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Abstract

Monitoring changes in landscapes is important for several
environmental and geographical studies. This paper con-
siders a coastline change detection approach using multi-
temporal data captured by Light Detection And Ranging
(LiDAR) technology. The proposed method consists of
four steps. In the first step a heightmap is generated from
LiDAR data. The second step represents the core of the
proposed method. In this step dense optical flow of the
multi-temporal heightmaps is computed, yielding motion
vectors for each point. In the third step, points with sim-
ilar motion vectors are clustered. In the last step a dis-
placement for each cluster is estimated, representing the
movement of soil. An evaluation of the approach shows
a 91.897% accuracy when estimating displacements and a
93.710% accuracy when detecting displaced areas.
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1 Introduction

Monitoring coastal changes is an important task for sev-
eral studies. It is interesting from a geographical per-
spective to study the trends of local landscape changes.
Such studies are also important for the economy. Var-
ious area utilisations can be efficiently planned by hav-
ing priori knowledge about certain landscapes and their
changing tendencies. Coastal areas represent a very dy-
namic case regarding landscapes. Constant tidal activity
washes up and washes away soil from the surface. Such
behaviour results in an ever-changing shape of coastline,
especially in respect to salt pans. Frequent evaporation
and flooding of such areas cause an accelerated process
of the previously-mentioned surface changes. Such areas
have many changes in the short term and are, therefore,
excellent test sets for the change detection approaches of
coastal data.

This paper presents an approach for the detection and
estimation of coastal surface changes over a certain time-
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span. Surface data were obtained by LiDAR technology.
The result of the presented approach are displacement esti-
mations of certain parts of the coastline, where each point
belonging to the displaced area is labelled. The paper is
organised into 6 sections. Section 2 gives a short overview
of related work. Section 3 provides a short summary on
data acquisition and the test area. Section 4 describes the
procedure for estimating surface change detection. Sec-
tion 5 presents the results of testing. A summary of the
paper is given in Section 6.

2 Related work

Many studies are engaged in coastal monitoring. Most of
them focus on extracting the coastline and not comput-
ing the actual changes. Xu-kai, Xia, Qiong-qiong and Ali
Baig [20] proposed an approach for automated coastline
extraction using the Otsu algorithm and Canny edge detec-
tion [5]. Bouchama and Yan [4] proposed an approach for
detecting changes between two datasets using a window-
to-window comparison and SURF features for alignment.
Bo, Dellepiane and De Laurentiis [3] extracted the coast-
line using an approach based on the local contextual infor-
mation of remotely sensed data. Niedermeier, Romaneen
and Lehner [16] detected the coastline using an approach
based on wavelet methods. Alesheikh, Ghorbanali and
Nouri [1] present an approach for coastal change detec-
tion based on a combination of histogram thresholding and
band ratio techniques. A semi-automatic approach based
on fuzzy connectivity concepts for the coastline extraction
from SAR images was proposed by Dellepiane, De Lau-
rentiis and Giordano [7]. Ali [2] proposed an approach
that represents coastlines as curves that are divided into
segments of the same length in a multi-temporal dataset.
At each such corresponding segment, between the prelim-
inary and postliminary acquired data, an Euclidean dis-
tance is computed that represents the amount of coastal
displacement.
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3 Data acquisition

The data used in this paper were obtained by the laser
remote sensing technology called airborne LiDAR. It is
considered to be the most advanced remote sensing tech-
nology at the moment. Conceptionally it is similar to a
RADAR or SONAR, with the main difference being the
wavelength of the signal. LiDAR emits a series of laser
pulses towards the surface where they reflect and travel
back to the device. As the speed of light is constant, the
distance can be determined by the time it takes the pulse
to travel from and back to the device. Such a procedure
is repeated under different scan angles so that it forms a
line, as seen in Figure 1. Having a capture frequency of
over 200.000 pulses per second and density of more than
40 points per square metre [18], a very detailed represen-
tation of the world can be obtained. LiDAR technology is
also capable of penetrating through vegetation and record-
ing the terrain beneath. The data are georeferenced using
a GPS system for positioning and an inertial measurement
unit (IMU) for angle determination of the emitted pulses
[14, 12]. Data are stored as a three-dimensional point-
cloud without a topology. Water areas, on the other hand,
are troublesome, as low reflectance of light on water re-
sults in a low number of acquired points [19].

Figure 1: Data acquisition with LiDAR technology.

The data for testing the proposed approach were ob-
tained at the Seovlje salt pans located near Portoro, Slove-
nia. Data were obtained in the years 2008 and 2010 and is
already classified.

4 Surface change detection

Surface movement in geography is considered as a visible
sliding of soil from its original position [21]. Changes on
the coast can be considered as movement of the surface to-
wards or away from the current coastline. An example is
shown in Figure 2. In such a case, a rigid translation can

be considered. The proposed approach is based on this as-
sumption. A rigid translation is considered as a gradual
changing of the coastline’s shape. This assumption does
not suffice for coasts that have suddenly changed the cur-
vature of the coastline such as man-made embankments or
excavations of an area. The approach consists of four main
steps, as described in the next four subsections.

Figure 2: Displacement of the coastline.

4.1 Heightmap

In the first step a heightmap is generated from the input
point-cloud. The resolution of the heightmap is depen-
dent on the density of the obtained LiDAR data. The
mapping requires an interpolation method, as points from
the point-cloud do not coincide with the points on the
heightmap. The inverse distance weighting (IDW) method
[6] is used in the proposed approach. Using this interpola-
tion method a height value is estimated using information
from neighbouring points. The weight of each point within
the neighbourhood is inversely-proportional to the power
of the distance. A greater number of neighbours results in
a smoother heightmap. The neighbourhood of the nearest
5 points is used for the proposed approach. The result of a
heightmap is shown in Figure 3.

4.2 Optical flow

The calculation of optical flow is the key step of the pro-
posed approach. It represents a motion estimation of ob-
jects within a scene and is defined as an apparent motion of
intensity patterns on the scene [17]. Sparse and dense op-
tical flows exist. A well known method for sparse optical
flow was proposed by Lucas and Kanade [11]. It estimates
motion vectors at feature points. Dense optical flow, on
the other hand, provides a motion field consisting of mo-
tion vectors for each heightmap point. Such methods were
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Figure 3: The representation of point cloud mapping to a
height grid. The lower image represents a heightmap of
the upper point cloud.

presented by Horn and Schmuck [9] and by Farneb [8].
The latter is used in the proposed approach as it yields
more robust results.

The main idea of the optical flow computation proce-
dure proposed by Farneb is to find a best fit between
the point neighbourhoods of two heightmaps. Each
neighbourhood is represented by a quadratic polynomial.
Such a polynomial is obtained from polynomial expan-
sion [8], based on normalised convolution, as proposed by
Knutsson and Westin [10]. By assuming that the motion
is gradual, a certain area of the corresponding point in the
postliminary acquired heightmap is examined for the best
fitting polynomial. In the case of the motion being sudden,
meaning that is does not progress slowly over time, may
lead to less accurate motion estimation. The distance be-
tween the polynomial on the first heightmap and the best
fitted polynomial on the second represents the size of the
motion vector. The angle of the vector is computed using
the following equation:

θ = arctan
(

p2y − p1y

p2x − p1x

)
. (1)

Figure 4: A motion vector field.

A field of such vectors represent those motions that have
occurred between two heightmaps over a certain time
span, as shown in Figure 4. At this point the motion vec-
tors are mapped from the heightmap to the point-cloud.

4.3 Point clustering

The result of the procedure described in 4.2 is a field of
vectors, each representing motion at a point in the point-
cloud. A clustering procedure is proposed for uniting
points with similar motion vectors. The proposed clus-
tering uses two criteria for determining whether a point
is a part of the cluster or not. The first is the angle of
the motion vector. Points with similar motion vector an-
gles are clustered together. As noise within the data dis-
torts motion vector estimation, an angle threshold of 15◦

is taken into account. The second criteria is the distance
between points. A threshold is used for the maximum al-
lowed distance between points. The next step is to find
candidate points to cluster. A kd-tree nearest-neighbour
search is used to find points within a certain radius [15].
Each newly inspected point that meets the criteria is added
to the cluster and triggers a recursive method for finding
new nearest-points. The procedure is finished when all
the points have been inspected. In order to prevent false
detections caused by noise, a threshold is introduced for
a minimal number of points in a cluster. An example of
clustering on test data is shown in Figure 5.

The goal of the proposed approach in this paper is to
find changes of coastal surface. The computed clusters
represent parts of land that had moved from their original
positions.

4.4 Displacement of clusters

After clustering is finished, the positions must be deter-
mined as to where the clusters have moved on the postlim-
inary acquired point-cloud. As each point has its own mo-
tion vector, an end position can be computed straightfor-
wardly by adding the motion vector to the point coordi-
nate. It is unnecessary for the calculated displaced points
to represent the actual state of the second point-cloud. A
kd-tree nearest-neighbour search is performed for deter-
mining the actual displaced points on the second-point
cloud. Points within the same cluster have similar motion
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(a) B190201 (b) B190204 (c) B204216

Figure 5: Dataset for testing with marked clusters.

vectors. Based on that fact, a global displacement vec-
tor for the cluster can be obtained as an average of all the
contained vectors. The resulting vector represents the di-
rection and amount of displacement the coastline has un-
dergone.

5 Results

The proposed approach was implemented in C++ using the
Qt 5 framework. Tests were performed as a single threaded
process on a desktop workstation using the following hard-
ware: Intel i5-3570K and 16GB of DDR3 RAM. The
dataset used for testing were point clouds from binary LAS
files. The average size of the test-set point-clouds was
100.000 points, and a grid with 0.5m resolution was used.
The testing data represent those parts of the Seovlje salt
pans that underwent the most change. Only those points
recognised as ground were considered, because buildings
and vegetation were not the studied subjects and would
have unnecessarily slowed down the computation.

Two evaluation metrics were used for the proposed ap-
proach. The first evaluated the accuracy of the estimated
displacements, while the second evaluated the accuracy of
the correctly detected displaced areas. Reference data of
surface movements had to be obtained for the purpose of
evaluating displacement estimation. This was done by an
expert in the field of geography. The tool used for measur-
ing the reference data was LIDARLiVE [13]. As shown in
Figure 6, this allowed a clear estimation of displacements

by simultaneously displaying both point-clouds within a
cross-section view.

The datasets and detected movements are shown in Fig-
ure 5. Test results for displacement estimation accuracy
on 3 datasets are shown in Table 1. Verification of the
obtained results show an average error of 8.103%. A
slightly higher error value in dataset B204216 was the con-
sequence of missing larger parts of data in some areas. The
same datasets were used for evaluating the detection ac-
curacy. The results are shown in Table 2. The proposed
approach achieved an average of 93.710%.

Figure 6: Cross-section view of two point clouds.

The results of the proposed approach were compared
to the results of the coastline curvature approach intro-
duced by Ali [2]. The same test-set was used for this pur-
pose, however, the measuring of coastline displacements
was limited to the areas of clusters that were detected by
the proposed approach, due to consistency of result com-
parison. The values of the displacements and error are
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Table 1: Results and comparison of the testing of displacement computation on 3 datasets with detected multiple displaced
clusters.

Dataset Cluster
number

Actual displace-
ment (m)

Proposed ap-
proach displace-
ment (m)

Proposed ap-
proach error
(%)

Coastline cur-
vature displace-
ment (m)

Coastline curva-
ture error (%)

B190201
1 5.421 5.391 0.557 5.284 2.536
2 4.966 5.220 5.125 4.662 6.108
3 4.282 4.719 10.221 3.403 20.539
4 5.142 5.550 7.938 5.292 2.922
5 5.238 4.961 5.286 5.080 3.015

B190204
1 2.978 2.766 7.120 3.260 9.460
2 2.390 2.548 6.605 1.916 19.820
3 1.807 1.634 9.593 1.798 0.520
4 1.390 1.584 13.964 1.400 0.720
5 1.623 1.610 0.810 1.569 3.350

B204216
1 1.825 1.639 10.178 1.794 1.672
2 2.035 2.120 4.185 2.148 5.538
3 2.196 1.820 17.119 2.048 6.757
4 1.821 1.552 14.749 1.704 6.405

shown in Table 1 under the coastline curvature approach
columns. The average error of 6.383% shows that that the
approach, proposed in this paper, is 1.720% less accurate
than the coastline curvature approach. The reason for this
is in the way of representing a shoreline. The proposed ap-
proach takes in account a wider area of the coastline, while
the coastal curvature uses only the curve of the coastline
which results in the coastal curvature approach being more
sensitive to noise than the proposed approach.

The results of the proposed approach would be satisfac-
tory for use within undemanding fields but would be inap-
propriate for tasks needing maximum precision. The main
reason for the resulting error is the optical flow procedure,
as it is difficult to find global parameter settings.

Table 2: Results of testing the accuracy of displaced areas.

Dataset Coastline Detected Error (%)
length (m) coastline length (m)

B190201 354.999 406.612 14.539
B190204 62.245 61,409 1.340
B204216 127.145 123.341 2.992

6 Conclusions

This paper proposed an approach for change detection of
coastal surfaces using multi-temporal LiDAR data. The
results show the displacement estimations of coastline ar-
eas. The part of the approach that is the main bottleneck is
optical flow computation, as it is noise sensitive and highly
dependent on the parameter settings. Future work should
mainly be focused on optimising this part.
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