
Deriving Shape Grammars on the GPU

Mark Dokter∗

Supervised by: Markus Steinberger and Michael Kenzel†

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

Due to growing demand for computer generated graphi-
cal content, procedural modeling has become an important
topic in the gaming and movie industry. Creating vast
amounts of content by hand requires excessive amounts of
manual labor. Using a procedural rule set, entire worlds can
be generated by a computer. However, the traditional CPU-
based derivation of a large city can take multiple hours,
making rapid design iterations impossible. In this paper,
we investigate different strategies to execute procedural
modeling on graphics processors using CUDA. We com-
pare a persistent threads megakernel approach to simple
kernel calls and different rule queuing strategies. Along
these lines, we explore the trade-off between precompiling
an entire rule set and interpreting a rule set online.

Keywords: GPGPU, megakernel, procedural modeling,
rule derivaton, shape grammar

1 Introduction

Generating graphical content in an automated fashion has
become increasingly important during the last decade.
Many recent computer games offer vast open virtual worlds,
where the player can freely explore the environment. In
the latest version of Grand Theft Auto for example, the
area is not confined to a single city, but also includes its
suburbs, where one can walk, drive or fly. Movies like Lord
of the Rings show huge battlefield scenery with thousands
of warriors fighting on wide open plains.

Those are examples of extensive use of digitally cre-
ated content, which requires vast amounts of manual labor
to produce. By automating content creation as much as
possible, artists can spend more of their time on elements
relevant to narrative and gameplay, rather than on creating
peripheral scenery.

The task of creating reoccurring, parameterizable objects
like houses or trees is well suited to procedural modeling.
Rules for model production can be defined in a shape gram-
mar. Starting from an initial set of shapes, these rules
iteratively add detail to the scene. After fully evaluating

∗dokter@icg.tugraz.at
†steinberger@icg.tugraz.at, kenzel@icg.tugraz.at

such a rule set, the geometry which describes the entire
scene is ready for rendering. However, grammar derivation
for thousands of buildings can take many hours on a con-
ventional CPU, even with several cores and a high clock
rate.

One way to increase performance is parallelization. Par-
allelizing tasks and algorithms has gained much popularity
with the introduction of general purpose GPU computing.
With many cores on a single chip, the performance of a
GPU is unmatched by any CPU, assuming a suitable par-
allelizable task. Procedural geometry generation is such
a task, which can be, if done carefully, parallelized and
computed efficiently on a GPU.

As will be discussed in the section on related work, vari-
ous attempts of mapping this challenging task to a graphics
processor have already been made. This work focuses on
exploring the benefits and drawbacks of deriving precom-
piled rule sets versus interpreting them at runtime. Fur-
thermore, various methods of controlling the GPU rule
evaluation process will be subject to testing. This includes
launching several successive kernels as well as deriving the
entire scene using a single kernel launch, using a persistent
threads megakernel approach.

2 Related Work

Currently, the most widely used grammar for procedural ar-
chitecture modeling is CGA [12]. CGA is based on Stiny’s
work on shape-grammars [16] and set-grammars [18]. Fur-
thermore, it uses split operations for facade modeling as
proposed by Wonka et al. [19] and transformation opera-
tions similar to L-systems [13]. Approaches augmenting
the functionality and usefulness of shape grammars exist
on more general non-terminal symbols [3] and mesh refine-
ment [2]. Apart from grammar based approaches to the
procedural generation of geometry, other methods can be
used to obtain high quality models [6, 7, 11].

Parallel grammar derivation has been investigated in
various approaches which differ greatly in their strategy.
Deriving L-systems on CPU clusters has been done by [20].
Considering the inherent parallelism of the algorithm, CPU
clusters seem to be a good idea. However, when using a
GPU, the results are already in the memory of the graphics
card which is obviously more convenient for rendering.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



A recent L-system generator for the GPU has been pro-
posed by Lipp et al. [8]. In their work, they used mul-
tiple kernel launches to implement iterative rewriting of
L-systems. Using a single thread per symbol without sort-
ing the symbol stream has some drawbacks. First, memory
accesses can become problematic if symbol sizes are not
coherent. Second, thread divergence, which is the effect
of threads taking distinct execution paths, results in dif-
ferent times the threads need to finish their work. On a
GPU, where it is desirable to have as many threads occu-
pied as possible at any point during run time, this effect
causes some threads to wait on others which might take
longer. This drastically impacts performance. And third,
the management overhead for keeping track of where to
store symbols quickly becomes a dominant factor. Thus,
for context sensitive grammars, the derivation process was
even slower on a GPU than on a CPU.

Shader based derivation of split grammars has been pro-
posed and investigated by Lacz and Hart [4], Magdics
et al. [9] and Marvie et al. [10]. The method by Lacz
and Hart uses a render-to-texture loop and imposes the
main workload of the algorithm on sorting intermediate
symbols—similar to the overhead found in L-system gener-
ator by Lipp et al. The method Magdics et al. also requires
several rendering passes. It tries to prevent divergence by
using a different shader for each output symbol. In our
evaluation, we incorporate an approach inspired by their
work, efficiently grouping output symbols and launching
individual kernels for each symbol type.

The approach by Magdics et al. avoids multi-pass ren-
dering by using a fixed size stack. Using a fixed size stack
has multiple drawbacks. First, recursion depth is limited.
Second, stack elements might be spilled to slow global
GPU memory. Third, parallelism is limited to the number
of axioms. And fourth, divergence can play a crucial role,
if objects do not have identical structure.

An approach focusing on parallelizing grammar deriva-
tion for procedural modeling of architecture has been pub-
lished by Steinberger et al. [15]. The PGA grammar is
based on CGA[12] and uses a software scheduling GPU
framework [14]. To avoid divergence, their approach
groups shapes, which are to be processed by the same
rule. Additionally, they draw parallelism from the rule
itself. PGA compiles the entire rule set to achieve high per-
formance rule derivation. The work reported in this paper
is a direct extension of PGA.

3 GPU Split Grammars

Split grammars, introduced by Wonka et al. [19], are spe-
cialized set grammars, which impose restrictions on the
allowed shapes and operations to make the grammar simple
enough for automated derivation, but sufficiently expressive
to allow the modeling of many different objects.

A split grammar builds on the notion of shapes and set
grammars. A shape can be defined as follows [17]:

Definition 3.1 A shape is a limited arrangement of straight
lines in three-dimensional Euclidean space.

Split grammars operate on a set of basic shapes, which can
have attributes, can be parameterized and labeled. These
basic shapes form the core buildings blocks of split gram-
mars. Examples for the geometry represented with basic
shapes are boxes, spheres, cylinders, rectangles, etc. The
parameters of these basic shapes define their extent, their
position, etc. The label associated with the shape is often
called symbol. This symbol can either be a terminal symbol
∈ T or a non-terminal symbol ∈ N.

A grammar can be defined as a set of production rules
R on a set of symbols U , using the following definition
similar to the one given by Wonka et al. [19]:

Definition 3.2 A grammar G = (N,T,R, I) consists of the
non-terminal symbols N ⊆U, the terminal symbols T ⊆U,
a set of initial symbols (axioms) I⊆N and a set of rewriting
rules (productions) R⊆U×U∗.

A rule a−→ B in a grammar is applicable to a non-terminal
symbol a ∈ N, replacing it with B, whereas B can be any
combination of non-terminals ∈ N and terminals ∈ T .

In a set grammar, the production process works on an
active set of symbols. Initially, the active set consists of
all axioms. During production, any non-terminal symbol
from the active set of symbols is chosen and a fitting rule
is executed on this symbol. The symbols generated by
that rule are put back into the active set of symbols. This
process continues, until there are only terminal symbols
left in the active set.

In the case of split grammars, the production process
works on shapes. Rules thus describe geometry operations
on the input shape, generating any number of new shapes.
For a grammar to be a split grammar, only two kinds of
rules are allowed [19]:

• Split rules: A split rules splits a shape into multiple
shapes, covering the exactly same volume as the input
shape.

• Conversion rules: A conversion rules replaces a shape
by zero to multiple shapes, where the generated shapes
must be contained in the volume of the input shape.

These restrictions allow for a simple grammar derivation,
as rules can only influence a constrained volume, as shown
in Figure 1. Furthermore, every shape can be treated inde-
pendently of the other shapes in the active set. This allows
for a fully parallel production process. CGA, and conse-
quently our grammar as well, do not have these restrictions
and shapes can also increase in size, be moved or extruded.
Furthermore, to simplify things, our implementation does
not support control grammars lie CGA does.

To ease the process of writing rules, rules are usually
composed of operators. Operators can be seen as basic
geometric transformations executed in sequence to form a
rule. Our grammar supports the transform-only operators

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



H

F

F

F

F

F T T T T

T WM M
M

M

M

W

(a) A Simple Split Grammar
(b) Result of the rule
set (a)

Figure 1: A split grammar works a set of shapes, each
associated with a symbol. Rules (a) replace one shape
by a group of other shapes. Using split grammars, more
complex objects can be generated from very simple rules.

Translate, Rotate, and Scale and generative transforma-
tions that produce more shapes than existed before the
transformation. Those operators are Repeat and Subdivide.
Furthermore, we support two operations that change the
dimension of a shape: the Extrude operator, applied to a
quad, generates a box the ComponentSplit operator, ap-
plied to a box, generates quads, representing the six faces
of the box. Finally, we support the GenerateTerminal and
the DiscardTerminal operator. The former calculates the
geometry or simply copies the scaled model matrix (details
in the implementation section 4). For instance, the third
rule in Figure 1(a) splitting shape T into five shapes can be
modeled as a combination of two Subdivide operators.

We use C++ template code to write define operators in
the rule sets. Three example operators are described below
with listings 1, 2 and 3 to illustrate the syntax:

• Repeat takes two parameters, a successive symbol
and a shape and produces as many new shapes with
the width specified by the second parameter as fit into
the original shape. The operator can work on either of
the other two dimensions.

Listing 1: Repeat Operator
1 repeat<X, 2, CallRule<Successor>>

applied to a box with width 8 will output four new
boxes with a width of two (and the remaining extents
according to the input shape), which all have the sym-
bol ”Successor” as its successive symbol.

• Subdivide takes a varying amount of parameters and
successive symbols plus the input shape. The first
parameter is again the axis, the operation is applied
to. The remaining parameters specify the relative
width/height/depth for the newly generated shapes
and their successive symbol, which can be different
for each shape. The symbol can also be the same for

every output shape, but has to be specified as many
times as there are output shapes.

Listing 2: Subdivide Operator
1 subdivide<Y,
2 SubdivParam<500, CallRule<Successor1>,
3 SubdivParam<500, CallRule<Successor2>>>

Applied to a box with the height of four, Subdivide
will produce two boxes with the height of two (and the
remaining extents according to the input shape). The
successive symbols of the two resulting boxes will be
”Successor1” and ”Successor2”, respectively.

• ComponentSplit takes an input shape and generates
as many new shapes of lower dimension as are needed
to represent the faces of the original shapes. Our
implementation supports only the splitting of a box
into six quads. The operator needs to be provided only
with the six successive symbols (which may be all the
same symbol, but in this case have to be specified six
times).

Listing 3: Component Split Operator
1 Compsplit<CSP<CallRule<Bottom>,
2 CSP<CallRule<Top>,
3 CSP<CallRule<Right>,
4 CSP<CallRule<Left>,
5 CSP<CallRule<Back>,
6 CSP<CallRule<Front>>>>>>>>

Using CUDA, a single thread can be launched for every
shape in the active set, applying the rule associated with the
shape’s symbol. Despite the great potential for parallel exe-
cution in split grammars, traditional GPU stream process-
ing approaches are not well suited to fulfill the derivation
process efficiently because work loads are highly irregu-
lar in split grammars, leading to thread divergence. Since
our grammar descends from split grammars, this problem
needs to be considered.

To avoid thread divergence, a scheduling system based
on rule queuing can be set up to keep up the occupancy of a
GPU [15]. The results of this rule scheduling paradigm are
promising, as this system allows to generate whole cities
in real time. However, this work only focuses on a single
strategy to schedule rules: The entire GPU is occupied with
a persistent threads approach [1]. Symbols of equal type
are collected in queues, while workers draw elements from
these queues. All rules have to be available at compile
time, requiring a full recompile when altering the rule set.
In this work, we investigate the alternative methods to
schedule shape grammars on the GPU. On the one hand, we
investigate the benefits and downsides of scheduling whole
rules versus scheduling work for each operator individually.
On the other hand, we investigate the trade-off between
compiling entire rule sets and interpreting the provided rule
set during runtime.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Using an individual queue for each rule, we
provide an iterative shape rewriting algorithm, which does
not suffer from divergence. At first all axioms are being
placed in the queues. Then, we read the queue fill rate back
to the CPU before launching just enough threads to process
all queued shapes. We continue this process until there are
only terminal shapes left.

3.1 Iterative Production

The most straight forward way to tackle shape grammar
evaluation is starting a single thread for each symbol in
the current active set. This is similar to the approach by
Lipp et al. [8]. As mentioned before, this method has
the drawback of extensive thread divergence. Inspired by
the approach by Laine et al. [5], we avoid thread diver-
gence, providing individual queues for each rule. Before
running the rule evaluation, we allocate a queue for each
rule on the GPU. We then insert the axioms into the per-
rule queues. After querying the queue fill rates, we start an
individual kernel for each queue, launching just as many
threads as there are elements in each queue. Each thread
then fetches one element from the queue and executes the
rule associated with it. During rule evaluation, new shapes
are generated, which are again inserted into the respective
queues. Terminal shapes are placed into a separate set of
arrays, for which no rule evaluation is taking place. These
arrays are later used for rendering. After all kernel launches
are completed, we read the queue fill rates from the GPU
and again launch kernels to evaluate rules for all shapes
currently being held by all queues. We continue this pro-
cess until all non-terminal shapes have been processed, i. e.,
all queues reach an empty state. Shapes currently being
queued represent the current active set. This process is
visualized in Figure 2.

Using this approach, all threads within one kernel eval-
uate the same rule, executing the same set of instructions.
Thus, no thread divergence occurs and execution is efficient
on the GPU hardware. While this approach is set up easily,
deriving a whole rule set requires many kernel launches.
Additionally, the queue fill rates need to be read back from
the GPU before a new set of kernels can be launched. This
step cannot be avoided, as the number of threads to be
launched needs to be known.

Figure 3: As alternative rule derivation algorithm, we use
a persistent megakernel setup. Worker blocks are running
in an endless loop. At the beginning of each loop iteration,
they draw a new setup of shapes from one of the queues and
evaluate the associated rules, before inserting the generated
shapes back into the queues. The kernel is kept alive until
all non-terminal shapes have been processed.

3.2 Persistent Megakernel Production

As alternative way to tackle shape grammar evaluation on
the GPU, we use a persistent threads approach [1]. We
again use a single queue per rule. But instead of launching
a new kernel for every rule production, we run threads in
an endless loop. In every loop iteration, each thread draws
a shape from one of the queues and executes its associated
rule. If new shapes are being generated, we add them back
into the respective queues. As shapes are being drawn from
the queues and inserted into the queues concurrently, we
use a flag per queue element to avoid errors due to read-
before-write dependencies [14]. All threads continue in
their loop, until all queues are empty and no thread is still
evaluating a rule. To avoid thread divergence, we force all
threads within a block to draw shapes from the same queue
in every iteration. This setup is outlined in Figure 3.

A persistent megakernel setup avoids synchronization
with the CPU and does not have any kernel launch over-
head. On the downside, all rules must be compiled into the
same kernel. As kernels are optimized as a whole, the char-
acteristics of the most resource-hungry rule determines the
efficiency of all others. Furthermore, the persistent setup
requires a more complex queuing strategy to avoid errors
due to read-before-write dependencies. As our grammar
does not introduce any priority among rules, shapes can be
drawn from any queue at the beginning of each iteration.
To avoid idle threads, we circle through all queues in a
round robin fashion and only draw shapes from a queue if
there are enough shapes in the queue to provide all threads
in the block with work.

3.3 Precompiled Rules

The goal of the precompiled rule set approach is to leave
as many decisions as possible to the compiler. For this
approach, we require the complete rule set to be specified
beforehand. This includes all rules, their parameters, and
outputs. The only information not required in advance are
the axioms. All computations and branch decisions that are
not input dependent need only be done once, so we perform

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



them at compile time. Thus, during runtime, all operators
can be executed without any additional information. No
lookups to rule tables or symbol translations are needed.

The anticipated result is that this method achieves the
best possible performance when compared to approaches
that can adjust their behavior to different rule sets during
runtime. Precompiled rules lose the flexibility of chang-
ing the rule set at run time and need significantly longer
compile time. Usually, the performance gain from precom-
piling a rule set would be leveraged in production systems,
such as games, once the design phase is finished and no
interactivity is needed anymore.

Precompiled rule sets are evaluated in a ”one rule at a
time” fashion by our software. This means that several
operators can be chained together in a rule which forms
the procedure to be called by the scheduler. While this
approach has low scheduling overhead, it may not exploit
all options for parallelism. The same operators are likely to
be used in different rules and could be executed efficiently
in parallel. However, the scheduler only knows about rules,
thus it treats all rules as different. Moreover, the complexity
of such a precompiled rule set can increase quickly. This
circumstance not only imposes high requirements on the
quality of the compiler, but also, if not implemented care-
fully, results in very high compile times, which may only
be tolerable for production use.

3.4 Interpreted Rules

Interpreting rules at runtime gives flexibility when design-
ing new objects at the cost of performance. With this ap-
proach, rule sets can be imported from file or created inter-
actively, possibly with a rule editing tool—ideally with a
graphical user interface.

In the interpreted mode, our solution evaluates rule sets
in a ”one operator at a time” fashion. This means that every
rule is broken apart into its operators and intermediate
shapes are generated. These shapes are handed over to the
scheduler. To determine how operators are strung together
to rules for the currently used rule sets, we generate a
dispatch table. This table holds for each (intermediate)
symbol the operator to be executed, the parameters for each
operator and all generated output symbols. During runtime,
whenever a thread starts the evaluation for a certain shape, it
fetches all parameters from the dispatch table and executes
the requested operations. To avoid divergence, we keep
one queue per operator. When a new shape is generated,
we look up which operator should be called for it next and
insert it into the respective queue.

The major advantage of interpreted rule sets is the ability
to alter the rule set during run time, allowing for efficient
prototyping and immediate feedback. Another advantage
of interpreted rules is that the scheduler is now exposed
to all available parallelism: shapes to be executed by the
same operator can be grouped, even if they are used in
completely unrelated rules.

4 Implementation

Our implementation is written in CUDA and C++ and
makes heavy use of templates. Rendering is done in two dif-
ferent ways using OpenGL. The two variants are instanced
and non-instanced rendering. In the non-instanced method,
vertex, normal and instance data is generated by the termi-
nal operator. The instanced method renders basic shapes
(boxes, quads, etc) and only needs to apply the calculated
model matrix to put the shape into its place in the final
rendering.

Using instanced rendering has three advantages: First,
during terminal evaluation, less data has to be written to
slow global GPU memory, as only the matrices need to be
copied. Second, less storage is required between genera-
tion and rendering. And third, during rendering, less data
needs to be read, saving memory bandwidth. However, the
number of vertices of the basic shapes is too low for an
efficient usage of instanced rendering. Thus, rendering is
actually slower using instancing.

To implement a shape, we store its type, size and the
model matrix (and the symbol ID in the interpreted method).
All operators, except the GenerateTerminal operator, only
alter these attributes, which is all the information needed
to produce the geometry data. Using the non-instanced
rendering method, GenerateTerminal calculates, according
to the type of the shape, the vertex attributes and stores
them in an OpenGL buffer, which is mapped to CUDA
before the generation process starts. If we use instanced
rendering, all that is left to do for the GenerateTerminal
operator, is to store the model matrix in the OpenGL buffer.

The precompiled method is implemented using the tem-
plate meta-programming paradigm. All rule sequence de-
cisions are made by the compiler according to the rule
definitions, which creates instances of rules and operator
chains at compile time. The rule definitions are written
in C++ template code as shown in listing 4. We use the
template code not only to generate the operator chains for
the precompiled method, but also to fill the dispatch tables
for the interpreted case. However, the compile process in
the interpreted case does not involve the generation of GPU
code, only the CPU code generating the dispatch table.
Thus, a full runtime adjustment of the rule set could easily
be achieved using a custom parser.

Listing 4: Sample Rule Set
1 struct RuleB : RuleT<Box, IfSizeLess<X, 200,
2 DiscardTerminal, GenerateTerminal> > {};
3
4 struct RuleA : RuleT<Box,
5 translate<0, 567, 0, GenerateTerminal > > {};
6
7 struct StartRule : RuleT<Box,
8 rotate<45000, 45000, 0, subdivide<X,
9 SubdivParam<270, CallRule<RuleA>,
10 SubdivParam<160, CallRule<RuleB>,
11 SubdivParam<300, CallRule<RuleA>,
12 SubdivParam<270, CallRule<RuleB>
13 > > > > > > > {};
14
15 typedef RuleSet<RS<StartRule, RS<RuleA,
16 RS<RuleB> > > > TheRules;

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Houses S. Sierpinski M. Sierpinski

Rules 9 5 15
Operators 11 4 4
Terminals 332.8k 3.20M 1.35M

Vertices 7.99M 75.8M 32.5M
Indices 11.99M 115.2M 48.7M

Table 1: Test scene statistics

Figure 4: The Houses testcase shows a scene of 32× 32
simple house models.

5 Results

As this paper focuses on the rule derivation process, only
rudimentary shaders have been applied to visualize the
produced geometry. The absence of visually appealing
rendering, as well as other features not relevant for this
paper, like optimizing the number of objects that need
to be generated or ignoring geometry that need not be
regenerated for every frame is the topic of future work. The
results of the tests presented in this section were carried out
on a system with an Intel Core i7-3770 CPU at 3.4 GHz, 16
GB of main memory and a NVIDIA Geforce GTX TITAN
with 6 GB VRAM.

We compare eight different configurations, which are
variations of interpretation and precompilation, instanced
and non-instanced rendering, as well as iterative production
and persistent megakernel production. We applied these
variation to three different rule sets: Houses, Single Sier-
pinski, and Multi Sierpinski. The statistics for these three
rule sets are summarized in Table 1. Example views for all
scenes are shown in Figure 4-6.

The evaluation results are shown in Table 2-4. In all
examples, the generation time in the instanced variant was
between three to five times lower than the non-instanced
variant. The highest difference was achieved in the Multi
Sierpinski test case, which generates a vast amount of ge-
ometry with relatively few rule evaluations per terminal.
This fact is clearly visible when looking at the number of

Figure 5: Multi Sierpinski consists of 13× 13 Sierpinski
Cubes at recursion depth 3.

Figure 6: Single Sierpinski shows one deep Sierpinski Cube
at recursion depth 5.

tg tr load store

int
n-inst IP 16.6 2.4 1.55 28.51

PMK 15.3 2.3 1.50 26.46

inst IP 4.5 5.7 1.33 7.72
PMK 6.6 5.7 1.30 8.97

pre
n-inst IP 21.4 2.4 1.11 32.93

PMK 11.9 2.4 0.75 22.56

inst IP 2.8 5.7 0.75 4.72
PMK 2.5 5.8 0.64 5.40

Table 2: Evaluation results for Houses, including inter-
preted (int) and precompiled (pre) rule sets; non-instanced
(n-inst) and instanced (inst) rendering, as well as itera-
tive production (IP) and persistent megakernel production
(PMK). Generation time (tg in ms) corresponds to the time
needed for rule evaluation, tr is the time spent in OpenGL
rendering (ms), and load/store correspond to DRAM load
and store requests to global GPU memory during grammar
derivation.

tg tr load store

int
n-inst IP 144.5 22.3 14.9 239.4

PMK 103.3 22.1 11.7 188.1

inst IP 33.4 55.3 13.1 51.9
PMK 32.3 56.0 11.6 52.0

pre
n-inst IP 196.4 22.5 9.0 306.3

PMK 105.7 22.0 5.8 190.4

inst IP 17.9 55.0 6.2 33.3
PMK 21.8 55.3 5.8 34.7

Table 3: Evaluation results for Single Sierpinski

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



tg tr load store

int
n-inst IP 57.6 9.2 4.6 98.2

PMK 45.8 9.1 3.9 84.6

inst IP 10.7 23.2 3.8 18.6
PMK 9.4 23.5 3.7 17.7

pre
n-inst IP 84.5 9.3 2.3 131.1

PMK 52.0 9.2 2.7 95.5

inst IP 5.5 23.3 1.1 11.3
PMK 6.6 23.2 1.2 13.5

Table 4: Evaluation results for Multi Sierpinski

DRAM stores. The rendering time itself was hardly in-
fluenced by instancing, confirming that rendering really
simple shapes using instancing is not more efficient than
rendering the uncompressed geometry.

Surprisingly, in the non-instanced variant, interpreted
rule evaluation was faster than precompiled in half of the
cases, achieving an overall faster average rule evaluation by
12%. In the instanced variant the relationships are reversed,
with precompiled outperforming interpreted by 84% on
average. In all instanced tests, percompiled could generate
the geometry faster. These are very interesting results, as
precompiled is only significantly faster, when there is less
memory traffic involved, due to the use of instancing. We
can only assume that the interpreted evaluation can catch
up in the non-instanced variant because all terminal oper-
ators are collected in the same queue. Thus, the terminal
generation itself is highly efficient in comparison to the
precompiled rule derivation, where the terminal generation
is mixed with other operations. Thus, the interpreted ver-
sion generates more homogeneous memory access patterns
and overall runs faster. This is also reflected by the lower
number of DRAM stores in the interpreted non-instanced
versions when comparing interpreted to percompiled. In
the instances variants, these numbers are reversed. Most of
the memory access of the interpreted evaluation is due to
dispatch table lookups and intermediate symbol generation,
thus slowing down the generation process.

When comparing our iterative production implementa-
tion against the persistent megakernel approach, one can
observe that the persistent megakernel implementation is
on average 20% faster than the iterative production. In
nine of the twelve cases, persistent megakernels were faster.
Interestingly, there is no generalizable pattern visible, as
to when iterative production works better. In the Houses
test case, iterative production gives the best results for
interpreted+instanced, for Single and Multi Sierpinski it
achieves the best performance for precompiled+instanced.

Overall, we can observe that persistent megakernel pro-
duction seems to work faster on average than iterative
production. Instancing always increases performance. If
instancing is used, precompiled rule sets are better than
interpreted rule sets. If instancing is not used, terminal gen-

eration dominates performance, for which the interpreted
rule sets are slightly faster, as they are able to merge the
terminal operators.

When looking at the raw generation times, we can ob-
serve that the fastest method can generate 135 million ter-
minals per second (MTPS) in the Houses test case, 178
MTPS in the Single Sierpinski test case and 247 MTPS for
the multi Sierpinski rule set.

6 Future Work

Since the focus of this paper is the evaluation of differ-
ent rule scheduling strategies, we omitted the implemen-
tation of features which only affect appearance and not
performance. These features include textured rendering,
auxiliary scenery like roads, water, vegetation and varying
elevation of the ground. Also the support of imported off-
line generated models would make the scene more lively.
Furthermore, a randomization of input parameters, so the
generated shapes do not all look alike, would be essential
for producing realistic scenes. For the testing setup of our
implementation, the use of boxes and quads was sufficient.
To build more realistic housing procedurally, many more
shapes could be implemented, like cylinders, cones and
wedges. We plan to add these features in the future.

A rule editor to specify interpreted rules at run time
would be beneficial to the usability of our solution, as
writing rules off-line is not very intuitive, especially for
generating complex models. Such an editor would ideally
support writing rules in an already established shape gram-
mar and could even support using a rule database, so users
can import and export model descriptions like it is already
done for conventional 3D models.

An interesting feature to implement is proper use of
instanced rendering. While in our case it was enough to
render instances of basic shapes to prove that instanced
rendering is desirable when constantly generating geometry
every frame, to save bandwidth, the vertex data for basic
shapes is far to low to justify the instancing overhead for
the rendering alone. Rendering instances of fully generated
objects with a reasonable amount of vertex data would use
the full potential of instanced rendering.

Last but not least, an important aspect of CGA is context
sensitivity. In our implementation this was deliberately left
for future investigation, since the complex matter of rule
interdependency is out of scope of this work.

7 Conclusion

We have shown in this work that scheduling of rule deriva-
tion work load on a GPU in the context of grammar based
procedural modeling has several aspects influencing perfor-
mance that have to be considered carefully. First, decision
making can be offloaded to the compilation stage in order
to avoid expensive branching at run time.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Second, the proper utilization of GPU programming
paradigms, while being partly platform dependent, as we
focus primarily on NVIDIA CUDA technology, is essential
in order to avoid wasting precious resources, slow memory
accesses and thread divergence.

Third, the amount of data being moved when generat-
ing geometry on the fly ought not to be underestimated,
which is why the use of instanced rendering is the pre-
ferred method to render massive amounts of procedurally
generated models.

Furthermore, when applying excessive template pro-
gramming, the quality of a decent compiler is not to be
underestimated, as is the consideration how code genera-
tion (especially its memory consumption) will respond to
chaining templates together recursively.

References
[1] Timo Aila and Samuli Laine. Understanding the Efficiency

of Ray Traversal on GPUs. In Proc. High Performance
Graphics, pages 145–149. ACM, 2009.

[2] Sven Havemann. Generative Mesh Modeling. PhD thesis,
TU Braunschweig, 2005.

[3] Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized
Use of Non-Terminal Symbols for Procedural Modeling.
Comp. Graph. Forum, 29:2291–2303, 2011.

[4] Patrick Lacz and John C. Hart. Procedural Geometry Syn-
thesis on the GPU. In Workshop on General Purpose Com-
puting on Graphics Processors, pages 23–23, 2004.

[5] Samuli Laine, Tero Karras, and Timo Aila. Megakernels
considered harmful: Wavefront path tracing on gpus. In
Proceedings of the 5th High-Performance Graphics Confer-
ence, HPG ’13, pages 137–143, New York, NY, USA, 2013.
ACM.

[6] Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. By-
example synthesis of architectural textures. ACM Trans.
Graph., 29:A84, 2010.

[7] Jinjie Lin, Daniel Cohen-Or, Hao Zhang, Cheng Liang,
Andrei Sharf, Oliver Deussen, and Baoquan Chen. Structure-
preserving retargeting of irregular 3D architecture. ACM
Trans. Graph., 30(6):A183, December 2011.

[8] Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel
Generation of Multiple L-systems. Computer and Graphics,
34(5), 2010.

[9] Milán Magdics. Real-time generation of l-system scene
models for rendering and interaction. In Proceedings of the
25th Spring Conference on Computer Graphics, SCCG ’09,
pages 67–74, New York, NY, USA, 2009. ACM.

[10] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice
Hirtzlin, and Gaël Sourimant. GPU Shape Grammars. Comp.
Graph. Forum, 31(7-1):2087–2095, 2012.

[11] Paul Merrell and Dinesh Manocha. Model Synthesis: A
General Procedural Modeling Algorithm. Visualization and
Computer Graphics, IEEE Trans., 17(6):715–728, 2011.

[12] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural Modeling of Buildings. ACM
Trans. Graph., 25(3):614–623, 2006.

[13] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The
Algorithmic Beauty of Plants. Springer-Verlag, New York,
1990.

[14] Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Ste-
fan Hauswiesner, Michael Kenzel, and Dieter Schmalstieg.
Softshell: Dynamic Scheduling on GPUs. ACM Trans.
Graph., 31(6):A161, 2012.

[15] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Jörg
Müller, Peter Wonka, and Dieter Schmalstieg. Parallel gen-
eration of architecture on the GPU. Comp. Graph. Forum,
33, 2014.

[16] George Stiny. Pictorial and Formal Aspects of Shape and
Shape Grammars. Birkhauser Verlag, Basel, 1975.

[17] George Stiny. Introduction to shape and shape grammars.
Environment and planning B, 7(3):343–351, 1980.

[18] George Stiny. Spatial Relations and Grammars. Environment
and Planning B, 9:313–314, 1982.

[19] Peter Wonka, Michael Wimmer, François X. Sillion, and
William Ribarsky. Instant Architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

[20] Tingjun Yang, Zhengge Huang, Xingsheng Lin, Jianjun
Chen, and andJun Ni. A parallel algorithm for binary-tree-
based string re-writing in the l-system. In Proceedings of
the Second International Multi-Symposiums on Computer
and Computational Sciences, IMSCCS ’07, pages 245–252,
Washington, DC, USA, 2007. IEEE Computer Society.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


