
Interactive As-Rigid-As-Possible
Image Deformation and Registration

Marek Dvorožňák�

Supervised by: Daniel Sýkora†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University
Prague / Czech Republic

Abstract

This paper focuses on an existing as-rigid-as-possible de-
formation model that is particularly suitable for manipu-
lating images that capture articulated objects, for example
hand-drawn figures. The model can be used for interactive
image deformation as well as automatic image registra-
tion. We have implemented both applications as tools for
free/open-source image editor GIMP. We describe some
details of the implementation and demonstrate functional-
ity of these new tools on a variety of images. For image
registration we compare the results of the method with re-
sults produced by two existing deformable image registra-
tion tools NiftyReg and Drop.

Keywords: image deformation, image registration, as-
rigid-as-possible, GIMP

1 Introduction

Image deformation tools implemented in various image
editing software allows us to deform image in several
ways. Common deformation options include translation,
rotation, scaling, shearing and perspective deformation.
Recently, various methods have been published which al-
low user to deform image in a less constrained manner.

In this paper we focus on methods that respect as-rigid-
as-possible (ARAP) principle [1]. Its aim is to minimize
the amount of local shearing and scaling involved in the
deformation. These methods allow user to deform image
in a way that during the deformation it behaves like a real
world object which is made of rubber.

Some of these ARAP methods are incorporated in re-
cent versions of image editing software. For example,
since CS5 version Adobe Photoshop offers Puppet Warp
deformation tool based on a method by Igarashi et al. [4],
Fiji, a package of tools for image processing, includes In-
teractive Moving Least Squares deformation plug-in based
on Moving Least Squares (MLS) deformation by Schaefer

�dvoromar@fel.cvut.cz
†sykorad@fel.cvut.cz

(a) Original image

(b) GIMP (c) Adobe Photoshop

(d) Krita

Figure 1: Example of 2-point deformation of a rope using
(b) our new ARAP deformation tool for GIMP, (c) Puppet
Warp in Adobe Photoshop and (d) Warp tool in Krita.

et al. [10] and since 2.7 version graphics editor Krita has
Warp tool which employs MLS as well.

Free/open-source graphics editor GIMP contains Cage
Tool that employs Green Coordinates [5]. The tool allows
user to deform image using a cage. The Cage Tool does
not preserve as-rigid-as-possible model and thus it is more
difficult to obtain realistic deformations of images captur-
ing real world objects. Furthermore, from user point of
view, the process of deformation using Cage Tool is rela-
tively cumbersome since at first user has to manually cre-
ate a cage surrounding the deformed object and only after
that he can start deforming the cage using points it is com-
posed of.

As GIMP did not offer an option to deform images in
ARAP manner we implemented a tool for ARAP defor-
mation based on a method presented in Wang et al. [13]
which allows better deformation results then the aformen-
tioned tools – see Figure 1 for example.

One of the applications of ARAP deformation is ARAP
image registration. We extended the ARAP deformation

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (b) (c) (d) (e)

Figure 2: Multipoint deformation of image: (a) user specifies initial positions of control points (red) and then moves them
onto new positions (blue), (b) result of a single affine deformation, (c) result of affine MLS deformation, (d) result of
rigid MLS deformation, (e) result of large-scale MLS deformation. The image comes from short computer animated film
Sintel.

tool and implemented a tool allowing ARAP registration
into GIMP. The implementation is based on an image reg-
istration method by Sýkora et al. [12].

The paper is organized as follows. First we focus on
some of the methods standing behind ARAP deforma-
tion tools and also the ARAP image registration method.
Then we describe some details of implementation of the
deformation and registration tools into GIMP. Finally we
demonstrate functionality of these tools on images of vari-
ous kinds and compare our image registration results with
results produced by two existing deformable image regis-
tration tools NiftyReg and Drop.

2 Related Work

As-rigid-as-possible (ARAP) deformation principle was
introduced by Alexa et al. [1]. Igarashi et al. [4] later em-
ployed this principle in deformation of images capturing
articulated objects. They use a triangular mesh respect-
ing boundaries of image. User can fix some mesh ver-
tices and move them onto new locations. Then the fol-
lowing operations are performed: (1) similarity transfor-
mation is computed for every triangle and (2) the scaling
is removed. According to size of triangles, the deforma-
tion need not to be smooth. Schaefer et al. [10] employed
Moving Least Squares optimization to produce smooth de-
formations. They solve an optimization problem for every
pixel of image using a closed-form formula which they
formulated. However, their method cannot handle large-
scale deformations. Sorkine and Alexa [11] formulated
ARAP deformation as a non-linear optimization problem
and presented how to solve it effectively in iterative man-
ner. Wang et al. [13] used square lattice to compute ap-
proximation of the non-linear problem for image deforma-
tion. They compute rotations for each square on this lat-
tice using shape matching algorithm proposed by Müller et
al. [9] by facilitating the closed-form formula for rotation
introduced by Schaefer et al. [10].

In image registration, the goal is to find a deformation
(and its parameters) of source image (S) that well aligns
it with target image (T ). Image registration methods of-
ten somehow include deformation model, image similarity
measure and optimization method.

There are two basic kinds of image registration methods
– feature-based and intensity-based [14]. Feature-based
methods use features in source and target image. These
features have to be detected and the most correct match
of features from one image to the other has to be found.
For that purpose SIFT keys [6] are frequently employed.
Once we have the features and their correspondences, pa-
rameters of a mapping function of a selected deformation
model can be found employing the Least Squares method
or some other method of parameter estimation [3].

Intensity-based methods work directly with intensities
of pixels in image. When source and target image differ
only in translation (or also slight rotation), it is possible
to determine globally optimal shift vector by employing
simple block-matching method. However, the method has
a high time complexity. Another option is to construct
an energetic function E(t) = d

�
S (p+ t) ; T (p)

�
, where

d (S;T ) is a dissimilarity function representing dissimilar-
ity measure of images S and T . To obtain a locally opti-
mal shift vector t, we can for example employ the gradient
descent optimization method [7]. In the same way it is
possible to find parameters of mapping function of more
complex deformation models. Two of recent representa-
tives of intensity-based methods yielding good results in
medical imaging are a method by Glocker et al. [2] and a
method by Modat et al. [8]. To solve a problem of regis-
tration of hand-drawn images, Sýkora et al. [12] proposed
an intensity-based ARAP image registration method that
utilizes the deformation method by Wang et al. [13].

3 Image Deformation

In this section we focus on point-based image deforma-
tion methods employing ARAP principle. In Figure 2a

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (b) (c) (d)

Figure 3: Phases of ARAP deformation of a lattice. Figures (a) and (b) depict moving one point of the lattice and thus
deforming the lattice. Figure (c) depicts lattice regularization and (d) lattice deformed in as-rigid-as-possible manner.
Note that this is just one iteration of the algorithm.

there is an image of a character with control points on it.
User first specifies initial positions of these points (indi-
cated by red points) and then he moves these points onto
new positions (indicated by blue points) and thus expects
to deform the image. Our ultimate goal is to deform the
image so that these user specified constraints are satisfied
and the amount of local shearing and scaling involved in
the deformation is minimized.

3.1 Moving Least Squares Deformation

Our task is to find such affine transformation of coordi-
nates (i.e. transformation matrix A and translation vector
t) which moves red points pi so that they are located as
close as possible to blue points qi. Schaefer et al. [10]
employed the (Moving) Least Squares method and alge-
braically formulated the problem as

argmin
A;t ∑

i
wi (Api+ t�qi)

2
: (1)

The weight wi is defined as

wi =
1

(pi�v)2α
: (2)

We can see that it is a function which yields very high
values near points pi. The nearer the pixel v to some point
p j, the higher is the influence of an affine transformation
that maps point p j to point q j; α is a selected parameter.

To simplify the solution of the minimization problem,
we first solve for t and obtain optimal vector of translation
tmin = qc �Apc, where qc and pc are weighted centroids
of positions of control points, i.e. pc =

∑i wipi
∑i wi

, qc =
∑i wiqi
∑i wi

.
After that we can remove the translation from the equa-
tion which yields argminA;t ∑i wi (Ap̂i� q̂i)

2, where p̂i =
pi � pc, q̂i = qi � qc. Then we can solve for A and ob-
tain optimal transformation matrix Amin = ∑i

�
wiq̂ip̂T

i
�
��

∑i wip̂ip̂T
i
��1.

Figure 2b depicts a result of applying this method on our
image with wi = 1. That corresponds to a deformation pro-
duced by a single affine transformation. Figure 2c shows
a result of the deformation with weights defined as in (2).
The result contains an undesirable shearing visible in it.

To obtain a better looking result, it is necessary to extract
a rigid transformation out of the affine transformation. For
that purpose, matrix decomposition methods such as sin-
gular value decomposition or polar decomposition can be
employed.

In 2D, closed-form formula that can be used to obtain
the rigid transformation directly was presented by Schae-
fer et al. [10]. Transformation matrix of the rigid transfor-
mation is formulated as

Rmin =
1
µ

∑
i

wi

�
p̂i
�p̂?i

��
q̂T

i �q̂?T
i

�
(3)

where

µ =

vuut 
∑

i
wiqip̂T

i

!2

+

 
∑

i
wiqip̂?T

i

!2

(4)

and operator ? represents a perpendicular vector, i.e.
(x;y)? = (y;�x).

Figure 2d depicts a result of deformation after process-
ing the image using this as-rigid-as-possible MLS defor-
mation. The result looks more natural.

However, with this approach we only obtain plausible
results for suitable positions of points pi and qi. Figure 1d
depicts a case where MLS deformation cannot yield de-
sired result because of non-linearity of the problem [11].

Another problem that appears here is caused by the
measure (Euclidean distance) that is employed in the
weighting function (2). This measure does not respect a
topology of image. The consequence of this is that when
we e.g. deform an image of a character and we move a
point located on a hand towards the body, not only the
hand is deformed but also hips and the body (see Fig-
ure 2e). This can be solved by a measure that respects
image topology.

3.2 Rigid Square Matching

A method that does not suffer from the aforementioned
problems was presented by Wang et al. [13]. Examples of

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



iteration

0. 1. 2. 3.

initial pose push regularize push regularize push regularize

Figure 4: Several first iterations of ARAP image registration algorithm. The goal is to deform the image of a rope to well
align it with the image of bent rectangle.

image deformations produced by this method are depicted
in Figure 5.

In this method a square lattice (mesh) copying shape of
image is firstly constructed above image. Some points of
the lattice are moved by user to desired locations and the
lattice is then iteratively deformed in as-rigid-as-possible
manner. Deformed image is obtained by using any of suit-
able 4-point image deformation methods on each square
of the lattice.

The mesh composed of squares is used despite the fact
that with it we are not able to precisely copy the image
(as with triangular mesh). An advantage of square mesh is
simplicity of its construction (in comparison to e.g. trian-
gulation) and a lower number of lattice elements in com-
parison to triangular mesh. A shape-aware mesh split-
ting algorithm [13] can be employed to achieve similar
behaviour as with triangular mesh.

A lattice is actually a group of points. Similarly to sec-
tion 3.1 we have initial positions pi of points of the lattice
(or alternatively source lattice) and target positions qi of
the lattice (or target lattice). User sets new positions of
some of the points qi of the target lattice (Figure 3a) and
thus deforms the lattice – some of the lattice squares be-
come quadrilaterals (see Figure 3b).

The core of the method is in a regularization phase
where we try to respect user specified constraints in a form
of the placed points qi as well as deform the lattice in a
way that every single square (quadrilateral) is deformed
the most rigidly. We perform a specified number of regu-
larizing iterations of which every one performs the follow-
ing operations:

1. Rigid transformation of every lattice square (see Fig-
ure 3c) using the formula (3) and wi = 1. This trans-
forms every quadrilateral to square again.

2. Centering every originally overlapping points of the
lattice (see Figure 3d). This ensures that points in ev-
ery cluster of originally overlapping points of the lat-
tice will overlap again – and squares become quadri-
laterals again.

Hundreds of these iterations are usually performed. Con-
vergence of the method is slower than with ARAP de-
formation methods that solve linear system [11] instead

of computing centroids. However, the advantage of the
method is that it does not require us to specify fixed points.
This fact is utilized in image registration [12].

4 ARAP Image Registration

In this section we will focus on an application of ARAP
image deformation. We will describe an intensity-based
registration method presented by Sýkora et al. [12]. The
method was invented for usage in cartoon industry and is
especially suitable for registration of hand-drawn articu-
lated images.

When registering such images, it is not possible to use
methods based on features since every drawing is unique
to some extent and hence it is not possible to find cor-
responding features. In such a case methods based on
optimization of energetic function may lead to a suc-
cess. However, if source and target image differ in large
non-linear deformation, these methods usually get stuck in
a local extrema and hence the result of these methods will
often not be plausible – see Figure 7f.

The method by Sýkora et al. employs the rigid square
matching deformation algorithm described in section 3.2,
sum of absolute differences (SAD) dissimilarity measure
and block-matching optimization method. The method
takes advantage of the fact that the deformation algorithm
allows us to arbitrarily move points qi without having to
consider their mutual connection. The actual registration
is divided into “push” and “regularize” phases. These two
phases are continuously performed until fulfillment of a
stop condition.

In Figure 4 there are two overlapping objects depicted –
image of a rope (source image) and image of a bent rect-
angle (target image). The aim of this registration problem
is to deform the image of a rope so that it well aligns with
the image of a bent rectangle.

In the push phase of ARAP registration, we move lat-
tice points qi to locations where the area of the source im-
age around these points differs as little as possible from
the area of the target image (around these points). To
find such a translation vector t the method employs the
block-matching method that finds the optimal translation

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: Examples of image deformation created using
our N-Point Deformation tool in GIMP. Red points indi-
cate initial positions of points that are fixed, blue points
indicate desired positions of these points.

vector in defined search area. For SAD dissimilarity mea-
sure the optimal translation vector topt can be formulated
as

topt = argmin
t2M ∑

p2N
jS(p+ t)�T (p)j , (5)

where M is a search area where we search for optimal
shift, N is SAD “neighborhood”, S is source and T is tar-
get image. In regularization phase the lattice is put into
a consistent state by the rigid square matching algorithm.
Figure 4 shows several first iterations of ARAP image reg-
istration algorithm together with results of push and regu-
larize phases for each iteration.

By the number regularizing iterations in the rigid square
matching algorithm, we can adjust rigidity (or flexibility)
of deformation. That is utilized in this image registration
method to refine the result – see Figure 7, 8, 9, 10.

5 Implementation

Our goal was to implement the rigid square matching al-
gorithm and the ARAP image registration algorithm into
GIMP. For implementation C programming language was
selected since GIMP is written in this language.

We implemented (1) the rigid square matching algo-
rithm into a new library named libnpd, (2) an operation
that allows ARAP image deformation into GEGL library
which is employed in GIMP; the operation utilizes libnpd

library, (3) ARAP image deformation tool into GIMP; the
tool utilizies the aforementioned operation, (4) ARAP im-
age registration tool into GIMP; the tool extends the de-
formation tool.

In this paper, we use the term “n-point deformation” for
image deformation employing the rigid square matching
algorithm and the term “n-point registration” for image
registration employing the ARAP image registration algo-
rithm.

5.1 N-Point Deformation Library (libnpd)

The library contains data types and functions allowing to
perform n-point image deformation and registration. The
library is designed in a way so that it can be used with vari-
ous graphics libraries and thus requires to implement some
graphics functions (e.g. get_pixel_color, set_pixel_color)
and data types (image, display).

One of the most important data types in the library is
NPDModel type which holds source lattice, target lattice
(i.e. “source” and “target” group of points), source image
and display.

5.2 GIMP and GEGL Library

As already stated, GIMP is written in C (C89 standard).
The C language itself is not object-oriented. GIMP uses
the C language enriched with object-oriented approach us-
ing GObject object system, which is part of GLib library.

GIMP currently uses GEGL and BABL libraries which
should allow it to work with high depth color images
and use some non-destructive image editing techniques.
GEGL is a graphics library which uses specified oriented
acyclic graph to process images. This graph is made up of
individual nodes that can represent graphics operations as
well as another graph. Edges that connect individual nodes
determine the order in which the graph will be processed.
Nodes usually expect image on their inputs and produce
(filtered) image on their output.

Figure 6: Our ARAP image deformation and registration
tools integrated into the environment of GIMP

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 7: Registration of a hand-drawn images. The task is to deform the source image to well align it with the target
image. Resolution of images: 420� 541. NPR1 is a result of NPR tool with rigidity set to 600, for NPR2 the rigidity is
30. Courtesy of Universal Production Partners.

(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 8: Registration of a hand-drawn images. Resolution of images: 560� 400. NPR1 is a result of NPR tool with
rigidity set to 200, for NPR2 the rigidity is 30. Courtesy of AniFilm.

Functionality of GIMP can be extended using plug-ins.
They can be written in various programming languages
– namely Scheme, Python, Perl and C. GIMP incorpo-
rates a large amount of plug-ins, most of them function
as graphic filters. The current development trend is not to
create graphic filters in form of GIMP plug-ins but instead
to create GEGL operations within GEGL library.

N-point deformation algorithm was implemented into
the GEGL library as a new operation. This operation em-
ploys libnpd library. There can be two scenarios of its
usage depending on whether we have or we do not have
NPDModel.

When we do not have NPDModel, the operation expects
image on its input. After the first processing of a graph the
operation is contained in, the operation creates NPDModel
and returns it through operation’s parameters. User can
then deform the target lattice contained in NPDModel by
manipulating with lattice’s points. Second and another
processing produces ARAP deformed image that is result
of a specified number of deformation iterations. This im-
age is available on operation’s output.

When we have NPDModel, we can supply it to the op-
eration through operation’s parameter and perform the de-
formation in the same way as described in previous para-
graph.

5.3 N-Point Deformation Tool

N-point deformation was implemented as internal tool (in-
stead of a plug-in). That allows the tool’s GUI to be seam-
lessly integrated in GIMP. Individual control points can
be placed directly on the canvas. During the deformation
process, user can use GIMP’s GUI e.g. to easily zoom to a

certain part of image that is being deformed and focus on
details or he can arbitrarily rotate the canvas.

Every tool in GIMP is implemented as a class extend-
ing a parent class named GimpTool. This parent class pro-
vides the basic functionality common to all tools in GIMP.
This class is extended by a class named GimpDrawTool
that allows its descendant classes to add GUI elements on
canvas and that is able to draw these elements. These ele-
ments include control points (handles), basic plane shapes,
guide lines, paths, text cursor and also a live preview of a
result of operation that is performed by a tool. This class is
extended by various classes representing tools, let us men-
tion for example a group of painting tools, selection tools,
transformation tools and also a tool for writing text.

The class GimpDrawTool is also extended by our class
named GimpNPointDeformationTool that implements the
N-Point Deformation tool. This class employs libnpd li-
brary. Using a deformation thread, it performs a deforma-
tion of image, using a preview thread, it draws at regular
intervals a preview of current state of the deformation. The
preview thread calls the methods of GimpDrawTool in or-
der to redraw GIMP’s GUI.

Every GIMP tool can define its own set of settings and
their graphic representation within GIMP tool’s GUI. For
these purposes, a class named GimpToolOptions is em-
ployed. This class is inherited by classes describing indi-
vidual tools options. N-Point Deformation tool employs
its own class named GimpNPointDeformationOptions.

5.4 N-Point Registration Tool

As the n-point deformation, the n-point registration was
implemented into GIMP as an internal tool. The main rea-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 9: Registration of images of a person. Resolution of images: 489�656. NPR1 is a result of NPR tool with rigidity
set to 200, for NPR2 the rigidity is 30.

(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 10: Registration of images of a brain. Resolution of images: 421�436. NPR1 is a result of NPR tool with rigidity
set to 50, for NPR2 the rigidity is 5. Difference images have been used to show the resulting overlap. Images come from
the RIRE dataset.

sons for this decision included the possibility to use exist-
ing implementation of N-Point Deformation tool and the
possibility to allow user to easily help the registration (by
moving one or several points to correct locations) in situa-
tion when the registration get stuck in undesirable state.

A class named GimpNPointRegistrationTool which ex-
tends GimpNPointDeformationTool class was created.
The N-Point Deformation tool class was modified to allow
its employment for registration purposes. As previously
mentioned, the N-Point Deformation tool uses a thread to
perform the deformation. Within this thread a method per-
forming the deformation is being called. This method is
overridden in GimpNPointRegistrationTool by a method
performing the ARAP image registration algorithm.

A class GimpNPointRegistrationOptions defining a set
of settings of the tool was created. This class extends
GimpNPointDeformationOptions class which was modi-
fied to allow its subclasses to use a set of generic settings
of the deformation.

6 Results

We used our N-Point Deformation tool to deform several
images – see Figure 1 and 5. Let us look at Figure 1 de-
picting a deformation of a rope using various deformation
tools. Krita (and Fiji) produced undesirable result. With
Adobe Photoshop we can obtain a result similar to ours,
however, the process is cumbersome. With Puppet Warp
tool user must rotate control points (pins) to achieve de-
sired deformation. There is an automatic pin rotating func-
tion available, however, as in our example it might not
work correctly. There is no need to rotate control points

in N-Point Deformation tool. Thanks to the method em-
ployed in our tool, the deformation is predictable and the
deformation process is easier than with Puppet Warp in
Adobe Photoshop.

We compared our N-Point Registration (NPR) tool
with deformable image registration tools Drop [2] and
NiftyReg [8]. Figure 7 shows a plausible result of NPR
tool. Even we tried to set the best parameters in Drop and
NiftyReg tools we obtained unsatisfactory results. Here,
the deformation model preserving rigidity is a great ad-
vantage. Figure 8 shows an example where all three tools
gave satisfactory result. There we can see that Drop and
NiftyReg produced results that look more similar to the
target image. However, the details are more distorted. Fig-
ure 9 shows registration of images of a person. In this
problem we obtained plausible results with NPR and Drop.
The latter produced really good result, however, there is
again problem with details (left hand). With NiftyReg we
could not obtain satisfactory result again. In a registration
problem involving registration of articulated images, good
approach is to first perform ARAP registration and then
refine with a non-linear registration method as in Drop or
NiftyReg. Sýkora et al. use that approach in [12].

Figure 10 shows results of a common registration prob-
lem – aligning two medical images. Drop and NiftyReg
were designed exactly for this kind of a problem and gave
very good results. We can see that NPR can also handle
this kind of registration problem because the rigid square
matching algorithm allows some amount of shrinking or
stretching (depending on a number of deformation itera-
tions). However, the result is not as good as with the two
other tools.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



7 Conclusions and Future Work

We implemented as-rigid-as-possible image deformation
and registration tools into a development version of popu-
lar free/open-source image editor GIMP and demonstrated
their functionality on images of various kinds.

For image registration it is evident from the results
that some modern non-linear image registration methods,
when properly set, are able to cope even with a large defor-
mation of images entering the registration. In contrast to
these methods in some situations a great advantage of the
ARAP image registration method can be the fact that in al-
most all circumstances it produces results that are not un-
naturally deformed. This is particularly useful when reg-
istering real or cartoon figures and their poses.

Although the tools are functional they still have some
weaknesses. Further work is thus to eliminate them. The
tools have currently problems regarding speed when work-
ing with large images, mainly due to redrawing the pre-
view of the deformation. The preview has to be rendered
several times per second, which is what causes the prob-
lems. In the registration tool the problem is also caused
by block-matching method that is employed during regis-
tration. For large images, it is necessary to set a higher
value of the search parameters (“search area” and “neigh-
borhood”). Currently, user does not have an option to set a
depth of individual control points and thus he cannot spec-
ify which part of the overlapping lattice (image) will be
visible. The tools currently do not use multiple CPU/GPU
cores to speed up their computations.

Acknowledgements

Part of the work on N-Point Deformation tool has been
supported by Google through Google Summer of Code
2013. Thank must go to GIMP developers for selecting
the project.

This work has been partially supported by the Grant
Agency of the Czech Technical University in Prague, grant
No. SGS13/214/OHK3/3T/13 (Research of Progressive
Computer Graphics Methods).

References

[1] Marc Alexa, Daniel Cohen-Or, and David Levin. As-
rigid-as-possible shape interpolation. In ACM SIG-
GRAPH Conference Proceedings, pages 157–164,
2000.

[2] Ben Glocker, Nikos Komodakis, Georgios Tziritas,
Nassir Navab, and Nikos Paragios. Dense image
registration through MRFs and efficient linear pro-
gramming. Medical Image Analysis, 12(6):731–741,
2008.

[3] A. Ardeshir Goshtasby. Robust parameter estima-
tion. In Image Registration, Advances in Com-
puter Vision and Pattern Recognition, pages 313–
341. 2012.

[4] Takeo Igarashi, Tomer Moscovich, and John F.
Hughes. As-rigid-as-possible shape manipulation.
ACM Transactions on Graphics, 24(3):1134–1141,
2005.

[5] Yaron Lipman, David Levin, and Daniel Cohen-Or.
Green coordinates. ACM Transactions on Graphics,
27(3):78, 2008.

[6] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[7] Bruce D. Lucas and Takeo Kanade. An iterative
image registration technique with an application to
stereo vision. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence, volume 2,
pages 674–679, 1981.

[8] Marc Modat, Gerard R. Ridgway, Zeike A. Tay-
lor, Manja Lehmann, Josephine Barnes, David J.
Hawkes, Nick C. Fox, and Sébastien Ourselin.
Fast free-form deformation using graphics process-
ing units. Computer Methods and Programs in
Biomedicine, 98(3):278–284, 2010.

[9] Matthias Müller, Bruno Heidelberger, Matthias
Teschner, and Markus Gross. Meshless deforma-
tions based on shape matching. ACM Transactions
on Graphics, 24(3):471–478, 2005.

[10] Scott Schaefer, Travis McPhail, and Joe Warren. Im-
age deformation using moving least squares. ACM
Transactions on Graphics, 25(3):533–540, 2006.

[11] Olga Sorkine and Marc Alexa. As-rigid-as-possible
surface modeling. In Proceedings of the Fifth Euro-
graphics Symposium on Geometry Processing, pages
109–116, 2007.

[12] Daniel Sýkora, John Dingliana, and Steven Collins.
As-rigid-as-possible image registration for hand-
drawn cartoon animations. In Proceedings of Inter-
national Symposium on Non-photorealistic Anima-
tion and Rendering, pages 25–33, 2009.

[13] Yanzhen Wang, Kai Xu, Yueshan Xiong, and Zhi-
Quan Cheng. 2D shape deformation based on rigid
square matching. Computer Animation and Virtual
Worlds, 19(3–4):411–420, 2008.

[14] Barbara Zitová and Jan Flusser. Image registration
methods: a survey. Image and Vision Computing,
21(11):977–1000, 2003.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


