
Applying Engineering Constraints
in Digital Shape Reconstruction

István Kovács∗

Supervised by: Tamás Várady†

Budapest University of Technology and Economics

Abstract

The goal of digital shape reconstruction is to create com-
puter models from point clouds; however, inaccuracies
may occur due to the noise of measured data and the nu-
merical nature of the algorithms used for fitting. As a con-
sequence, faces will not be precisely parallel or orthogo-
nal, smooth connections will be of poor quality, axes of
concentric cylinders may be slightly tilted, and so on. In
this paper we present algorithms to eliminate these inac-
curacies and create perfect models, which are suitable for
downstream CAD/CAM applications. We extend a for-
merly published technology [1] in two areas. We propose
methods to (i) automatically set up hypotheses for likely
geometric constraints and (ii) compute global constraints
related to the whole object, such as, an optimal coordi-
nate system and associated grid, or the best - full or partial
- axes of symmetries. In this paper we investigate pla-
nar contours with constraints; nevertheless, extending this
technology to 3D is in progress, as well. A few interest-
ing examples will be presented to show how constrained
fitting can improve the quality of reconstructed objects.

Keywords: Reverse engineering, Constrained fitting,
Symmetry detection

1 Introduction

Digital shape reconstruction (reverse engineering) is an
expanding, challenging area of Computer Aided Geomet-
ric Design [12]. This technology is utilized in various ap-
plications where a given physical object is scanned in 3D,
and a computer representation is needed in order to per-
form various computations. A wide range of applications
emerges in engineering, medical sciences, and to preserve
the cultural heritage of mankind [6]. Examples include re-
designing and re-manufacturing old mechanical parts, cre-
ating surface geometries from clay models, or producing
surfaces matching human body parts for hearing aids, den-
tures, prosthetics, etc.

∗kovacsi@math.bme.hu
†varady@iit.bme.hu

1.1 Digital shape reconstruction

Digital shape reconstruction consists of the following
technical phases: (1) 3D data acquisition (scanning),
(2) filtering and merging point clouds, (3) creating triangu-
lar meshes, (4) simplifying and repairing meshes, (5) seg-
mentation (partitioning into disjoint regions), (6) region
classification, (7) fitting surfaces (i.e. approximating the
data points), (8) fitting connecting surfaces (e.g. fillets),
(9) perfecting surfaces (including constrained fitting and
surface fairing), (10) exporting to CAD–CAM systems for
downstream applications.

Assume segmentation has taken place, and classifica-
tion produced a surface type for each region that will best
approximate the related data points. The conventional ap-
proach is to fit surfaces individually. Let us denote the sur-
faces by {si}, and the corresponding point clouds by {pi j}.
Our goal is to minimize the average square distances be-
tween the surfaces and the point clouds. Let x contain the
parameters of the surfaces. Then the problem is

fi(x) = ∑
j

d(pi j,si)
2, fi(x)→min .

Fitting simple surfaces is generally based on solving
eigenvalue problems [2] [11]; for more complex surfaces
efficient numerical methods exist [9]. Fitting surfaces sep-
arately is likely to produce inaccuracies; fortunately, the
model quality can be perfected, if we recognize and en-
force various geometric constraints and then fit groups of
related surfaces simultaneously.

1.2 Constrained fitting

Geometric constraints define relationships amongst vari-
ous entities. This is a key issue in engineering design;
orthogonality, parallelism, tangency, symmetry, etc. can
be best prescribed by means of constraints, which are ex-
pressed in the form of various algebraic equations.

We may distinguish between constraints that has local
effect related to pairs of curves and surfaces, such as, lines,
circles, planes, cylinders, cones, extruded and rotational
surfaces, and more complex constraints that globally de-
termine groups of surfaces. The most frequent local con-
straints include

• orthogonal/parallel curves and surfaces,

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: An engineering object with many self-contained
constraints.

• concentric curves and surfaces,

• tangential curves and surfaces,

• rounded numerical values,

• fixed numerical values.

The most frequent global constraints include

• common direction for extrusions,

• common rotational axes,

• global grid,

• global axis of symmetry,

• global rotational symmetry.

The scanned data – in itself – do not carry informa-
tion about the structure of the object and the constraints
between its high-level geometric entities. These need to
be set either explicitly by the user, or recognized and set
by some ”intelligent” algorithm. After individual fitting
— due to noise and numerical inaccuracies — constraints
will be satisfied only within some tolerances; an example
with inaccurate values is shown in Figure 2. If we set a
constraint system, we can enhance the model and refit the
surfaces accordingly. This process is called constrained
fitting.

Our goal is to minimize the average square distances
between the point clouds and the surfaces while constraint
equations are enforced.

1.3 Previous work

Numerical methods to solve this problem have been pub-
lished earlier [14] [8]. An important paper on constrained
fitting was published by Langbein et al. [3], where partial
symmetries on point sets are detected based on an alge-
braic concept. In the paper of Mitra et al. [7] it is shown
how partial global symmetries on 3D models by feature
points can be detected. Our paper expands a numerical

technique originally suggested by Benkő et al. [1], that
can handle under- and over-constrained systems with pri-
orities, applying a special extension of Newton’s method.
An interesting approach was recently published in [4], that
discovers certain primitives, such as, planes, cylinders,
cones and spheres using RANSAC method [10] and then
sequentially enforces constraints amongst them.

1.4 Outline

In this paper we focus on algorithms, that substitute
user driven, manual constrained fitting by automatic tech-
niques. After presenting the basic algorithm of Benkő et
al. [1] in Section 2, we present how to detect and enforce
various hypotheses for likely local geometric constraints
in Section 3. Then we continue with methods to detect
global constraints, including best fit grids and optimal axes
of symmetries - see Section 4 and 5, respectively. Finally,
results will be illustrated by a few examples using 2D point
sets and related constraints for planar curves.

2 Constrained fitting – basics

2.1 A simple example

Consider the profile curve in Figure 2(b) [13]. If we fit-
ted these circles independently, the tangential constraints
would not be satisfied, however, constrained fitting pro-
vides an appropriate solution. In this example, let ci denote
the circles to be constrained with parameters (Ai,Bi,Ci,Di)
, and the corresponding equations are Ai(x2 + y2)+Bix+
Ciy+Di = 0. The average squared distance to be mini-
mized is

f (x)=∑
i, j

d2
i, j =∑

i

1
ni

∑
j
(Ai(x2

i j+y2
i j)+Bixi j+Ciyi j+Di)

2.

The constraint system includes

• normalization constraints (B2
i + C2

i − 4AiDi = 1);
these assure that the distances from the points closely
approximate the Euclidean distances, and

• tangential constraints (2A jDi + 2AiD j − BiB j −
CiC j±1 = 0); these assure that each pair of adjacent
circular arcs shares a common endpoint and tangent.

2.2 The numerical method

Let us continue with presenting the method of Benkő et
al. [1], this is necessary to understand the rest of the pa-
per. We use the previous notations, where d(pi j,si) de-
notes the distance between surface si and point pi j. Let αi
be the positive weights assigned to the i-th surface. Let x
contain the parameters of all surfaces, and let us define the

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a)

(b)

(c)

(d)

Figure 2: Constrained fitting: (a) profile of a gear wheel;
(b) three circles with prescribed tangency; (c) indepen-
dent fitting yields discontinuity; (d) fitting with constraints
guarantees smooth connections.

constraint equations in the form of ck = 0. Then we can
write the global system of equations as

c(x) = 0. (1)

We minimize the average square distance while the con-
straints are satisfied:

f (x) = ∑
i

αi ∑
j

d(pi j,si)
2 (2)

Let c(x) = (c1(x), ...,ck(x)), where the constraints are
ordered by priority and suppose that f (x) and c(x) are
smooth enough (at least C2). Here we have a highly non-
linear system of equations, that we are going to solve using
a special Newton iteration. We approximate c in first or-
der, and f in second order. The Taylor approximations of
c and f around x0 are the following:

c(x0 +d)≈ c(x0)+ c′(x0)d (3)

f (x0 +d)≈ f (x0)+ f ′(x0)d+
1
2

dT f ′′(x0)d (4)

In each step we want to determine a small difference vector
d. Using the above equations, the problem can be written
locally in the form

Cd̃ = 0 (5)

d̃T Ad̃→min, (6)

where d̃ = (d1, ...,dn,1), C = [c′(x0)|c(x0)] and A is an
(n+1)× (n+1) size matrix, as follows:

A =

[
f ′′(x0) f ′(x0)
f ′(x0)

T 0

]
. (7)

In order to calculate d̃ we have to reduce it to a lower
dimensional vector d∗ by (5), such that d∗ has only inde-
pendent coordinates. We calculate a matrix M, such that
d = Md∗, and CM = 0. Now the dimension of d∗ gives
us, how many independent variables exist in the system.
Finally, we can solve d∗T A∗d∗→min without constraints,
where A∗=MT AM, and this can be solved as a simple sys-
tem of linear equations. We note that, this minimization is
always solvable, the proof is based on the fact, that f ′′(x0)
is symmetric positive definite in this case.

The way of calculating M is very similar to Gauss elim-
ination. During elimination, we can check if some of the
constraints contradict to each other, or if the system is
over-determined (see details in the original paper [1]).

2.3 Auxiliary objects

The use of the so-called auxiliary objects is an important
idea in constrained fitting. We illustrate this through a sim-
ple example. Take three lines that are supposed to meet in
a common point (see Figure 4(a)). We can formulate the
related constraints by taking line 1 and 2, compute their
intersection and constrain this intersection point to lie on

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

line 3; then we take line 2 and 3, and line 3 and 1 with sim-
ilar constraints. This set of equations defines a relatively
simple problem in a very complicated way.

An alternative solution is to introduce an auxiliary point
p. This is also an unknown entity, but now we can define
our constraints by three simple equations: i.e. all three
lines must pass through p. Clearly, we have increased the
number of unknowns in the parameter vector x, but the
system of equations – and all related Taylor approximants
– have become much simpler. Note, the unknown surface
parameters are generally associated with a corresponding
point sets, but for auxiliary objects such a data point has
no meaning. Typical auxiliary entities include a point, a
point and a normal, a distance, etc.; their exclusive role is
to simplify the system of equations and thus our computa-
tions.

3 Automatic detection of local con-
straints

Let us start with a simple example. We wonder whether
pairs of lines are perpendicular or not, and we wish to
incorporate additional constraints into our system, if the
likelihood of being perpendicular is high. This can clearly
be controlled by a user defined angular tolerance, and extra
constraints will be added automatically, if two lines span
an angle between 90± ε .

Formally: let c(x) = 0 a simple constraint between two
objects. Let ε be a tolerance level. The c constraint is
within tolerance if and only if |c(x)| < ε , and we want to
validate whether the constraint holds. For this, we intro-
duce the following function:

sε(x) :=
{

x if |x|< ε

0 otherwise.

We observe that, if c(x) is out of tolerance, then sε(c(x))
vanishes, and the constant zero constraint will not modify
our system, otherwise sε(c(x)) reproduces c(x).

A necessary condition for c is, that c(x) represents a
so-called faithful representation for the distance used for a
given entity. (Faithful means that the true Euclidian dis-
tance or a close approximation is computed in the vicinity
of the curve/surface to be fitted, see details [1]). For ex-
ample, for the line meets point constraint, we must use a
normalized line-point distance function

cpl(x) =
|Ax0 +By0 +C|√

A2 +B2
.

Also note that sε is not continuous, but a piecewise con-
tinuous function, so if we calculate the derivative numeri-
cally, we need to make it piecewise, as well.

To detect constraints automatically, we take the modi-
fied constraints for all object pairs. The numerical method
will enable constraints only that are within the related tol-
erance level. The user typically defines different toler-
ances for different – parallel, perpendicular, tangential,

(a)

(b)

(c)

Figure 3: Automatically detected constraints: (a) — ini-
tial state; (b) and (c) — different configurations created by
different tolerance levels

(a) (b) (c)

Figure 4: Three lines meet at a common point: (a) initial
state; (b) pairwise intersection (auxiliary points); and (c)
enforce the ’three points are equal’ constraint.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

concentric, etc. – constraints. Let us denote the set of
objects by S = {si}, and the constraint types by {c j}, such
that c j(s1,s2) denotes an actual constraint between s1 and
s2. Then for all c j, consider the following constraint set:

C j = {sε j(c j(s1,s2))|s1,s2 suitable for c j}.

Thus the global constraint system includes the explicitly
defined constraints, and the C j-s, i.e. the ’likely’ constraint
set.

A somewhat artificial example with three circles and
three lines can be seen in Figure 3 that shows different
configurations created by different constraint tolerances.
Compare cases (b) and (c). The angular tolerances of
’lines orthogonal’ are (b):10, (c):10 degrees. The distance
tolerances of ’line passes through the center of a circle’
are (b):10, (c):10 units, and ’line is tangent to circle’ are
(b):15, (c):25 units, respectively.

We can also handle more complex local (i.e. not pair-
wise) constraints. For example, take the previously men-
tioned three lines meet in a single point constraint in Fig-
ure 4. We may create auxiliary intersection points for all
three pairs of lines, and by means of a corresponding line
close to point constraints the algorithm can detect, whether
the three intersection points are ”likely to be” coincident
or not. In the former case the three lines will be fitted si-
multaneously, enforcing a common point of intersection.

4 The best fit global grid

In this section, we investigate how to detect and create a
best fit ’grid’ object and set the corresponding constraints.

The grid is represented as a 5 dimensional auxiliary ob-
ject with the following parameters:

• the orientation of the grid (n),

• the origin of the grid (p0),

• and a positive constant, the width of the cells (d).

Note that, the above parameters are not uniquely de-
fined, since we can select all intersection points of the grid
as origin, and we have four ways to define the orientation.

We can define constraints for the grid in a similar way,
as earlier. For example, the constraint of a line (Ax+By+
C = 0) is orthogonal/parallel to the grid can be given as
c(x) = min(|An1−Bn2|, |An2 +Bn1|) = 0. We can define
the point meets grid constraint as 〈p− p0,n〉/d and 〈p−
p0,n⊥〉/d are integers. So the most important constraints
are the following:

• certain parameters (n, p0,d) are fixed,

• points are contained in the grid,

• lines are orthogonal/parallel to the grid,

• lines lie on the grid lines.

(a) (b)

(c) (d)

Figure 5: Detect grid: (a) original glass object; (b) seg-
mented profile with straight segments; (c) optimal orienta-
tion; (d) final fit with optimal cell size.

For detecting the above constraints, we can use the auto-
matic methods shown earlier, but this will work only, if the
grid has been initialized ’almost perfectly’. Alternatively,
we suggest an algorithm based on the following four basic
steps (a related example can be depicted in Figure 5):

1. determine the best orientation,

2. fit the corresponding lines,

3. determine the best width parameter,

4. refit the objects matching the enhanced grid.

4.1 Determine the best orientation

Assume that, each line belongs to a straight section. Let
us denote the length of li as h(li), and the angle from x-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

axis of its normal vector li in radian as 6 (li). With respect
to the grid, α and α +π/2 have the same orientation, so
we work with angles modulo π/2. The solution is given
by clustering the angular values. We associate a radius
with each cluster, that depends on a tolerance level and
a weight by w(S) = ∑l∈S h(l). We select the best cluster
(where w(S) is maximal), and the weighted average of the
angles will yield the best orientation.

4.2 Determine the best cell size

After setting up the best oriented grid, we fit the corre-
sponding lines by the automatic method presented in Sec-
tion 3. The next problem is determine the best common
divisor of the distances between the parallel lines.

Let us denote the lines fitted according to the optimal
orientation by {li}, and the absolute distances between the
parallel lines by {di j} = {nl}. If d is a suitable width of
the grid cells, then the average remainder by {nl} is small.
The sum of remainders can be written in the form

δ (d) = ∑
l

min
({nl

d

}
,1−

{nl

d

})
,

where {x} denotes the fraction part of x.
Now the goal is to find the minimum of δ (d) in the

[dmin,dmax] interval. It is easy to see, that the function
δ is piecewise monotone, and the monotonicity drops at
numbers being in the form of nl/k, for certain nl-s, where
k is a positive integer. Therefore, we need to search for
the minimum only at these points, and we can find this
in O(N2nmax/dmin) steps, where N is the number of dis-
tances, and nmax = maxl nl .

After setting up the optimal grid size, we can automati-
cally detect the lines that satisfy all the grid constraints.

5 Estimate global symmetries

The second area of setting global constraints is the compu-
tation of axes of symmetry. We investigate algorithms for
curves consisting of straight segments and circular arcs.
First we determine all potential axes that may occur, then
evaluate and prioritize them, and finally select the best
one(s). Let P = {pi} denote the endpoints of the segments
and the centers of the circles, and L = {li} the lines.

The main steps of the algorithm are the following (see
also Figure 6):

1. Collect all perpendicular bisectors between the points
of P, and all angular bisectors between the lines of L.
These bisector lines are called auxiliary lines.

2. Determine clusters of the auxiliary lines.

3. Evaluate the clusters (i.e. compute the corresponding
axes and evaluate their ’measure’ of symmetry).

4. Select the best axis (axes), and apply constrained fit-
ting accordingly.

(a) (b)

Figure 6: Detected axis of symmetry: (a) the best axis of
symmetry (88.2%); (b) the second best axis of symmetry
(35.9%).

The set of auxiliary lines A contains the perpen-
dicular bisectors between the points of P: A1 =
{PBisector(pi, p j) : i < j}, and the angular bisectors be-
tween the lines of L: A2 = {ABisector(li, l j) : i < j}. Now
we cluster these in two steps. First by the argument of the
normal vectors (modulo π), then by the distances from the
origin. For each cluster C, let lC denote the average of C,
these are the axis candidates. The number of elements in
a given cluster is not necessarily the best quantity to mea-
sure the extent of symmetry; it is better to locate the cor-
responding symmetric parts by the related axis candidate
and compute their arc lengths. With other words, symme-
tries amongst many small segments will be considered less
important than those of a few large segments.

The clusters also provide information about symmetries
of circular arcs, which help to enhance these computa-
tions. For each pair of arcs, we determine the correspond-
ing arcs, or parts of arcs, that can really be considered as
symmetric. The sum of these arcs yield additional weights
to qualify the axis candidates.

We generally define constraints for axis of symmetry
using auxiliary objects, as well. For example,

• an axis is a perpendicular bisector of a segment,

• axis is an angular bisector of two lines, etc.

Finally we perform constrained fitting according to the
best axis of symmetry.

6 Examples

In this section, we present some examples using our algo-
rithms of constrained fitting.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

6.1 Case Study 1 - Gear wheel

As it was shown earlier in Figure 2, if we fit three circles
independently, there will be small gaps between the adja-
cent arcs without tangential continuity, thus yielding a pro-
file curve with poor quality. To avoid this, we must apply
constrained fitting, as shown in Figure 2(d). In this case
the least-squares deviation will be somewhat worse, but
the prescribed constraints will be satisfied. This is illus-
trated numerically in Figure 7. The average least-squares
errors increased by at most 15.5%, but this is still negli-
gible compared to the magnitude of the circle radii. The
radius of the first circle has been increased by almost 20%,
actually this is the correct value. The reason for this is that
the points lie on a relatively small segment of a large circle.
In these cases the computed value of the best-fit radius is
not so robust, and this may lead to relatively large changes
once the constraints are enforced.

Independent fit Constrained fit Deviation
1. error 1.015 1.201 15.50%
1. radius 125.762 155.810 19.28%
2. error 1.138 1.216 6.44%
2. radius 50.590 51.683 2.11%
3. error 0.822 0.855 3.77%
3. radius 145.962 156.278 6.60%
1. constraint 2.142 0
2. constraint 1.010 0

Figure 7: Numerical analysis of unconstrained vs. con-
strained fitting for the profile curve in Figure 2. (i) Least
squares errors and (ii) radii of the three fitted circular arcs,
(iii) estimated deviation errors at the connecting points of
the circles.

6.2 Case Study 2 - Bottle

To demonstrate our algorithms for detecting global con-
straints we used the profile curve of a glass. Both algo-
rithms (detecting grid and axis of symmetry) have pro-
duced satisfactory results.

Grid detection has already been shown in Figure 5; the
algorithm located the best orientation and cell size for the
grid, when performed constrained fitting. As explained
earlier, the algorithm has a dynamic behaviour, i.e. it ad-
justs, which constraints are actually taken into considera-
tion when the system of equations is finally solved. Close
views of Figure 5 are shown in Figure 8. We can see the
middle purple line in 8(b) is almost parallel to the grid, but
the angle is out of the tolerance level. The same thing hap-
pens on the 8(e) with the first yellow line. Another inter-
esting effect, is the third purple line in 8(e), which is fitted
to the orientation, but not fitted to the grid. This illustrates
that, the algorithm is sensitive to the local inconsistencies,
and adaptively determines the constraints for the optimal
global grid.

Symmetry detection was demonstrated in Figure 6. The
algorithm determined two axes of symmetry with symme-
try levels 88.2% and 35.9%, respectively. The first axis is

the global axis of symmetry, while the other one indicates
a local symmetry in the middle of the object.

(a)

(b)

(c)

(d)

(e)

Figure 8: Close views of Figure 5.

7 Conclusion

It is a crucial issue to perfect engineering objects being
reconstructed from measured data. Having only rough ap-
proximations for perpendicularity, parallelism, concentric-
ity, etc, would not be acceptable for the majority of down-
stream CAD applications. In this project we have inves-
tigated perfecting techniques to automatically set up and
enforce local and global geometric constraints. We have
tested our methods for planar point data sets, represent-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

ing straight and circular curve segments. These algorithms
can be generalized to 3D objects in a reasonably straight-
forward way; this is subject of ongoing research. In the
future, we plan to detect other types of global symmetries,
such as, rotational and translational symmetries, then later
apply these techniques to couple conventional and free-
form curves and surfaces, as well.

Acknowledgements

I would like to thank my supervisor Dr. Tamás Várady for
many constructive discussions, and guiding me to write
this article. I would also like to thank the other members
of our research team – Péter Salvi, György Karikó and Pál
Benkő – for exchanging important technical ideas. This
research is supported by the Hungarian Scientific Research
Fund (OTKA No.101845).

References

[1] P. Benkő, G. Kós, T. Várady, L. Andor, and R. R.
Martin. Constrained fitting in reverse engineering.
Computer Aided Geometric Design, 19(3):173–205,
2002.

[2] I. Coope. Circle fitting by linear and nonlinear least
squares. Journal of Optimization Theory and Appli-
cations, 76(2):381–388, 1993.

[3] M. Li, F. C. Langbein, and R. R. Martin. Detecting
approximate incomplete symmetries in discrete point
sets. In Proceedings of the 2007 ACM symposium
on Solid and physical modeling, pp. 335–340. ACM,
2007.

[4] Y. Li, x. Wu, y. Chrysathou, A. Sharf, D. Cohen-Or,
N. J. Mitra. Globfit: Consistently fitting primitives
by discovering global relations. In ACM Transac-
tions on Graphics (TOG) (Vol. 30, No. 4, p. 52).
ACM, 2011.

[5] G. Lukács, R. R. Martin, and D. Marshall. Faithful
least-squares fitting of spheres, cylinders, cones and
tori for reliable segmentation. In Computer Vision-
ECCV’98, pp. 671–686. Springer, 1998.

[6] P. Marks. Capturing a Competitive Edge Through
Digital Shape Sampling & Processing (DSSP). SME
Blue Book Series, 2005.

[7] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and
approximate symmetry detection for 3D geometry.
ACM Transactions on Graphics (TOG), 25(3):560–
568, 2006.

[8] J. Porrill. Optimal combination and constraints for
geometrical sensor data. The International Journal
of Robotics Research, 7(6):66–77, 1988.

[9] H. Pottmann, S. Leopoldseder, and M. Hofer. Ap-
proximation with active B-spline curves and sur-
faces. In Computer Graphics and Applications,
2002. Proceedings. 10th Pacific Conference on, pp.
8–25. IEEE, 2002.

[10] R. Schnabel, R. Wahl, R. Klein. Efficient RANSAC
for Point-Cloud Shape Detection. In Computer
Graphics Forum (Vol. 26, No. 2, pp. 214-226).
Blackwell Publishing Ltd. 2007.

[11] V. Schomaker, J. Waser, R. T. Marsh, and
G. Bergman. To fit a plane or a line to a set of points
by least squares. Acta crystallographica, 12(8):600–
604, 1959.

[12] T. Várady and R. R. Martin. Reverse engineering.
G. Farin, J. Hoschek, M. S. Kim, Handbook of Com-
puter Aided Geometric Design, Chapter 26, Elsevier,
2002.

[13] T. Várady, P. Salvi, 3D Geometric Modelling and
Digital Shape Reconstruction, Lecture Notes, Bu-
dapest University of technology and Economics,
BME IIT, 2013.

[14] N. Werghi, R. Fisher, C. Robertson, and A. Ash-
brook. Modelling objects having quadric surfaces
incorporating geometric constraints. In Computer
Vision-ECCV’98, pp. 185–201. Springer, 1998.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

