
Multi-frame Rate Augmented Reality

Philipp Grasmug∗

Supervised by: Dieter Schmalstieg†

Institute of Computer Graphics and Vision
Graz University of Technology

Austria

Abstract

In this work we present a method for improving the vi-
sual quality of an augmented reality system. By combin-
ing the characteristics of two different sensors, we increase
the spatial resolution of a video stream using sub-pixel ac-
curate image registration. Using the optical flow to solve
the correspondence problem, we can estimate the depth
of the scene, which is further used to compute immersive
augmented reality effects. By decoupling the rendering
process of the augmented information from the displaying
frequency of the system, we can augment the scene using
computationally expensive rendering techniques. We uti-
lize image-based rendering to overcome the resulting tem-
poral artifacts. Finally, we evaluated our methods by com-
paring the achieved quality with conventional augmented
reality methods.

Keywords: augmented reality, interactive superresolu-
tion, image registration, workload distribution

1 Introduction

Increasing the spatial resolution of images is normally
achieved by developing new sensor chips for cameras with
a higher pixel density or larger sensors. Both of these
improvements have drawbacks in terms of image quality
(smaller pixels mean less light, leading to more noise) and
efficiency. Also, capturing images at a high resolution
(HR) means that a lot of data has to be transferred, which
requires a bus with sufficient transfer rate.Alternatively
one can combine information from multiple subsequent
images of the current scene or arbitrary images from a
database to compute a realistic or at least plausible high
resolution version of the input image. We combine data
from two sensors captures at different temporal and spa-
tial resolution to create a true high resolution output. The
hardware setup of our system looks like this: The first sen-
sor provides a video stream in LR, but at a high frame rate
(e.g., 30 Hz). A second sensor, which is placed right next
to the first one, captures still images in HR at a slow frame
rate. The latest high resolution image is registered to the

∗grasmug@icg.tugraz.at
†schmalstieg@icg.tugraz.at

current low resolution video frame to compute the desired
output.

The information visualized in augmented reality (AR)
applications ranges from simple textual information to
computationally expensive visualizations, which can not
be computed in real-time. If a high resolution is required.
By combining images from different sensors or from a
single sensor captured in different spatial resolutions, we
can achieve interactive super-resolution of the input video
stream. To match the high resolution of the input, we
present a strategy for distribution the workload of com-
putationally expensive rendering tasks over several frames
using image-based rendering to suppress temporal arti-
facts. For both tasks we utilize the GPU to speed up the
computation. The image registration needed for our super
resolution approach can be computed highly efficient on
programmable graphics hardware while the use of a GPU
for rendering the augmentations is self-explanatory. Fig-
ure 1 shows a overview of the main parts of our system
which are described in detail in the following sections.

tracking

image warping RENDERER

image registrationHR SENSOR

morphing

ca
ch

e

ca
ch

e

Video
stream

Display

slow frame rate slow frame rate

fast frame rate

Figure 1: Overview of the main parts of our system.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Previous Work

Improving images in terms of spatial resolution is relevant
in many fields and applications. Super-resolution (SR) is
an algorithmic approach that combines information from
several images or from large image databases into a true
or at least a plausible high resolution version of the low
resolution (LR) source. Different approaches in the spatial
and the frequency domain have been proposed.

Algorithms in the frequncy domain exploit the alias-
ing of LR images to reconstruct a HR image. Huang and
Tsai [10] presented an algorithm that built upon the rela-
tive motion between the LR images. The method utilizes
the aliasing relationship between the continuous Fourier
transformation of the HR image and the discrete Fourier
transformation of the LR images.

Example-based techniques (also called image halluci-
nation) [6, 5, 1] try to model the relationship between LR
and HR images using corresponding patches of LR and
HR images that do not necessarily show the same scene.
The correspondence between those pairs is learned from a
large database and used to synthesize a plausible HR im-
age. Bhat et al. [3] proposed a system similar to ours that
uses static images to enhance a video of the same scene.
The method computes view-dependent depth data for the
images and the video and uses this information to apply a
variety of effects including super resolution as an offline
post-processing step. Known SR algorithms rely on opti-
mization and/or machine learning which makes them slow
and not usable in interactive applications like augmented
reality. Our algorithm in contrast is based on optical flow
computation and allows for interactive use.

Render caching reuses information from previous
frames to speed up the computation of the current one.
When the frame rate is high, the changes from a previous
frame to the current one are small and therefore, the tem-
poral coherence is high. This information can then directly
(e.g., color of a pixel) or indirectly (e.g., intermediate re-
sults) be reused.

The term render cache was introduced by Walter et al.
[17], who used it as a data structure to speed up rendering
of otherwise none interactive methods. Yu et al. [18] pro-
posed a GPU implementation of the forward reprojection
algorithm, which uses a per pixel disparity vector to com-
pute the new position. Implementing this approach is dif-
ficult and can be computationally expensive. Didyk et al.
[4] proposed an efficient method, which fits a coarse, reg-
ular mesh grid to the cached image. The mesh is aligned
to the depth discontinuities of the cache. Each vertex is
warped to its new position using the cached image as tex-
ture. Holes are avoided by stretching of the mesh and vis-
ibility is resolved by fold overs.

The applications for render caching are numerous.
Sitthi-Amorn et al. [16] proposed an algorithm for the ac-
celeration of pixel shader computations by directly reusing
information from the cache whenever available. A rel-

evant work on spatio-temporal upsampling of renderings
was published by Herzog et al. [9]. By combining multiple
low resolution renderings, using a modified joint-bilateral
filter, a high-resolution image can efficiently be computed.
Render caching focuses on reuse of results from previous
frames for rasterization based techniques while our work-
load distribution scheme targets oversampling based meth-
ods and exploits their properties. This allows different ap-
proaches which cannot directly be applied to rasterization.

Image-based rendering The general idea of image
based rendering (IBR) is to derive a novel view from real
or synthetic images. The usual way of rendering an image
of a synthetic scene is by using one of the standard algo-
rithms like, for example, rasterization, ray tracing or path
tracing. Image warping [13, 14] relies on associated per-
pixel depth information. This information together with
the position and orientation of the camera is used to re-
project each pixel into three dimensional space and then
into the view of the new desired virtual camera. For syn-
thetic scenes, this is straight forward, since storing per-
pixel depth values and camera positions can be easily done
during rendering. IBR is utilized in our work to com-
pensate temporal artifacts. We further employ a method,
again closely related to oversampling based rendering ap-
proaches, to address IBR related issues like resampling
and disocclusion artifacts.

3 Upsampling

In this section, we describe our upsamling strategy, which
is inspired by previous work in the field of SR. We present
an approach that combines HR images and an LR video
stream from one ore multiple sensors to compute a SR ver-
sion of the LR input online. At the point in time at which
the still frame is captured, both sensors show a nearly iden-
tical images of the scene (with slight differences due to the
spatial placement). Over time the images begin to diverge
due to the motion of the camera or the scene. To be able
to use the information from the high resolution image, we
have to correct this divergence. We do this by comput-
ing the optical flow between a subsampled version of the
latest high resolution image and the current frame of the
video stream. The resulting sub-pixel accurate displace-
ment map is used to transform the HR image to match the
current video frame. Our algorithm can be outlined by the
following steps, where ILR denotes the current video frame
and IHR the latest HR image.

1. Compute the optical flow from ILR to IHR and vice
versa. The computation is done at the resolution of
ILR.

2. Compute the confidence for every pixel.

3. Upscale the flow field using bilinear interpolation.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

4. For each pixel, lookup the color of IHR using the com-
puted flow field from ILR to IHR.

5. Blend IHR with ILR image according to the confidence
map.

The result of the optical flow computation is crucial for
the quality of the SR and mainly depends on the disparity
between the pair of images, which is influenced by spa-
tial placement of the sensors, camera motion and motion
in the scene. Another associated problem is occlusion and
disocclusion of objects in the scene. Due to the change
in viewpoints over time, areas of the scene get revealed
which are not visible in the latest HR image. This is ob-
viously an issue for the image registration step, especially
if the scene has a high depth complexity since objects are
more likely to occlude each other. Therefore, we have to
expect a certain error in the optical flow computation.

3.1 Confidence Map

Figure 2: Visualization of the confidence map. Red shad-
ing denote regions with low confidence like, for example,
the area around the bottle, which has been disoccluded due
to the movement of the camera.

In order to be able to compute an artifact-free upscaled
version of the video stream, we have to account for the
mentioned problems. In detail, this means that we have to
detect occlusions and regions, where the computation of
the flow field yields erroneous results. Common metrics
like endpoint difference [15] and angular difference [2] are
not suitable for our case, since they are not reference free.
To establish this property, we modeled our metric based
on a simple observation. If we compute the optical flow
from image I1 to I2 and vice versa, the flow vectors should
approximately be the same with inverted sign.

uv f w(p)≈−uvbw(p+uv f w(p)) (1)

Equation 1 formulates this observation, where uv is the
2-component flow vector with respect to the image posi-
tion p= (x,y). Based on this equation, we derived a metric
which tells us whether the flow vector at a certain position
is correct or not.

con f = 1−λ (
|uv f w(p)+uvbw(p+uv f w(p))|

α
) (2)

λ (x) =
{

x if x≤ 1
0 else (3)

We call this metric confidence and compute a map for the
whole flow field (Figure 2) as defined in Equation 2, where
α is a weighting factor that defines how strongly the differ-
ence is penalized. The fiducial marker in the shown image
is later used to augment the scene but not for the SR ap-
proach. The formula is based on the distance between the
two flow vectors interpreted as points and ideally is zero.
The confidence map is recomputed every frame. This also
means that we not only have to compute the flow once,
but twice each frame, to be able to compute this quality
metric.

To finally create the HR output stream we blend the LR
image with the warped HR image weighted by the confi-
dence map. Since the flow field is usually good in high
frequency regions of the image, we can preserve those im-
portant details. Low frequency regions tend to yield worse
results in terms of optical flow computation. Using infor-
mation from the LR frame in those areas means only a
negligible loss of information. In the case of disocclusion,
no information is available for this region, which means
blending with the LR image is the only meaningful solu-
tion.

3.2 Depth Estimation

With the camera extrinsics given from the tracking (fidu-
cial markers in our case) and the intrinsics from the cali-
bration we further need correspondences to be able to re-
construct depth by triangulation. Using the optical flow,
we can compute pixelwise point correspondences. Having
all this information at hand, we now can calculate a depth
estimation of the scene. Using the current video frame and
an older video frame with a certain delay as key frames for
the estimation, we can compute the depth with the algo-
rithm outlined in the following:

1. Compute a ray from the center of projection into the
scene for both views. This ray is given by w = c+
λQ−1m, where m = [u,v,1]T is a point on the image
plane and Q is defined in equation 4. The center of
projection is given by c =−Q−1q̃.

P = A[R|t] =

 q1 q14
q2 q24
q3 q34

= [Q|q̃] (4)

P1,P2 as well as c1,c2 are obtained from associated
extrinsics [R|t] and intrinsics A of the chosen key
frames.

2. Intersect the rays. Since rays usually do not intersect
at a point in R3, we need to computed the shortest

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

line between the rays. If the length of that line is
below a certain threshold, it is treated as intersection.

3. From the intersection point (or the starting point of
the shortest line between both rays), we can retrieve
the reconstructed depth of the scene in that particular
point.

Figure 3: The top image shows the computed depth map
for the reference image below.

The selection of the pair of input images is essential for
the depth estimation. To obtain good results, the images
must have a appropriate stereo baseline. The result further
depends on the correctness of the found correspondences.
We need to compute the optical flow between the latest HR
image and the current LR image every frame for our super-
resolution algorithm. Therefore, we already have corre-
spondences, which could be used for the depth informa-
tion. Whenever the HR image is refreshed, it is nearly the
same as the current image. In this case, the stereo base-
line vanishes, and we cannot use it for depth estimation.
Therefore, we cache the latest N frames of the LR video
stream and use one out of it for the stereo matching. The
image from the cache is selected either with a fixed frame
distance or using an angular threshold. For both cases this
method fails, if the camera movement stops. To resolve
this issue, a keyframe based approach should be used in
the future. Figure 3 shows the resulting dense depth map.

While our SR approach is applicable to dynamic scenes
too, the depth estimation is limited to static scenes.

4 Workload Distribution

In this section, we describe a workload distribution
scheme that allows to compute expensive effects in real
time by decoupling the rendering process. In contrast
to render caching we focus on oversampling based ap-
proaches like path tracing which allows us to employ a
different strategy.

To decouple the rendering process from the displaying
frequency of the system, we discuss two strategies: First
the computation can be time sliced. Only a subset of all
samples per pixel is computed each frame. The final im-
age is available after a number of frames depending on the
size of the subset. A similar technique is to spatially slice
the image by computing a sub-region of the rendering each
frame with the full number of samples. Since the objects
in the scene are most likely not distributed uniformly, this
method can result in an unsteady frame rate. With both
strategies, the final image is available after a distinct num-
ber of frames depending on the splitting criterion and on
the desired total number of samples. Figure 4 illustrates
both strategies.

spatial slicing

temporal silcing

frame 1 frame 2 frame 3

10% 20% 30%

Figure 4: Spatial versus temporal slicing. In the upper row,
the shaded rectangle denotes the region which is computed
at frame n. In the lower row, the shading denotes the per-
centages of samples per pixel which have been computed
to this point.

For our experiments, we implemented a path tracer to
augment the scene. This algorithm is just an example of
the rendering methods that can be used. Since image-
based rendering, in our case image warping, only relies on
per-pixel color and depth information, essentially any ren-
dering technique can be used. The workload distribution
strategy has to be chosen accordingly.

4.1 Image-based Rendering

To overcome the difference in frame rate, which results
from decoupling the rendering process, we utilize image-
based rendering techniques. Per pixel depth information

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

can easily be stored during the rendering process. In com-
bination with the matrices used for rendering and the cur-
rent camera matrix, we can re-project every pixel to derive
a novel view of the scene. Some issues related to this ap-
proach have to be addressed in order to produce satisfying
results. The first issue is one we have already encoun-
tered with super-resolution of the video stream. Since im-
age warping uses a static image from a different viewpoint
than the current, disocclusion is again a topic. A common
way to address this issue is to cache or even render differ-
ent views in a preprocessing step [8]. In addition to the
latest rendered image, an appropriate stored view can be
used to fill disoccluded areas. In contrast, we employ hole
filing strategies to account for this issue.

Not only disocclusion, but also occlusion is a problem,
which needs to be handled. If parts of the rendered object
occlude other parts due to the change in camera position,
different pixels are warped to the same location. This re-
sults in a depth fighting like behavior. Another problem
that comes with this approach is sampling related. If the
camera in the derived view is closer to the scene than in the
original one, the image is sampled at a higher rate, leading
to cracks in the novel view.

The straightforward way for implementing image warp-
ing would be to multiply each pixel and its depth position
by the inverse projection and model matrix used for ren-
dering and then again by the projection and model matrix
of the current view, like given in equation 5, where P is
the projection matrix, Cre f is the camera matrix used for
rendering, Ccurrent is the camera matrix of the desired view
and p is the position of the pixels given in homogeneous
coordinates.

p′ = P ·Ccurrent ·C−1
re f ·P

−1 · p (5)

The problem of this approach is that it is likely that dif-
ferent pixel are projected onto the same output position.
Since we use parallel warping on the GPU, this results in
undefined behavior. We implemented the image warping
in the following way to resolve the described problems: In
a first step, only the depth value of every pixel is warped
into the desired view. We resolve the described race con-
dition by using atomic operations to store only the depth
values closest to the camera. This is similar to the z-buffer
algorithm. In the next step, the depth and position of each
pixel is used to look up the color in the original image.
This is done by performing the operation given in equation
5, in the reverse direction. Using this multi-stage warping,
we can efficiently eliminate resampling artefacts and oc-
clusion.

4.2 Hole Filling

In the final step, we aim to fill small holes and cracks
which result from the image warping. The simple ap-
proach is to interpolate holes from neighboring pixels iter-
atively or using push-pull interpolation [12].

Another approach is to re-render the disoccluded areas
to fill the holes an cracks. To detect disoccluded regions,
we first render only the silhouette of the model from the
current viewpoint. Second, we warp the image and sub-
tract the result from the silhouette which gives us the dis-
occluded region. Now, the pathtracer is instructed to re-
compute only the identified area with a small number of
samples in order to keep the computational expense low.
Thus, we can efficiently fill all holes with the disadvan-
tage of discontinuities between the original rendering and
the re-rendered area due to the small sample count. Fig-
ure 5 shows a comparison of the two hole filling methods.
The re-rendering produces good results in any case, while
the computational expense is again related to the size of
the disoccluded area and is higher compared to interpola-
tion. The interpolation works well as long as the holes are
small.

5 Results

Figure 6: Occlusion of a virtual object (Buddha statue) by
the real world using the estimated depth information.

We used three different scenarios to evaluate the SR
method. Two of the data sets show office scenes, while
one shows an outdoor scene. All scenes have different
complexity in terms of depth, depth range and texture. As
metric for similarity, Hdr-vdp-2 is used [11] to show that
the results of our algorithm are similar to the reference
image and free of artifacts. To account for image sharp-
ness, the reference free LPC-SI [7] metric is used. The
input video stream was captured at 640x480 pixels (0,3
megapixels) with 30 frames per second (fps) while the HR
still images had a resolution of 2304x1728 (4 megapixels)
pixels captured with 8 fps. The system was evaluated on
an Intel Core i5 (3.4 GHz) with 8 GBs of memory and
a Geforce GTX 680. For capturing the test data, a Canon
IXUS 240 HS was used. Figure 7 shows average scores for
Hdr-vdp-2 (similarity to the ground truth in percent) and
LPC-SI (higher score means more sharpness) of all three
scenes. It can be seen that the sharpness of our method
is close to the ground truth and way above what bilinear

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Comparison of the two hole filling methods for different warping angles. The first column shows the warped
image without hole filling, the second with color interpolation and the third with re-rendering of disoccluded areas. The
bottom row gives a detail view.

interpolation gives us. The online SR resolution runs at 7
fps (average) on the reference system.

Using the estimated depth, we can now let real objects
in the scene occlude augmented virtual objects to gener-
ate a more immersive AR experience. This is done using
an CUDA kernel, which compares the depth of the virtual
scene with the estimated depth of the real scene and blends
the images accordingly. Figure 6 shows an exemplary re-
sult. The depth estimation runs at 12 fps on average. Since
the optical flow gives good sub-pixel accurate correspon-
dences, the resulting depth map features sharp depth dis-
continuities, which is crucial for artifact-free occlusion.

Limitations The super-resolution part of our work is ap-
plicable on static and dynamic scenes. It has to be kept
in mind that fast motion of both camera and objects in the
scene leads to bad image registration results. Due to our
flow quality measure, the algorithm does not fail but rather
falls back to the LR video stream. In case of fast motion
the fall back might only be hardly noticeable due to motion
blur. In the case of slow motion results show that high fre-
quency details can be preserved nicely by our algorithm.
While image-based rendering in general is a very versatile
technique, a limit is encountered, when it comes to view
dependent effects. Effects like specular lighting, refraction
and parallax depend on the position of the viewer relative
to the scene.With our technique those effects cannot be
simulated, since all information is baked into the render-
ing. Therefore, the quality of the result drops dramatically,
if view dependent effects are simulated.

6 Conclusion

We developed a system capable of improving the overall
quality of an augmented reality setup. Quality in this case
means on the one hand the spatial resolution of the video
stream and on the other hand the visual quality of the aug-
mented information. Still images captured at a slow fre-
quency are used to improve the spatial resolution of the
low resolution video stream. By registering the high reso-
lution still image with sub-pixel accuracy, we can warp it
to fit the current video frame. Furthermore, we designed
a reference-free metric for the quality of the optical flow
that lets us decide whether the image registration was suc-
cessful or not. Based on this metric, we blend the high
resolution image with the video stream. As a result, we
get a method that can upsample videos from 640x480px to
2304x1728ms in under 200ms. The algorithm in the worst
case falls back to the quality of the LR video stream, in-
troducing only small artifacts in extreme cases. The eval-
uation shows that this approach yields good results in a
variety of scenarios. Using the optical flow to solve the
correspondence problem, we can compute a depth map of
the scene, which can further be used to create immersive
AR effects.

The computational complexity of physically correct
rendering algorithms like pathtracing is high, which does
not allow for interactive rendering, especially if the spatial
resolution is also high. We described approaches to decou-
ple the frequency of the rendering process from the dis-
playing frequency by distributing the workload over mul-
tiple frames. The resulting difference in frame rate is then
addressed using image warping. The results show that this
strategy can be applied to move complex rendering algo-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

0 20 40 60 80 100 120
90

91

92

93

94

95

96

frame

si
m

ila
rit

y

Average HDRVDP2 Scores

hdrvdp2

0 20 40 60 80 100 120
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Average LPC Scores

frame

sh
ar

pn
es

s

Reference
Super Resolution
Bilinear Interpolation

Figure 7: Average results for Hdr-vdp-2 (similarity) and LPC-SI (sharpness). The upper figure shows that our result is
close to the ground truth in terms of structural similarity. The lower figure displays that the output of our SR method
produces a sharp high resolution version of the input data close to the ground truth and superior to a bilinear interpolated
version.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

rithms towards interactivity without a noticeable loss of
quality.

Future Work The sub-pixel accurate image registration
step is achieved by computing the optical flow between
the still frame and the current video frame. This has to be
done twice each frame, since we need the forward and the
backward flow to be able to compute our quality metric.
This step is the most time consuming part of the algorithm.
Since we know the camera pose from tracking, the flow
computation can be simplified to a one dimensional prob-
lem by using epipolar geometry. This simplification would
not only speed up the computation, but also might give
better results in terms of quality, since the search space is
significantly smaller. Furthermore, we aim to move the
super-resolution algorithm of our work to mobile devices.
Especially for this case, the image registration has to be
simplified to achieve a satisfying performance.

References

[1] Simon Baker and Takeo Kanade. Hallucinating
faces. In Automatic Face and Gesture Recognition,
2000. Proceedings. Fourth IEEE International Con-
ference on, pages 83–88. IEEE, 2000.

[2] John L Barron, David J Fleet, and Steven S Beau-
chemin. Performance of optical flow techniques. In-
ternational journal of computer vision, 12(1):43–77,
1994.

[3] Pravin Bhat, C Lawrence Zitnick, Noah Snavely,
Aseem Agarwala, Maneesh Agrawala, Michael Co-
hen, Brian Curless, and Sing Bing Kang. Using
photographs to enhance videos of a static scene. In
Proceedings of the 18th Eurographics conference on
Rendering Techniques, pages 327–338. Eurographics
Association, 2007.

[4] Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol
Myszkowski, and Hans-Peter Seidel. Perceptually-
motivated real-time temporal upsampling of 3d con-
tent for high-refresh-rate displays. In Computer
Graphics Forum, volume 29, pages 713–722. Wiley
Online Library, 2010.

[5] William T Freeman, Thouis R Jones, and Egon C
Pasztor. Example-based super-resolution. Com-
puter Graphics and Applications, IEEE, 22(2):56–
65, 2002.

[6] William T Freeman, Egon C Pasztor, and Owen T
Carmichael. Learning low-level vision. International
journal of computer vision, 40(1):25–47, 2000.

[7] Rania Hassen, Zhou Wang, and Magdy Salama. No-
reference image sharpness assessment based on local
phase coherence measurement. In Acoustics Speech

and Signal Processing (ICASSP), 2010 IEEE Inter-
national Conference on, pages 2434–2437. IEEE,
2010.

[8] Stefan Hauswiesner, Denis Kalkofen, and Dieter
Schmalstieg. Multi-frame rate volume rendering. In
Proceedings of the 10th Eurographics conference on
Parallel Graphics and Visualization, pages 19–26.
Eurographics Association, 2010.

[9] Robert Herzog, Elmar Eisemann, Karol
Myszkowski, and H-P Seidel. Spatio-temporal
upsampling on the gpu. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, pages 91–98. ACM, 2010.

[10] T. S. Huang and R. Y. Tsay. Multiple frame image
restoration and registration. In Advances in Com-
puter Vision and Image Processing, volume 1, pages
317–339, Greenwich, 1984.

[11] Rafal Mantiuk, Kil Joong Kim, Allan G. Rempel,
and Wolfgang Heidrich. Hdr-vdp-2: A calibrated
visual metric for visibility and quality predictions
in all luminance conditions. ACM Trans. Graph.,
30(4):40:1–40:14, July 2011.

[12] Ricardo Marroquim, Martin Kraus, and Paulo Roma
Cavalcanti. Efficient point-based rendering using im-
age reconstruction. In SPBG, pages 101–108, 2007.

[13] Leonard McMillan and Gary Bishop. Plenoptic mod-
eling: An image-based rendering system. In Pro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 39–46.
ACM, 1995.

[14] Leonard McMillan Jr. An image-based approach to
three-dimensional computer graphics. PhD thesis,
Citeseer, 1997.

[15] M. Otte and H.-H. Nagel. Optical flow estimation:
Advances and comparisons. In Jan-Olof Eklundh,
editor, Computer Vision ECCV ’94, volume 800 of
Lecture Notes in Computer Science, pages 49–60.
Springer Berlin Heidelberg, 1994.

[16] Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang,
Pedro V Sander, and Diego Nehab. An improved
shading cache for modern gpus. In Proceedings of
the 23rd ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, pages 95–101. Euro-
graphics Association, 2008.

[17] Bruce Walter, George Drettakis, and Steven Parker.
Interactive rendering using the render cache. In Ren-
dering techniques 99, pages 19–30. Springer, 1999.

[18] Xuan Yu, Rui Wang, and Jingyi Yu. Real-time depth
of field rendering via dynamic light field generation
and filtering. In Computer Graphics Forum, vol-
ume 29, pages 2099–2107. Wiley Online Library,
2010.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

