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Abstract

The aim of the General Shape Analysis (GSA) is to find
one or a few most similar general templates for a processed
object — exact identification is not performed, but the gen-
eral shape features are obtained. The GSA approach may
be applied for coarse separation of objects in the database
prior to their classification or in the case when the data
are incomplete or there is a high variability within them.
In this paper, the GSA problem is investigated using var-
ious combinations of shape descriptors and methods for
estimating the similarity or dissimilarity between shape
representations. The experiments involved the use of five
shape descriptors, namely the Two-Dimensional Fourier
Descriptor, Generic Fourier Descriptor, UNL-Fourier de-
scriptor, Zernike Moments and Point Distance Histogram,
as well as four matching methods, that is the Euclidean
distance, Mahalanobis distance, correlation coefficient and
C1 metric. The effectiveness of the experiments was cal-
culated as a coincidence between experimental results and
results provided by people through inquiry forms. The ex-
periments made it possible to determine the influence of
various matching methods on the final effectiveness when
a particular shape descriptor was applied. The best result
was obtained for the combination of UNL-Fourier descrip-
tor and C1 metric.

Keywords: General Shape Analysis, shape descriptors,
similarity and dissimilarity measures

1 Introduction

The problem of General Shape Analysis (GSA) is consid-
ered similar to typical shape recognition or shape retrieval,
however both of these approaches differ in their purpose.
The GSA is aimed at finding one or a few most similar
general templates for each investigated test object. Usu-
ally, a template is a simple geometrical figure, e.g. a tri-
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angle, rectangle or circle, whereas a test object is a more
diversified shape for which the similarity to one or several
templates is defined. This approach enables to determine
the most general and predominant shape features. The idea
of the GSA is to represent all shapes using a particular
shape descriptor and calculate a similarity or dissimilarity
measure between test objects and templates. Next, a set of
most similar templates indicated by the algorithm is com-
pared with the results provided by people through inquiry
forms, in which they were asked to indicate five templates
for each investigated object — from the most to the least
similar one. The percentage convergence between the two
gives the final effectiveness value of the experiment.

The General Shape Analysis was introduced in [1] and
firstly applied for the Two-Dimensional Fourier Descrip-
tor. In subsequent years, this approach has been exam-
ined with the use of other shape descriptors, among which
were the UNL-Fourier descriptor [2], Generic Fourier De-
scriptor [3], Point Distance Histogram [2, 3], Zernike
Moments [4], Moment Invariants [4] or Curvature Scale
Space [5]. Based on what is known from available liter-
ature, the Euclidean distance has been used to establish
shape dissimilarity. The first application of a different
shape matching method was presented in [6], where the
correlation coefficient was applied to match Fourier-based
shape representations.

In this paper, various combinations of shape descriptors
and matching methods are investigated. The shape de-
scriptors include some of the methods mentioned above —
the Two-Dimensional Fourier Descriptor, Generic Fourier
Descriptor, UNL-Fourier descriptor, Zernike Moments
and Point Distance Histogram, however in the paper sev-
eral versions of each shape descriptor are used, i.e. feature
vectors of various size. For shape matching, two dissim-
ilarity measures were selected, namely the Euclidean dis-
tance and Mahalanobis distance, and two similarity mea-
sures — the correlation coefficient and C1 metric. This
made it possible to determine the most appropriate method
for solving the GSA task. Moreover, in this paper, a dif-
ferent approach for estimating experimental effectiveness
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is applied. Usually, the three most similar templates in-
dicated by the algorithm and people in the inquiry forms
were compared with respect to the sequence of indications.
According to the suggestions included in [4], the sequence
of indications is not taken into account and only the first
template indicated by the algorithm is considered. Under
this condition a template is proper only if it matches one
out of three indications from the human benchmark result.

Some may disagree with the abovementioned manner
of estimating effectiveness, arguing that human shape per-
ception is supported by the theory of Recognition-By-
Components proposed by Biederman. This theory as-
sumes that an object is an arrangement of a number of
basic components, including block, sphere, arc, cylinder
or wedge, and that these components can be used to de-
scribe a shape [10]. Furthermore, it cannot be overlooked
that there are other approaches to cognitive pattern recog-
nition, such as the Theory of Template or the Theory of
Feature. According to the former, people store templates
in the long-term memory and use them to recognize a pat-
tern. Contrarily, the latter one states that instead of match-
ing the entire pattern with a template, people try to match
their features [15]. It also needs to be emphasized that the
General Shape Analysis is not concerned with studying the
way in which people process the shape and establish the
similarity between some shapes, but it investigates the re-
sults provided by people and based on them it tries to find
an appropriate substitute in the area of computer pattern
recognition. In addition, we should also think of how peo-
ple describe things in daily life. Relatively often we define
a shape of an unknown object using commonly known fea-
tures — for example, we say that something is round or
square or has several features in the sense that we can dis-
tinguish several known characteristics in the entire shape.
Moreover, in some aspects of life, establishing an objects
similarity to simple geometric figures is common and con-
sidered useful, for instance, in case of human body shape
or a shape of a face, where the awareness of the shape sim-
plifies choosing an outfit or hairstyle. Despite the triviality
of this example, it is undoubtedly true that people tend to
compare shapes to their simpler equivalents.

Taking into account what has been stated in the above
paragraph, as well as focusing on the algorithms, the GSA
approach may be applied for coarse separation of objects
in the database prior to their exact classification or in the
case when the data are incomplete or there is a high vari-
ability among the data. The GSA has been successfully ap-
plied in the identification of stamp types, which is useful in
searching for presumably falsified digital documents [14].
The approach may also be applied in searching large mul-
timedia databases, where voice commands are used for
shape retrieval [2]. In this paper, focus is not placed on
a specific application, but rather on the evaluation of the
methods and algorithms.

The rest of the paper is organised as follows. The
second section describes methods for estimating similar-
ity and dissimilarity between shape representations, i.e.

methods for matching feature vectors. The third section
briefly presents algorithms selected for shape representa-
tion. The fourth section provides the conditions of the
experiments and experimental results concerning the ap-
plication of various combinations of shape descriptor and
matching method as part of the GSA task. The last section
summarizes and concludes the paper.

2 Methods for estimating similarity
and dissimilarity between shape
representations

In the GSA, test objects are compared with the templates
in order to estimate the similarity (or dissimilarity) be-
tween shapes. Shape similarity enables to establish the
level of similarity (or dissimilarity) between two shapes.
Shape similarity criteria have to be adapted to the spe-
cific problem, i.e. the shapes have to be represented using
features relevant to the problem under consideration [8].
The similarity of shapes is determined through matching
a shape and calculated measure. In this paper, four mea-
sures are investigated — two similarity and two dissimilar-
ity measures. The similarity measure is based on the max-
imization of correlation between shapes, while the dissim-
ilarity measure — on the minimization of the distance be-
tween shapes.

Let us take as an example two vectors VA(a1,a2, . . . ,AN)
and VB(b1,b2, . . . ,BN), which represent object A and ob-
ject B in a N-dimensional feature space. The Euclidean
distance dE between these two vectors is defined by means
of the following formula [11]:

dE(VA,VB) =

√
N

∑
i=1

(ai−bi)2. (1)

The Mahalanobis distance dM between vectors VA and VB
can be derived as follows [7]:

dM(VA,VB) =
√

(VA−VB)T E−1(VA−VB), (2)

where E−1 is the covariance matrix.
The correlation coefficient may be calculated both for

the matrix and vector representations of a shape. The cor-
relation between two matrices can be derived using the for-
mula [16]:

cc =
∑
m

∑
n
(Anm− Ā)(Bnm− B̄)√(

∑
m

∑
n
(Anm− Ā)2

)(
∑
m

∑
n
(Bnm− B̄)2

) , (3)

where:
Amn, Bmn — pixel value with coordinates (m,n), respec-
tively in image A and B,
Ā, B̄ — average value of all pixels, respectively in image
A and B.
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The C1 metric is also a similarity measure based on
shape correlation. It is obtained by means of the following
formula [12]:

c1(A,B) = 1−

H
∑

i=1

W
∑
j=1

∣∣ai j−bi j
∣∣

H
∑

i=1

W
∑
j=1

(∣∣ai j
∣∣− ∣∣bi j

∣∣) (4)

where:
A, B — matched shape representations,
H, W — height and width of the representation.

3 Selected Shape Descriptors

3.1 Two-Dimensional Fourier Descriptor

The use of Fourier-based shape descriptors is widespread
in pattern recognition and valued for its properties, includ-
ing shape generalisation, robustness to noise, scale invari-
ance and translation invariance. The Two-Dimensional
Fourier Descriptor (2DFD) has the form of a matrix with
absolute complex values, and is derived as follows [9]:

C(k, l) =
1

HW
|

H

∑
h=1

W

∑
w=1

P(h,w) · exp(−i 2π
H (k−1)(h−1)) · . . .

. . . · exp(−i 2π
W (l−1)(w−1)) |, (5)

where:
H,W — height and width of the image in pixels,
k — sampling rate in vertical direction (k ≥ 1 and k ≤ H),
l — sampling rate in horizontal direction (l ≥ 1 and
l ≤ W ),
C(k, l) — value of the coefficient of discrete Fourier trans-
form in the coefficient matrix in k row and l column,
P(h,w) — value in the image plane with coordinates h, w.

3.2 UNL-Fourier

The UNL-Fourier (UNL-F) descriptor is composed of the
UNL (named after Universidade Nova de Lisboa) descrip-
tor and Fourier transform. The UNL utilizes a com-
plex representation of Cartesian coordinates for points and
parametric curves in discrete manner [17]:

z(t) = (x1 + t (x2− x1))+ j(y1 + t (y2− y1)) ,

t ∈ (0,1), (6)

where z1 = x1+jy1 and z2 = x2+jy2 are complex numbers.
In the next step, the centroid O is calculated [17]:

O = (Ox,Oy) =

(
1
n

n

∑
i=1

xi,
1
n

n

∑
i=1

yi

)
, (7)

and the maximal Euclidean distance between contour
points and centroid is found [17]:

M = max
i
{‖zi(t)−O‖} ∀i = 1 . . .n t ∈ (0,1) . (8)

Based on the above formulations, a discrete version of the
new coordinates is calculated as follows [17]:

U(z(t)) =
‖(x1+t(x2+x1)−Ox)+j(y1+t(y2+y1)−Oy)‖

M +

+j× arctan
(

y1+t(y2−y1)−Oy
x1+t(x2−x1)−Ox

)
.

(9)

Original pixel values are put into a square Cartesian ma-
trix based on the new coordinates. This results in an image
containing unfolded shape contour in polar coordinates,
in which rows represent distances from the centroid and
columns — the angles. As a result, the 2DFD can be ap-
plied.

3.3 Generic Fourier Descriptor

The Generic Fourier Descriptor (GFD) utilizes the trans-
formation of a region shape to the polar coordinate system.
It means that all pixel coordinates of an original image
are transformed into polar coordinates. Next, the original
pixel values are put to new coordinates on a rectangular
Cartesian image, in which the row elements correspond to
distances from the centroid and the columns to angles [13].
Again, the result is two-dimensional and the Fourier trans-
form can be applied.

3.4 Point Distance Histogram

The Point Distance Histogram (PDH) is a shape descrip-
tor that utilizes information about the shape contour. In
order to derive a PDH representation, an origin of the po-
lar transform of a contour is firstly selected, usually a cen-
troid O. Polar coordinates are stored in two vectors — Θi

for angles and Pi for radii [3]:

Θi = a tan
(

yi−Oy

xi−Ox

)
, (10)

Pi =

√
(xi−Ox)

2 +(yi−Oy)
2. (11)

In the next step, the values in Θi are converted to the near-
est integers. Then the elements in Θi and Pi are rearranged
with respect to the increasing values in Θi, and denoted as
Θ j, P j. If there are any equal elements in Θ j, then only
the element with the highest value in P j is left. Next, only
the P j vector is selected for further processing and denoted
as Pk, where k =1,2,. . .m and m ≤ 360. The elements of
Pk vector are normalized and assigned to bins in the his-
togram (ρk to lk) [3]:

lk =
{

r, if ρk = 1
brρkc , if ρk 6= 1 (12)
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where r is a previously determined number of bins. In
the next step, the values in the histogram bins are normal-
ized according to the highest one. Ultimately, the final
histogram which represents a shape is obtained and can be
written as the following function h(lk) [3]:

h(lk) =
m

∑
k=1

b(k, lk), (13)

where [3]:

b(k, lk) =
{

1, if k = lk
0, if k 6= lk

(14)

3.5 Zernike Moments

Zernike Moments (ZM) are orthogonal moments. Among
the advantages of this descriptor are rotation invariance,
robustness to noise and minor variations in shape. The
complex Zernike Moments are derived from orthogonal
Zernike polynomials, which are a set of functions orthog-
onal over the unit disk x2 + y2 < 1. The Zernike Moments
of order n and repetition m of a region shape f (x,y) can be
obtained by the following formula [13]:

Znm = n+1
π ∑

r
∑
θ

f (r cosθ ,r sinθ) ·Rnm(r) · exp( jmθ),

r ≤ 1. (15)

where Rnm(r) is the orthogonal radial polynomial [13]:

Rnm(r) =
(n−|m|)/2

∑
s=0

(−1)s · . . .

. . . · (n−s)!

s!×
(

n−2s+|m|
2

)
!
(

n−2s−|m|
2

)
!
rn−2s, (16)

where n = 0,1,2, . . .; 0≤ |m| ≤ n; n−|m| is even.

4 The Description of the Experi-
ments and Experimental Results

During the experiments, five different shape descriptors
and four matching methods were used. In each experi-
ment, one combination of a shape descriptor and matching
method was investigated. Firstly, all shapes were repre-
sented using a selected variant of the shape descriptor — a
feature vector, i.e. part of the absolute spectrum in case of
2DFD, GFD or UNL-F, various orders for ZM and various
number of histogram bins for PDH. Next, the representa-
tions of test objects were matched with the representations
of templates by calculating the similarity or dissimilarity
measure. Lastly, one most similar template was selected
for each investigated object, giving a set of templates.

At this point it is important to take a closer look at the
data and shape representations. The shapes that were used

in the experiments are depicted in Fig. 1 and consisted of
200×200 pixel size images with a white background and
black silhouettes of similar size placed in the middle. The
shapes consisted of ten shapes that were general templates
(the first row in Fig. 1) and test objects. The shape repre-
sentations varied significantly in terms of size. In case of
shape descriptors based on the Fourier transform, various
parts of the original absolute spectrum were investigated,
namely 2×2, 5×5, 10×10, 25×25 and 50×50 subparts
of the coefficient matrix. Each block was transformed into
a vector to form a final shape representation. The Zernike
Moments descriptor was calculated for orders from 1 to
20, what resulted in feature vectors having from 2 to 121
elements. The Point Distance Histogram descriptor had
seven variants that were obtained for 2, 5, 10, 25, 50, 75
and 100 histogram bins, and simultaneously produced fea-
ture vectors of size equal to the number of bins.

Figure 1: Shapes used in the experiments divided into 10
templates (first row) and 40 test objects (rest) [3].

The effectiveness of the experiment was estimated by
calculating the percentage of the templates selected in the
experiment that was consistent with the templates indi-
cated by people in the inquiries concerning the same GSA
task. In the inquiry people were asked to indicate five most
similar templates for all test objects and arrange them from
the most to the least similar one. In the paper, for an in-
dividual test object, only three out of five templates were
taken into account and are compared with one template
resulted from the experiments — here the sequence of in-
dications is not taken into account. Templates indicated by
people are provided in Fig. 2. The percentage differences
of indications between the most and the second most simi-
lar templates are various and depend on the test object. For
instance, for test object no. 14 a cross template was indi-
cated by 65% of people and the star template by 64%. In
case of test object no. 4 the difference was greater — 94%
of people indicated a triangle and 46% indicated trapeze.

The aim of the experiments was to select the combina-
tion of a shape descriptor and matching method that gave
the highest effectiveness and, additionally, in the case of
several combinations with the same percentage effective-
ness, in which the size of the shape representation would
be the smallest. The following part of this section de-
scribes the experimental results.

The first set of the experiments utilized the Two-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Templates most frequently indicated by people
in the inquiries.

Dimensional Fourier Descriptor and five different absolute
spectrum subparts. The percentage effectiveness values
for each combination of a shape descriptor and matching
method are provided in Fig. 3. As can be seen in Fig. 3, the
effectiveness values vary significantly and the weakest re-
sults were achieved in case of the use of the Mahalanobis
distance. The highest effectiveness was obtained in the
case of combinations with the percentage value equal to
55%. The best result can be attributed to the 5×5 subpart
of the 2DFD and both similarity measures — correlation
coefficient and C1 metric.

In the second set of the experiments, the Generic Fourier
Descriptor was used and again five absolute spectrum sub-
parts were investigated (see Fig. 4). Compared to the pre-
vious experiment, the best result was obtained using a
dissimilarity measure — the Euclidean distance, and the
smallest feature vector — 2× 2 subpart of the absolute
spectrum. Similarly as in the previous case, the Maha-
lanobis distance provided the lowest effectiveness values.

The third set of the experiments included the application
of the UNL-Fourier descriptor and again various subparts

Figure 3: Bar chart representing the experiment results us-
ing the 2DFD.

Figure 4: Bar chart representing the experiment results us-
ing the GFD.
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of the Fourier coefficient matrix. The results are provided
in Fig. 5. Three combinations stood out — 2×2 and 5×5
subparts of the UNL-F, which were matched using Eu-
clidean distance, and 2×2 subpart of the UNL-F matched
using C1 metric. These combinations gave 62,5% twice
and 70% respectively. It is worth noting that the small-
est feature vectors were sufficient to distinguish templates
from each other and indicate the templates consistent with
human indications.

Figure 5: Bar chart representing the experiment results us-
ing the UNL-F.

The fourth set of experiments concerned the investiga-
tion of the effectiveness of Zernike Moments descriptor
and different orders of moment were used (see Fig. 6).
The results are varied — the percentage effectiveness val-
ues range from 22.5% to 60%. Suprisingly, the best results
were observed when the Mahalanobis distance was appied
as the matching method and the first-order moment was
used. In this case the feature vector had only two elements.

The last set of the experiments examined the Point Dis-
tance Histogram descriptor. A different number of his-
togram bins was utilized, what resulted in a varying num-
ber of elements in each feature vector. As can be seen in
Fig. 7, the highest effectiveness value was equal to 50%
and was obtained for the combination of the PDH descrip-
tor calculated for five histogram bins and C1 metric.

5 Conclusions

The paper covered the problem of the General Shape Anal-
ysis and investigated some solutions to it. Firstly, the idea
underlying the approach was introduced and its possible
applications, as well as several methods and algorithms
that are already in use were briefly presented. In solv-
ing the GSA problem we are establishing the degree of
similarity between test objects and general templates —
one or few templates, which are most similar to an inves-

Figure 6: Bar chart representing the experiment results us-
ing the ZM.

Figure 7: Bar chart representing the experiment results us-
ing the PDH.
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tigated object are selected and compared with benchmark
results in order to estimate the effectiveness of the exper-
iment. The main goal of the experiments presented in the
paper was to examine various combinations of shape de-
scriptors and matching methods. Five shape descriptors
were used to calculate shape representations (feature vec-
tors) of various size. The descriptors comprised the Two-
Dimensional Fourier Descriptor, Generic Fourier Descrip-
tor, UNL-Fourier, Zernike Moments and Point Distance
Histogram. The matching methods included two similar-
ity measures, namely the correlation coefficient and C1
metric, and two dissimilarity measures — the Euclidean
and Mahalanobis distances. Based on the experimental
results, the best solution for the GSA problem was se-
lected, i.e. a combination of a shape descriptor and match-
ing method, which gave the highest percentage effective-
ness. What is more, the smaller the feature vector the bet-
ter the result. On the basis of the abovementioned crite-
ria, the best solution for the GSA problem is the combi-
nation of the UNL-F descriptor, 2× 2 subpart of the ab-
solute spectrum and C1 metric. Pictorial results are pro-
vided in Fig. 8. Additionally, both the calculation of de-
scription vectors (shapes and templates together) and sim-
ilarity measures between shapes are not time-consuming.
There are slight differences between runtimes when using
various matching methods and previously calculated de-
scriptors (see Fig. 9), however they are not significant for
small-sized description vectors.

Figure 8: Results of the best experiment using UNL-
Fourier descriptor and C1 metric.

By way of conclusion, it needs to be highlighted that the
matching method has a significant impact on the final ef-
fectiveness of the experiment. Moreover, the effectiveness
values also depend on the applied version of the shape de-
scriptor. In other words, taking into consideration solely

Figure 9: A comparison of matching times for various size
of UNL-F Descriptor and matching methods.

one particular shape description algorithm, each combi-
nation of a feature vector and matching method produces
different experimental results. This in turn may indicate
that some feature vectors represent significant shape fea-
tures in a more appropriate way, enabling easy recognition
and matching of all shapes with common general charac-
teristics. However, a matching method does not change
the original efficiency of the shape description algorithm.
A high diversity in effectiveness values stems from the
fact that each matching method is based on different in-
puts, therefore it should be properly selected to fit the ac-
tual problem and the shape descriptor applied. Summariz-
ing, three factors can affect the final experimental result:
a shape description algorithm, the size of a feature vec-
tor and a method for estimating similarity between shape
representations.
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