
Parallelization of Shape Diameter Function Computation using
OpenCL

Rastislav Kamenicky∗

Supervised by: Martin Madaras†

Faculty of Mathematics Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

Shape Diameter Function (SDF) is a scalar function that
expresses a measure of the diameter of the object’s volume
in the neighborhood of each point on the surface on an in-
put mesh. It is fundamental in many applications in com-
puter graphics used for consistent mesh partitioning and
skeletonization. The algorithm sends several rays inside a
cone centered around the point’s inward-normal direction
and measures the distance at the point of intersection. We
have implemented the original algorithm and further ex-
tended it on GPU by parallelizing the ray casting process
using OpenCL. We have also generalized the algorithm to
support non-manifold meshes. The algorithm shows great
speedup in terms of timing when compared with the CPU
based implementation.

Keywords: Shape Diameter Function, OpenCL, Paral-
lelization

1 Introduction

Analysis of 3D models and processing of spatial data is
a fundamental part of computer graphics. However ac-
quired models are often non manifold or lack crucial data
i.e. skeletal representation, UV coordinates, etc. Meth-
ods as mesh processing and shape analysis are commonly
used to fill missing information. Such methods require al-
gorithms that are robust and work fast and effectively.

SDF is a volume-based shape function that can help to
process and manipulate families of objects which contain
similarities using a simple and consistent algorithm. It
can be used for skeleton extraction and mesh partitioning
and contraction. SDF remains largely unaffected by pose
changes of the same object and maintains similar values
in analogue parts of different objects [16]. The diameter
measured also relates to the medial axis transform (MAT)
[4]. However, unlike the expensive computation and han-
dling of medial axis, SDF is much simpler. It is a scalar
field created by sending several rays from every input point

∗kamenicky8@uniba.sk
†madaras@sccg.sk

on the mesh, measuring the distance at the point of inter-
section.

Such ray casting is highly parallel algorithm. If pro-
cessed on the CPU, the task becomes extremely inefficient.
Therefore, in our approach instead of tracing one ray at a
time, we propose a parallel method for computing SDF
that is performed on GPU using OpenCL, exploiting the
independence of rays.

The method was originally meant to be used effectively
only on manifold structures, but the process could be na-
tively expanded to non-manifolds. And so we propose sev-
eral changes that could further improve it’s support for
non-manifold structures. Finally, at the end of this pa-
per, we compare the results of our GPU implementation
against the CPU implementation.

Figure 1: Visualization of Shape Diameter Function with
values normalized to interval 〈0,1〉.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Related Work

MeshLab implementation, implemented by Baldacci [2]
used a different approach for calculating SDF. The method
is based on iteratively peeling two or three successive
depth layers of the mesh from multiple views around the
mesh. This is performed through shaders and uses na-
tive GPU support for mesh projection and rasterization.
Thanks to uniform memory access, this could achieve bet-
ter results on larger meshes, but it loses detail on parts that
are too close to the camera.

In [6], it is pointed out that SDF can be approximated
using only a small subset of data. The remaining data is
interpolated via Poisson interpolation. Even though the
speedup is very significant, a lot of detail is lost on com-
plex surfaces and areas where different body parts connect.
This information can be crucial when connecting parts of
skeletons and could lead to improper skeletonization.

In [15], it is mentioned that the outliers removal tech-
nique proposed in [16] generates counterintuitive results
in some cases. The SDF value calculated by the Shapira
et al. method is given by the weighted average of all the
values thrown inside the point’s cone, which for exam-
ple in the case of a mesh composed of two parallel (in-
finite) planes, underestimates the correct diameter due to
large cone size. In [15] to resolve the dilemma between
a small or large cone, a more conservative estimation of
the SDF is introduced by using an adaptive cone size. In
the case, for example, of the infinite parallel planes this
method converges to a very small cone size giving a cor-
rect SDF value equivalent to the distance between the two
planes. In our GPU implementation we maintain the origi-
nal outliers removal approach proposed in [16], leaving the
one proposed by [15] for future work, because the adaptive
cone size is computationally more expensive than original
method. The ray has to be cast multiple times to find the
correct cone size.

3 Original SDF Algorithm

Let M be an input mesh surface defining a volumetric ob-
ject. SDF is a scalar function fv : M→ R that consists
of creating a cone centered around inward-normal direc-
tion (the opposite direction of its normal) of every point
p ∈M. Inside this cone several rays are sent to the other
side of the mesh, measuring the euclidean distance at the
point of intersection. Outliers are removed and the remain-
ing values are averaged and smoothed. As a result there is
a single value for every point p ∈M. The original algo-
rithm consists of 4 steps.

Step 1 - preprocessing: In order to facilitate the ray
casting, an acceleration structure is needed. Therefore in
preprocessing stage an octree is created.

Step 2 - ray casting: In the ray casting stage rays are
cast through octree and euclidean distance at the point of
intersection is measured. According to Shapira et al. [16],
the ideal number of rays is 30 inside a cone with angle of
120◦. The rays are chosen randomly.

Step 3 - outliers removal: After the measured distances
are obtained, the rays that are in the same direction as
the inverse normal of the mesh they hit (the same direc-
tion is defined as an angle difference less than 90◦) are
ignored. This is performed to remove false intersections
with the outside of the mesh. The SDF at a point is de-
fined as the weighted average of all rays lengths which
fall within one standard deviation from the median of all
lengths. The weights used are the inverse of the angle be-
tween the ray to the center of the cone. This is because
rays with larger angles are more frequent, and therefore
have smaller weights.

Step 4 - smoothing: In order to increase robustness and
fill in the values for points that could have ended up with
0 valid rays a smoothing stage is necessary. Anisotropic
smoothing is chosen to smooth the values of the points on
the mesh.

4 Our Implementation

We have based our implementation upon the original al-
gorithm extending it on GPU by parallelizing the ray cast-
ing process using OpenCL. We have inherited all the steps
from original algorithm and further extended them on
GPU.

4.1 Preprocessing

In the preprocessing stage we have to create an accelera-
tion structure around the mesh that will improve the ray
tracing routine. The acceleration structure is one of the
most important parts of ray tracing. As noted by [5], the
fastest acceleration structure for static scenes is kd-tree,
followed by bounding volume hierarchies (BVH). How-
ever for the purpose of comparison with the original arti-
cle, we have chosen to use an octree to be able to compare
results, leaving the other ones for future work. We com-
puted the octree on CPU because the preprocessing time
was not a concern. It is built in a top-down manner. Trian-
gles that were in the middle of several nodes were detected
through Mollers AABB-triangle intersection algorithm [1]
and split into multiple nodes. On our test models optimal
octree depth ranged from 6 to 12 depending on the number
of triangles. We have chosen a maximum depth of 10 for
consistent results.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



4.2 Ray Casting

There are several ways to perform ray casting on GPU.
Carr et al. [3] proposed to generate rays and perform
traversal of acceleration structures on CPU, then store
the results and perform ray-triangle intersections on GPU.
Purcell et al. [14] proposed to store scene geometry and
acceleration structure on GPU and perform both traver-
sal and intersection on GPU. Recent efforts in optimiz-
ing the algorithms for GPUs have demonstrated to obtain
better results on traversal of acceleration structures than a
single-core execution on CPU. Therefore in our approach
we send data containing triangle indices and acceleration
structure to GPU, then we perform a per-ray computa-
tion of SDF. Our code is based upon the original imple-
mentation of the algorithm extending it to GPU with the
help of OpenCL [12]. OpenCL was chosen because it is
an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors,
making it an universal solution for multiple platforms.

The computation of SDF is a three step process that con-
sists of generating and casting rays, traversing the chosen
acceleration structure and measuring the distance at the
point of intersection with the geometry.

Ray Generation: In the first step, we have to generate
N rays in a cone centered around inward-normal direction
of a given point p. The generation of rays on CPU and then
transferring the data to GPU creates unnecessary over-
head because we have to store every ray and it’s associated
weight (inverse of the angle between the ray and the center
of the cone). Therefore the rays have to be generated on
GPU, but original algorithm generates the rays randomly,
which would require defining a pseudo-random generator
in OpenCL and store weight per every ray. Rolland [15]
has tackled this problem by defining a cone sampling strat-
egy consisting of random rays that are uniformly generated
inside the cone. However, we wanted a fast determinis-
tic algorithm that would be uniform for both smaller and
larger number of rays and for any given cone. This is to
prevent storing weights and to avoid unnecessary bias in
the values on the mesh, which can be seen in Figure 2.
Therefore, we have decided to evenly distribute rays in a
cone with the help of Spherical Fibonacci [10].

Figure 2: (a) random ray generation, (b) uniform ray gen-
eration using Spherical Fibonacci.

The algorithm generates the rays in a sphere from top

to bottom. The generation was restricted to a given
sphere cap and once a ray is generated, it is transformed
into world coordinates by multiplication it with tangent-
binormal-normal matrix specified by the point’s inward-
normal and two orthogonal unit vectors spanning the tan-
gent plane of the point p. It is important to note that only
valid points are used to generate the rays from (valid point
is defined as having a non-zero normal, tangent and binor-
mal vectors). Using triangle centers can have advantages
over vertices in non-manifold models, where the normal of
some points can not be properly determined. And it helps
to reduce necessary data transfer thanks to the fact normal,
tangent and binormal can be calculated.

Figure 3: Generating rays uniformly with Spherical Fi-
bonacci, image from [10].

Octree Traversal: In the second step we traverse our
acceleration structure. Every ray is computed separately,
one ray per work item. This is faster on modern cards
that have thousands of cores. Unfortunately, we could not
avoid random memory access that slows down the entire
process. The octree structure and triangles are sent to GPU
and each ray is cast separately. Several octree traversal
methods are mentioned by Kristof et al. [7], notably neigh-
bor pointer, kd-restart and short-stack approaches. Our
implementation is based on Laine et al. [8] stack-based
approach, but unlike [8] the tree is traversed in a top-down
fashion all the way to the leaves. The nodes are traversed
until we find a valid intersection in the third step.

Triangle Intersection: In the third step we compute
ray-triangle intersection between the cast ray and trian-
gles that belongs to a given node. As mentioned by
Philippe et al. [13], one of the best algorithms for ray-
triangle intersection is Moller and Trumbore [11] because
it uses mainly dot and cross product that is fast on cur-
rent graphical hardware. To improve the algorithm on
non-manifolds, we have to skip intersections that are too
close to the ray origin, like in the case of self intersect-
ing mesh. We define minimum closeness using the max
dimension of model (max size) as mininum closeness =
max size ∗ 2.0 ∗ 0.00001; Once the intersection is found,
we check if the ray is valid by comparing normal at the
point of intersection and the ray direction as mentioned

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



in original algorithm [16]. In a case when no intersection
is found, the distance is set to −1 and the ray is ignored.
Afterwards the measured distance is stored in memory.

Data Management: Mesh triangles are stored in a
32bit RGBA texture. Coordinates (X, Y, Z, W) of each ver-
tex of a given triangle are stored in a single texel. Normals
and other necessary information is calculated on GPU. We
encode the topology of the octree using 2 arrays. First one
contains 32-bit child descriptors, each corresponding to a
single node. The child descriptor contains a 24-bit child
pointer and a 8-bit bit-mask that tells whether each of the
child slots actually contains a node. In a case when the
node is a leaf the child pointer points to the second array
containing data for leaf nodes. Each leaf has to store the
number of triangles it contains and their pointers to the tri-
angle texture. This is all stored in the second array which
can be seen in Figure 4.

Figure 4: (a) 32bit child descriptor, (b) leaf data.

In a case when we are using triangle centers as the
points from which we are casting the rays and measur-
ing the distance, no additional information is necessary.
Otherwise, we have to store the point’s origin, normal and
tangent or other information like triangle / vertex neigh-
bors from which we can fill in the data. At last we have to
store our results. They are stored in a single array with size
= number of points ∗ number of rays. Figure 5 shows an
example of how the octree topology is stored in memory.

4.3 Outliers Removal

Once we collected all values for our points and their rays,
another program is executed on GPU. We do not have to
send the data to GPU because they are already there from
previous step. For output we create 1 array containing
value for every point. The work is split in a way that 1
work item processes data of one point. Rays with lengths
which do not fall within one standard deviation from the
median of all lengths are removed and the rest is averaged
using weights that can be calculated again thanks to our
uniform sampling. After we get our final value, we send
the data to CPU memory. While we are saving the data,
we normalize them, this is very fast and does not needs
to run on GPU because we would need another array for
second output.

Figure 5: Octree topology on an example. (a) octree struc-
ture, (b) 1st array with octree nodes, (c) 2nd array with leaf
data.

4.4 Smoothing

As mentioned in the original paper [16], to overcome er-
rors in the measure caused by pose changes or complex
surface geometry, a smoothing operation is necessary. The
method chosen is directly related to the result we are trying
to obtain because various methods can lead to significantly
different values. Therefore we propose 3 approaches that
can be used to smooth the SDF values in various ways.

Smoothing on Mesh: In first approach we smooth val-
ues in mesh, by defining k-ring neighborhood Gaussian
smoothing. The k specifies the blur radius given by our
connectivity in mesh, which can be seen in Figure 6. We
start with a chosen vertex, for which the k = 0; In first
iteration, we create a list of vertices that share an edge
with our first vertex. These vertices have k = 1; In every
next iteration we create a new list of vertices that share at
least one edge with vertices from previous iteration, but
only those that we have not yet chosen. This is repeated
until we reach our desired k. We then create a 1D Gaus-
sian matrix for our k and perform weighted averaging of
all the values from vertices using data from our matrix as
weights. This is repeated for every vertex in mesh. To
ensure consistency and continuity during smoothing, du-
plicated vertices have to be merged into one. This ensures

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



that the k-ring neighborhood Gaussian smoothing will not
fail to find neighboring vertices. This method of smooth-
ing does not preserve values at corners. In a case when the
values should be preserved, smoothing can be performed
on triangles and the dihedral angle between the connected
triangles from 2 consecutive iterations can be used as ad-
ditional weight. This method can be parallelized, but it
is not suited for GPU because it requires large dynamic
arrays for the vertices and is mostly based on accessing
memory than doing mathematical calculations.

Figure 6: Smoothing by defining a k-ring neighborhood on
the mesh.

Smoothing on Projected Points: Our next approach
is based on projecting the points in their inward normal
direction to a distance which is half of their SDF value.
This creates a cloud like structure inside the mesh that re-
sembles medial axis. Then for every point we perform
nearest neighborhood search within the radius of the given
point’s SDF value, acquire the SDF value of every detected
point and average the result. But due to the fact that many
meshes have round, spheroidal parts where thousands of
points can occupy small space, this would lead to a time
complexity of O(n2) in worst case where n is the number
of points. Therefore, for efficiency we have to join the
points whose distance from each other is too small. This
can be done by creating an octree structure, that will store
the average value of projected points and their count in
it’s nodes. And instead of searching nearest points within
the radius of the given point’s SDF, we search nearest oc-
tree nodes, which can be seen in Figure 7. We perform
this by traversing the tree from top to bottom, checking if
nodes are within the radius of our SDF value. If a node
is fully inside our radius, we do not traverse this node fur-
ther. At the end, we average values from the nodes using
weighted averaging. As weight we use the multiplication
of number of points in each collected node and an approx-
imate percentage of how much of the cube lies inside the
radius. This method can be parallelized on GPU. Besides
the standard octree structure that must be send to GPU,
we have to include number of points and SDF value for
every node. Leaves do not need to contain any additional
pointers. Other information as the projected points and

their SDF values can be obtained from data that remained
from ray casting steps. Octree node positions and dimen-
sions can be interpolated from the position and dimension
of root node.

Figure 7: (a) mesh with SDF values, (b) projected points
resembling medial axis, (c) octree nodes containing the
average SDF values.

Smoothing in Texture: In our third approach we have
chosen a more traditional method by smoothing the SDF
values in texture. This requires that the mesh has a proper
UV coordinates. In a case when the parametrization is
missing, but we have a manifold model, it is possible to
use Skeleton Texture Mapping [9] to create necessary UV
coordinates. If performed on GPU, the fastest way is to
use shaders. We bind our texture to a Frame Buffer Ob-
ject (FBO), then we create a 2D orthogonal projection that
has in the bottom-left corner coordinate (0,0) and in the
top-right corner coordinate (1,1). Then we use OpenGL
to draw the triangles into this texture using their UV co-
ordinates and their SDF values as color. Afterwards we
run our shader program that performs the smoothing oper-
ations. There are various methods that can be used, from
Gaussian to bilateral, median or anisotropic filtering. After
the smoothing is performed, we retrieve our results from
texture. In a case when we end up with a vertex that has
multiple UV coordinates, we can average the result. Result
of Gaussian filtering can be seen in Figure 8.

Discussion: Smoothing on mesh: The parameter k is set
manually depending on the number of triangles / vertices
the mesh contains. We have tested the effect of various
parameter settings on the consistency of the SDF on many

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: (a) before smoothing, (b) after smoothing.

meshes. In practice smaller meshes up to 20k triangles re-
quired radius of 2, while larger meshes like point cloud
scans with 500k+ triangles radius of 5+. This smoothing
approach gave best results when compared to others, how-
ever it was the slowest. It fails when the connectivity in
mesh is not well defined or when the triangles does not
have approximately the same sizes, in this case a lot of
detail can be lost.

Smoothing on projected points: When creating an oc-
tree additional restrictions can be applied to further reduce
the depth, while keeping the detail. In practice, the pro-
jected points are much closer to each other than the trian-
gles in mesh and so we can use a smaller maximum depth,
8 was satisfying in most cases. Also minimum number of
points for a node to branch can be increased to about 0.2%
of all points. We can also compare the average value of
the points against the octree dimensions and if it is big-
ger, then we do not branch. This method is faster than
the first one, but the parallelization on GPU leads only to
a slightly better results due to a lot of memory access. It
also has an advantage that we do not have to set any radius
value, because it is automatically acquired from the SDF
values. Stronger smoothing can be obtained by iteratively
running the method, which can even yield better results. It
fails when the mesh surface is too irregular and the points
are projected randomly, not forming a cloud like structure.
Also it keeps the values at corners, which can be unwanted
in some cases.

Smoothing in texture: This method is by far the fastest
one, done in terms of ms even on large textures like 2048×
2048. The need to have UV coordinates can be contra-
productive because the automatic methods to create them
are very slow. It can fail in multiple cases. First one is
when the texture parametrization does not divide the mesh
into logical parts. Second one is the texels of different
parts are within the smoothing radius. Third one is when
the projected triangles have different sizes. In practice we
set the radius to 2 for a 256×256 texture and multiply as
necessary, but it can vary depending on the model.

In Figure 9 the effect of all the methods on single model
can be seen. Smoothing in texture performed similarly to
smoothing on mesh, while smoothing on projected points
kept more detail in corners.

Figure 9: (a) no smoothing, (b) smoothing in texture, (c)
smoothing on mesh, (d) smoothing on projected points.

5 Results

The testing was done on Intel Core i5, 2,67GHz with 4GB
RAM and AMD Radeon R9 290, using 30 rays for each
point. The algorithms were implemented in C++ in Visual
Studio 2012 using standard OpenCL API.

Table 1 show basic performance of ray casting routine,
outliers removal and smoothing. As for the smoothing
chosen in the Table 1, we decided smoothing on projected
points was the most suitable because it did not require
any additional parameters. Table 2 shows octree creation.
The time was measured on CPU. Table 3 shows smooth-
ing on mesh using various k-ring area settings. The time
was measured on CPU because we did not had a GPU im-
plementation. Table 4 shows smoothing in a 2048×2048
texture using Gaussian Filter with various radius settings.
Figure 10 shows percentage difference between GPU and
CPU implementation when used on the same model with
varying level of detail.

Figure 10: Benefits of GPU implementation with varying
level of detail. Comparison was performed on model of
Stanford Dragon.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Model Faces SDF Computation Outliers Removal Smoothing Total
Lizard 1 000 000 555,9 18,049 3,3 0.078 7,098 1,166 566,298 19,293
Stanford Dragon 500 000 234,1 8,721 1,32 0.047 3,385 0,576 238,805 9,344
Davy Jones’ head 260 000 143,0 2,449 0,843 0,032 1,139 0,334 144,982 2,815
Skeleton 100 000 41,209 0,967 0,521 0,024 0,437 0,155 42,167 1,146
Buzz Lightyear 40 000 11,122 0,499 0,141 0,016 0,312 0,047 11,575 0,562
S-shape 20 000 4,274 0,219 0,063 0,015 0,171 0,016 4,508 0,250
Rabbit 15 000 3,026 0,156 0,047 0,008 0,109 0,015 3,182 0,179
Bottle 2 500 0,316 0,031 0,016 0,006 0,015 0,012 0,347 0,049

CPU GPU CPU GPU CPU GPU CPU GPU

Table 1: Results for both CPU and GPU computation of SDF. Listed times are in seconds. Total time does not include
preprocessing.

Maximum Depth Octree Creation
14 13,931
12 8,923
10 3,525

8 0,998
6 0,421
4 0,218
2 0,063

Table 2: Octree creation in preprocessing stage with vary-
ing maximum depth. Listed times are in seconds. We used
model of Stanford Dragon with 500 000 triangles.

k-ring Smoothing
8 26,567
7 20,015
6 14,882
5 10,764
4 7,566
3 5,024
2 3,120
1 1,762

Table 3: Smoothing on mesh using various k-ring areas.
Listed times are in seconds. We used model of Stanford
Dragon with 500 000 triangles.

6 Conclusion

In Section 3, we described the present state of methods
used in the in the original paper [16]. In Section 4, we pro-
posed our OpenCL implementation of the algorithm. We
described all the steps necessary to perform the ray cast-
ing, outliers removal and smoothing on GPU. The various
smoothing techniques which we subsequently developed
(see Figure 9) can be used to increase robustness and over-
come unwanted variations on mesh. Finally, in Section 5
we compared our GPU implementation against the CPU
implementation and shown great speedup in terms of tim-
ing.

Radius CPU smoothing GPU smoothing
64 15,756 0,160
32 10,842 0,117
16 8,361 0,106

8 7,192 0,101
4 6,599 0,093
2 6,318 0,083

Table 4: Smoothing in a 2048× 2048 texture using vari-
ous radius settings. Listed times are in seconds. We used
model of Stanford Dragon with 500 000 triangles.

Overall, in this paper we have proposed a parallel
method for computing ray casting, outliers removal and
smoothing steps of Shape Diameter Function that is per-
formed on GPU using OpenCL. We have maintained the
accuracy of the results while noticeably increasing it’s
speed.

References

[1] Tomas Akenine-Möller. Fast 3d triangle-box over-
lap testing. In ACM SIGGRAPH 2005 Courses, SIG-
GRAPH ’05, New York, NY, USA, 2005. ACM.

[2] Andrea Baldacci. Gpu - accelerated shape diameter
function filter for meshlab, 2011.

[3] Nathan A. Carr, Jesse D. Hall, and John C. Hart.
The ray engine. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS ’02, pages 37–46, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics Asso-
ciation.

[4] Hyeong In Choi, Sung Woo Choi, and Hwan Pyo
Moon. Moon: Mathematical theory of medial axis
transform. Pacific J. Math, 1997.

[5] Vlastimil Havran. Heuristic Ray Shooting Algo-
rithms. Ph.d. thesis, Department of Computer Sci-
ence and Engineering, Faculty of Electrical En-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



gineering, Czech Technical University in Prague,
November 2000.

[6] Maurizio Kovacic, Fabio Guggeri, Stefano Marras,
and Riccardo Scateni. Fast Approximation of the
Shape Diameter Function. Proc. Workshop on Com-
puter Graphics, Computer Vision and Mathematics
(GraVisMa), Vol. 5, 2010.

[7] Peter Moller-Nielsen Kristof Rmisch. Sparse Voxel
Octree Ray Tracing on the GPU. Ph.d. thesis, De-
partment of Computer Science, Aarhus University,
Denmark, September 2009.

[8] Samuli Laine and Tero Karras. Efficient sparse voxel
octrees. In Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’10, pages 55–63, New York, NY, USA,
2010. ACM.

[9] Martin Madaras and Roman Ďurikovič. Skele-
ton texture mapping. In Proceedings of the 28th
Spring Conference on Computer Graphics, SCCG
’12, pages 121–127, New York, NY, USA, 2013.
ACM.

[10] R. Marques, C. Bouville, M. Ribardire, L. P. Santos,
and K. Bouatouch. Spherical fibonacci point sets for
illumination integrals. Computer Graphics Forum,
32(8):134–143, 2013.

[11] Tomas Möller and Ben Trumbore. Fast, minimum
storage ray-triangle intersection. J. Graph. Tools,
2(1):21–28, October 1997.

[12] Khronos OpenCL and Aaftab Munshi. The opencl
specification version: 1.0 document revision: 48,
2013.

[13] Daniel Schweri Philippe C.D. Robert. Gpu-based
ray-triangle intersection testing. Technical report,
Research Group on Computational Geometry and
Graphics, Institute of Computer Science and Applied
Mathematics, University of Bern, 2004.

[14] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray tracing on programmable graph-
ics hardware. ACM Trans. Graph., 21(3):703–712,
July 2002.

[15] Xavier Rolland-Nevière, Gwenaël Doërr, and Pierre
Alliez. Robust diameter-based thickness estimation
of 3d objects. Graphical Models, 75(6):279–296,
2013.

[16] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or.
Consistent mesh partitioning and skeletonisation us-
ing the shape diameter function. Vis. Comput.,
24:249–259, March 2008.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


