nodes are con-
sidered as critical nodes, indicating now a change in the
topology according to the traversal direction. For the op-
posite traversal direction, split nodes become merge nodes
and traversing the graph in both directions guarantees the
investigation of all critical nodes. The automatic segmen-
tation method proceeds slice-by-slice examining all criti-
cal nodes and possibly perform vertex-split operations re-
fining the graph. A variant of dynamic thresholding is used
to decide whether a critical node can be split within a user
specified value range.

The automatic approach starts off with the under-
segmentation induced by Eq. (1) and subsequently investi-
gates how the topology changes for all threshold values
in the given range [Auin, Amax]. The smallest threshold
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Figure 4: a) 3D volume of a rodent skull, b) Adjacent slices i and i/, side by side view of the slices, red lines indicating

the region borders, ¢) Corresponding nodes and connections.

A* > Apin is applied if the change in topology is consid-
ered plausible compared to the previous slice. If none such
A* < Amax is found, the investigated node is considered
stable.

The remainder of this section will give the details of the
algorithm followed by a short discussion of its parameters
and limitations.

4.1 Vertex split and consistent segmenta-
tion

In the dynamic thresholding process at a critical node n.,
we assume that the corresponding region R, is decom-
posed into k smaller regions F = {F,...,F;} induced by
a certain threshold A, see Figure 5. In order to decide
whether the decomposed regions F' provide a consistent
topological segmentation, they are compared with the re-
gions of the set of connected nodes Ny on the previous
slice i’. We define the change in topology to be plausi-
ble when none of the decomposed regions {Fj,...,F} is
again classified as merge node.

Once a threshold A* is found, the regions Ry.r of Ny.r
are used as an initial mask for region growing to define
the final segmentation of n.. Region growing is started si-
multaneously from the sets R,.r MR, until R, is completely
covered. After the region growing process, we obtain a set
of nodes Ny, representing the finally separated regions
connected one-to-one to Ny.r. A vertex-split is performed
by replacing the critical node n,. with the separated nodes
Njepp and the set of affected edges E is updated accordingly.

4.2 Therole of A,,;,, and A,

Note that simply splitting the graph G at each critical
node would generate an over-segmentation, while the ini-
tial segmentation according to A provides an under-
segmentation. In order to find a correct segmentation in
between those two, an upper bound threshold A,y is re-
quired as user input. Usually A,,;, and A,,,,; can be derived
directly from the Hounsfield scale.

;Lmin

W S O«
~ {Fi1...F}

Figure 5: Decomposition of a critical node for different
choices of A as Ay < Ap < A3 < Apgy. @) Initial region,
b) Trivial case of decomposition, ¢) Over-segmentation but
‘plausible’, d) Stable node.

The decomposition based on a threshold value A de-
pends on the scalar values of a critical region and can
be classified as illustrated in Figure 5. The trivial case
is shown in b), where the decomposition of the region
is topologically equivalent to the previous slice. On the
other hand, c) illustrates an example decomposition where
A < Apax and |F| > |Ny.¢|. We observed c) to be the typ-
ical case in our datasets. Note that in this case perform-
ing region growing directly from F' as seed regions would
result in a false over-segmentation which would in turn
corrupt the upcoming classification of nodes in the further
slices and finally lead to a false overall result. This shows
that performing a consistent segmentation based on a plau-
sible A* is vital to acquire correct results for case c¢) under
the assumption that the previous slice was segmented cor-
rectly.
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4.3 Limitations of the automatic approach

The A,qx criterion was introduced to provide a correct seg-
mentation between an over- and an under-segmentation.
Connected structures with a high intensity profile can not
be separated by a low A, Whereas structures of high in-
tensity experience an over-segmentation by a greater A,
It has shown to be a non-trivial task determining a good
global value for A, and even for some images no choice
of Ayax could accomplish a correct segmentation.

A vertex-split is performed at critical nodes depending
on the choice of u Eq. (2) as well as on the traversal di-
rection. Hereby a restriction of orthogonal cuts is induced,
since the edges E are introduced for overlapping adjacent
regions. Consequently, the choice of the scalar function p
is vital for a successful topological segmentation.

5 Segmentation from single example

In this section we show how the topological segmenta-
tion approach can take advantage of already a single ex-
ample provided by the user. In our application, the ex-
ample is a manually generated segmentation of a single
dataset. Through an alignment method the example seg-
ment is fitted to their counterparts in each dataset by trans-
lation, rotation and scaling. Hereby differences due to po-
sition, orientation and size are compensated. This provides
a coarse initialization for the segmentation process, which
is exploited as described in the following. The particular
alignment method will be discussed in the results section.

The presented algorithm requires that the initial coarse
segmentation does contain the target structure completely.
Although it is allowed to be larger than the target structure,
the target structure should be the dominant structure in-
side, i.e. it should account for most of the non-background
voxels and it should not contain whole regions of other
structures. In order to guarantee that no voxels of the target
structure are missing, a rough cutout according to an ex-
ample segment is obtained by enlarging the example mask
e.g. by filtering with a uniform Gaussian kernel of stan-
dard deviation o. We assume that the rough cutout con-
tains then all voxels of the target structure plus perchance
some additional voxels from other segments as illustrated
in Figure 6e).

In the following, we will investigate only the largest
connected component of the Reeb graph corresponding to
the dominant structure, while other connected components
are assumed to be artifacts produced trough the cutout and
may belong to other structures. Note that the largest con-
nected component could now be refined with the automatic
approach from Section 4, leading in the ideal case to a re-
sult as illustrated in Figure 7, resembling a manual seg-
mentation by an expert. But it turned out, that in prac-
tice on our dataset of rodent mandibles, the strong shape
variation prohibits a correct segmentation in every case.
Particularly it showed to be very difficult (and sometimes

Figure 6: Generating an initial segmentation from an ex-
ample. a) Aligned example, b) Gaussian filtering, c) Input
image I . , d) Binary mask, €) Result of masking where
red circles highlight remaining artifacts (see Section 5).

impossible) to choose a good user parameter A, for the
automatic approach. Therefore we will describe now a dif-
ferent method, independent from A, taking further ad-
vantage of the example.

5.1 Example based approach

In the following we consider a separation of an image into
two structures. It is obvious that when one structure is
found, then the second is induced. For the complete seg-
mentation in this case it is sufficient to create an exam-
ple for only one structure. Through an alignment method
and a rough cutout, a segment is generated whose largest
connected component provides a segment Tjy.s for fur-
ther investigations. The remaining segment is defined as
Tremain = 1, \ Tinvesr- We will now describe several op-
erations on the Reeb graph nodes and silently assume the
corresponding changes on the edge set E.

In the segment ;.5 all nodes are labeled as touching
nodes if they contain voxels which are adjacent to vox-
els in the other segment T4in. A touching node requires
a separation and therefore is also considered as a critical
node. The base of this heuristic is that refining the graph in
this nodes is sufficient to generate a correct separation of
the two structures. Since touching nodes can occur in ev-
ery position in the graph, first an over-segmentation for the
segment Tj,,.s is generated. This is done by refining the
graph at all critical nodes iteratively slice-by-slice in both
traversal directions. Afterwards all nodes except those
which are labeled as touching nodes are restored to its pre-
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Figure 7: a) Rough cut-out of a left rodent mandible with
artifacts, red spheres represent the nodes in the Reeb graph
G, b) Result of the automatic segmentation.

vious state yielding the over-segmentation only at touch-
ing nodes. After computing the largest connected com-
ponent, over-segmented regions have to be merged again.
This can be done by deleting all regions of nodes which
do not belong to the largest connected component. The
refined segment Tj,,.s; induces now also the correct seg-
mentation of the remaining segment.

This approach for two segments can be generalized for
more segments in a simple recursive fashion. In the first
step the union of all but a single segment T,epqin form
Tivest- After applying the above pairwise procedure the
correctly segmented Tjemqin 1S removed from the input set
and we repeat until only two segments remain.

5.2 Limitations and heuristics

While evaluating the example-based approach on the ro-
dent skull dataset we encountered some practical restric-
tions for an axis-aligned choice of the scalar function
1 Eq. (2). To this end the following heuristics were de-
veloped which can be applied in a post-processing step
without changing 1.

Problem 1: The rough cutout may generate regions
which contain all voxels of another structure and therefore
the corresponding nodes can not be labeled as touching
nodes.

Heuristic 1: The graph is traversed slice-by-slice for
a specific direction and labeling and splitting process is
started. Each node is labeled on the behalf of its predeces-
sor. If a node can be classified as merge node according to
the traversal direction and its parents have different labels,
this node is separated and the resulting nodes are labeled
one-to-one according to the previous node. Such labeling
process is shown in Figure 8.

Problem 2: The general limitation of forbidden orthog-
onal cuts and interlocking areas illustrated in Figure 10 led

000 OO 00
5000°720% 00000
000000000000 o

Figure 8: a) Incorrect labeling of touching nodes (orange)
in an abstract Reeb graph, b) and c) Labeling and split
results for different traversal directions (see Section 5.2).

to the following heuristic.

Heuristic 2: Initially touching nodes are assigned to the
structure they are touching. The graph of the investiga-
tion segment is traversed in direction towards these nodes.
Whenever a region Rj,.s of the investigated segment in
slice i has an overlap to a region Ry, of the remain-
ing segment in the next slice ', a dynamic threshold pro-
cess is started for the region R,epqin. As described in Sec-
tion 4, a decomposition of this region is generated for a
user-defined upper bound A,,,. But here we restrict the
decomposition to be correct only when a decomposed re-
gion F; overlaps to the region Rj,,s in slice i and the num-
ber of pixels in F, is less than of Rj;.s. In the case when
such F; is found, it is removed from R4, and assigned
to Tinvesr Otherwise the process stops. This heuristic is de-
rived from the observation that in the rodent dataset the
regions of the tooth become smaller from slice to slice to
the peak of the tooth.

5.3 Application to rodent skulls

A manual segmentation was generated only for the left
mandible of a single dataset. As a mandible is almost
symmetric, the right mandible is generated by mirroring
the segmented left mandible. For each example segment a
rough cutout and the largest connected component is gen-
erated providing the segments T}, and T,;gp,,. In the next
step these segments are merged into 7;,qnqipie Which is now
the investigated segment. Heuristic 1) with the positive
traversal direction is used to obtain a segmentation into
Tnandivie and Ty, For the separation of the mandible in
left and right, same heuristic is used but the traversal di-
rection is inverted. The problem of interlocking areas as
shown in Figure 6 is solved with Heuristic 2) by assigning
the touching nodes at this area to the skull. After the seg-
mentation of the mandible is generated, both graphs of the
segments are traversed simultaneously to the direction of
touching nodes, which are assigned to the skull (negative
traversal direction) and the described technique of Heuris-
tic 2) is performed.
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Figure 9: Results of automatic approach: a) Segmentation
of a skull in mandible and skull with the slicing direction
normal to the blue plane. b) Result for the foot dataset
sliced along z. (Datasets courtesy of Kitware and Philips
Research respectively.)

6 Results

In this section we will discuss results of the automatic and
example based approaches on two test datasets and present
an evaluation on a real-world dataset of rodent skull uCT
scans.

6.1 Simple automatic segmentation

Despite its simple nature in design, the automatic segmen-
tation already provides a good segmentation on two tested
datasets. Figure 9a) shows the resulting segmentation for
a human skull dataset separated into mandible and skull
without any prior knowledge besides the Hounsfield range
for bone material. In another example we were able to
generate a rough segmentation of a human foot dataset, il-
lustrated in Figure 9b). The latter example shows some
limitations of the simple automatic approach: Since the
u-Function is chosen axis aligned the approach is only
able to find separations along the chosen slicing direction
and not orthogonal to it which would be required for some
parts of this dataset.

6.2 Example-based segmentation

The example-based approach was applied to separate the
skull of 193 uCT datasets at a resolution of 200 x 200 x
400 into the three parts: skull, left and right mandible.
As example we got one manually segmented left mandible
which was mirrored to produce a second virtual example
for a right mandible. An automatic landmark alignment
procedure based on 3D Sift features was employed to find
an optimal translation, rotation and scaling of the exam-
ples to a particular scan.

The results were evaluated by an expert providing a rate
of 64% successful segmentations of very high quality such
that the results could directly be used for further applica-
tions like model building. In the remaining segmentation
results a rate of 8% contained small artifacts as illustrated
in Figure 10. For 28% the segmentation was not suc-
cessful, partly because of bad alignment of the example
and partly because the heuristic post-processing routines
failed.

Figure 10: Small artifacts at the interlocking area of the
front tooth.

To the best of the authors knowledge this is the first
automatic segmentation of a larger rodent skull database.
The recent work of Xiao et al. [13] succeeded to segment
16 of similar datasets with a semi-manual procedure which
is not scalable to hundreds of scans as can be handled by
our approach.

7 Conclusion

We have introduced a topological segmentation method
operating on a discrete Reeb graph G. This method en-
ables to formulate segmentation algorithms by graph op-
erations and in particular by performing vertex splits at
critical nodes in the graph to refine an intermediate seg-
mentation. Using this technique we have presented two
automatic approaches to perform segmentations of topo-
logical complex structures. The results are fully automatic
decompositions of an input dataset into dominant struc-
tures, smaller artifacts, noisy and unstructured parts repre-
sented by the connected components of G.

The presented techniques can deal with structures en-
closed by a closed boundary contour, also in the case the
structures are touching each other or interlocking like for
instance at joint locations. Since our method does not
rely on a surface model internally it can further deal with
structures of complex and irregular topology not accessi-
ble with surface models and thus is ideally suited to be
used in model building. The segmentation as described in
Section 5 can take advantage of a given example. Note
that although we used a manual segmentation as input, the
input example needn’t be a precise segmentation for the
algorithm to work. We are confident that a coarse segmen-
tation fulfilling the stated properties can also be derived
from a sketch-like user input similar to Xiao et al. [13].

We tried to restrict the algorithms to very sparse user
input. The first approach requires only two user parame-
ters [Amin, Amax] to mediate between an under- and over-
segmentation. In the second approach we showed how
to take benefit of a single example segmentation allow-
ing the user to implicitly define the target structures for
segmentation. Additional post-processing heuristics were
developed to overcome some of the limitations encoun-
tered during application. This lead to a successful auto-
matic segmentation of a large and challenging real-world
dataset.
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Figure 11: Segmentation results for the rodent skull dataset with a single manually segmented left mandible given as
example (upper left). Note the high shape variability and the challenging structures in the area of the incisors, the molar
row of teeth and the rear mandible processes which are interlocking with the cranium.

Considering the fact, that the presented Reeb graph ap-
proach produced results resembling a manual segmenta-
tion by an expert, we believe that there is further potential
for topological graph algorithms in image segmentation.
Directions for future research include the combination of
graph matching and segmentation algorithms by which the
image structures could be automatically detected and sepa-
rated based on prior knowledge. And obvious the choice of
problem-dependent scalar functions different from Eq. (2)
provides ground for further research.
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