
Custom Unmanned Aerial Vehicle for Photography based Terrain

Reconstruction

Jernej Kranjec∗

Supervised by: Borut Žalik†

University of Maribor

Faculty of Electrical Engineering and Computer Science

Laboratory for Geometric Modelling and Multimedia Algorithms

Smetanova ulica 17, SI-2000 Maribor / Slovenia

Abstract

Consumer electronics have become considerably power-

ful in terms of hardware features, which can be expanded

beyond their original design with custom software.

This paper serves as a summary of a student’s experi-

ence of acquiring suitable aerial images for terrain recon-

struction. The paper covers the utilization of consumer

components like a cell phone with on-board sensors, point-

and-shoot cameras and a prefabricated model airplane,

combined with easily accessible electronics. This was to

create an inexpensive platform for high definition aerial

photography, as needed for terrain reconstruction. It de-

scribes the challenges of building such a platform and

presents an overview of the results.

Keywords: unmanned aerial vehicle, aerial photography,

terrain reconstruction

1 Introduction

Today consumer devices are more powerful and flexible

than ever. By considering the increased popularity of eas-

ily accessible hobby-grade remote-operated models, we

decided to combine these within a customized unmanned

aerial vehicle, adapted for carrying a customized stereo

camera rig for aerial photography. Our focus on consumer

devices was driven primarily by their prices and availabil-

ity. By utilizing our skills we turned them into a platform

capable of performing features normally found within pro-

fessional kits.

The current iteration is based on a scaled foam model

of a Cessna airplane, which offers a lot of space for neces-

sary modifications and payload. The proposed control unit

is split into an Android phone, which is used for sensors,

computing and communications, and a control module

from custom electronics for controlling the servo-motors

used in the model. Two Canon point-and-shoot budget

∗jernej.kranjec@gmail.com
†borut.zalik@um.si

cameras were used for stereo camera mounting. The cam-

eras were chosen due to their support of customized third-

party firmware.

This enabled the acquiring of high-resolution aerial im-

ages of a desired area with high overlap, which were then

used for terrain reconstruction.

2 Model setup

A scaled-down model of a Cessna 182 airplane was cho-

sen made of durable Elapor foam, with a wingspan of

1400mm. This provided a lightweight durable base that

could be easily modified, with enough room for additional

gear. The model was equipped with a KORA 10-15 brush-

less electrical engine with a HobbyWing 40A speed reg-

ulator driving an APC 11x5.5in propeller, powered by a

2200mAh LiPo battery. The model was controlled by

a FrSky 8 channel X8R Remote Control receiver with

telemetry feedback, which operates in the 2.4GHz fre-

quency band, allowing over 1km line of sight operational

range. 6 standard 9g servo motors were used to operate the

control surfaces of the model. A structural diagram of the

modified model can be seen in Figure 1.

Figure 1: Aircraft model structural diagram

The model was set up in the following configuration:

channel 1 servo operates the vertical stabilizer, channel 2

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



servo operates the horizontal stabilizer, channel 3 controls

the engine output, channels 4 and 5 servos operates the

ailerons, channels 6 and 7 servos supervise the flaps and

channel 8 the spare servo-channel used to signal who is in

control.

Modifications performed on the model include mount-

ing the stereo camera rig (see Figure 3) through the fuse-

lage to preserve the model’s center of gravity, securing it

onto the wings with custom 3D printed holders (see Figure

2) in order to prevent the camera rig from being damaged

during takeoffs and landings.

Figure 2: Customized holder, designed in Blender and

printed on RepRap 3D printer

Figure 3: Camera rig mounted onto the wings

The battery bay was extended to accommodate a bigger

battery pack and fine tune the model’s center of gravity

by shifting its position as necessary. Stock landing gear

was replaced with one made out of carbon fiber mounted

on flexible FR-4 fiber glass strip (see Figure 4), in order

to better absorb and withstand the increased weight of the

model.

Figure 4: Carbon fiber landing gear with extended battery

bay

Lastly, attaching a customized cell phone case and

holder carved into the wing on the top of the fuselage with

a modified Kogeto DOT 360◦ panoramic lens attachment,

for capturing video of the model in flight for later review

and visualization.

The complete setup (see Figure 5), including the cam-

eras weights 1.9kg, provides 5 minutes of flying time, out

of which 2-3 minutes are at the minimum desired altitude

difference of 200m for taking aerial photographs. The

total traveled distance of the model using that configura-

tion is about 4.5km at an average ground speed of around

50km/h.

Figure 5: Photo of the model ready for take-off

3 Electronics

First part of the control unit was based around the Sam-

sung Galaxy S2 cell phone. The device was chosen be-

cause of the available on-board sensors containing a triple-

axis accelerometer, triple-axis gyroscope and a triple-axis

compass, which were used as an Inertial Measurement

Unit in the autopilot implementation in order to deter-

mine the relative orientation of the model. A GPS re-

ceiver for locational logging and navigation and a GPRS

modem for communication with the ground computer and

real-time visualization of the flight. It also contained an

8MP camera with video capabilities used for recording in-

flight video of the model, as well as providing a 1GHz dual

core computer with 1GB of RAM within a programmable-

friendly environment.

For the second part a control module was constructed

from custom electronics, which took the control inputs

from either the phone or the RC-receiver and performed

the actual control of the servos on the model. This allowed

for controlling of the servos from the phone as well as the

remote control.

The customized electronics consisted of an Atmega128

microcontroller from Atmel, an FT230x USB-serial bridge

from FTDI, and some passive components. The At-

mega128 was chosen because of its hardware support for

driving a large number of servo-motors using its timer

modules. It also provided pin change interrupts, which

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



were used to read the outputs from the RC-receiver. The

signals generated and read by the microcontroller are stan-

dard servo control signals with a 50Hz period and a duty

cycle of 1-2ms, where 1ms represents -45 servo rotation

from center and 2ms corresponds to 45 rotation. The On-

The-Go USB capabilities of the phone were used to con-

nect the control module to the phone, which allows con-

nection of the device to the phone. We utilized the serial

interface of the microcontroller to connect the phone to the

control module using a USB-serial bridge. We used the se-

rial connection simplified programming of the module as

it negated the need for any high-level abstraction requested

by the USB protocol. The electronics block diagram can

be seen in Figure 6.

Figure 6: Control module block diagram

4 Camera setup

Two Canon A2200 cameras were chosen for this setup as

they were inexpensive, light, and allowed us to extend their

functionalities using third party firmware. Our first step

was porting the open-source firmware CHDK on to the

camera. This allowed the usage of the camera’s parame-

ters and settings, which are usually hidden within the con-

sumer firmware, like manual focus and exposure control.

We also acquired new features, among others the ability to

save raw 12bit images, run custom scripts, and synchro-

nize the shutter release across multiple cameras.

The following method is employed to test the camera’s

ability to capture synchronized stereo images. A rotat-

ing platform was used, constructed of a small electric mo-

tor and a CD-ROM holder, which held a CD-ROM, onto

which an LED with a battery was glued and balanced.

We took the first picture with a known exposure time of

20ms. Using the light trail left on the image, it was pos-

sible to calculate the rotational speed of the setup, which

was 10.36Hz. Knowing this, pictures of the rotating plat-

form with both cameras shutters synchronized were taken

and the light trails on both pictures took into account the

start and end-points, and its length was then compared.

Using multiple measurements the deduction was made that

the synchronization between cameras were less than 0.1ms

apart. Assuming a speed of 50km/h for the model, the

cameras would trigger in less than 1.4mm of travel be-

tween each other, making the perspective distortion mini-

mal. Testing the cameras can be seen in Figure 7.

Figure 7: Camera synchronization testing rig

In order to construct the stereo camera rig, 1m long pre-

fabricated 1cm diameter hollow carbon fiber tubes were

used. The carbon fiber tubes were perfectly aligned par-

allel to each other, placed 40mm apart and glued onto a

supporting plastic platform, which operated as a camera

stand mount. In order to attach and align the cameras, a

cradle (see Figure 8) was made out of larger tubes, which

held a standard 3/4in camera mount screw.

Figure 8: Camera cradle for the stereo rig

5 Software

Our autopilot with ground communications and sensor

logging was implemented as an Android application. This

allowed usage of the underlying Android APIs, making the

development easier.

Using Android’s Motion Sensors API, which performed

sensor fusion on the on-board sensors, the orientation of

the device was obtained according to the device’s coor-

dinate system. By strategically placing the phone on the

model, the relative orientation and direction of the model

was made in the form of angles around the device’s axis.

The GPS data, location, altitude, and speed of the device

were collated using the Android’s Location API. The API

also allowed navigation tasks to be performed like calcu-

lating the distance or heading to a specified point, which

the autopilot had to reach.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



The implementation of the autopilot was designed

around a Proportional Integral Derivative feedback loop

or a PID controller, which takes the device’s current orien-

tation and desired orientation as input, and provides servo

rotation as output. A separate PID controller for each of

the models control axes was used, thus translating the de-

vice’s coordinate system to yaw, pitch and roll as well as

throttle.

The autopilot was developed and tested using a Flight-

Gear flight simulator, which can simulate the sensors

found in the phone. In order to simulate the flight, Flight-

Gear’s two-way network capabilities for sensor input and

servo output was used, as required and produced by the au-

topilot application. Simulated flights were conducted us-

ing the FlightGear’s Rascal 110 RC model. This provided

a crash-proof environment for testing and tuning. A test-

ing session with live visualization over the network from

the autopilot application can be seen in Figure 9.

Figure 9: Autopilot testing with live visualization

The visualization was done using custom software made

in Python. When using it, the logged GPS data from the

autopilot is aggregated. The output is a Google Earth com-

patible Keyhole Markup Language structured file, contain-

ing a flight path, ground speed, altitude, GPS resolution

and way points used by the autopilot for navigation. All of

the sensor data was rendered into separate videos, which

were later combined and synchronized with the panoramic

video from the phone’s camera and visualization playback

from Google Earth (see Figure 10).

Figure 10: Visualization of flight data

Ground communication was done through the Inter-

net using the built-in GPRS modem of the phone. GPS

data from the autopilot was processed by the software and

piped in KML format into Google Earth where it was ren-

dered in real time.

Unrolling of the 360◦ panoramic images and video

taken with the Kogeto DOT attachment was done using

Log-Polar to Cartesian conversion with an added scaling

factor to offset the distortion of the lens. The final image

was further improved with B-spline interpolation [3]. The

final results can be seen in Figure 11.

Figure 11: Raw and unrolled 360◦ panoramic image

6 Terrain reconstruction

From the camera rig we obtained 14MP stereo images,

taken 5 seconds apart. In order to ensure adequate over-

lap between images, only those taken at a minimum alti-

tude difference of 200m or more were used. The selected

images were then processed to remove lens distortion de-

tected by taking photos of calibration checkered board

with each of the used cameras.

To test whether the aerial images are suitable for terrain

reconstruction, the following tool chain was employed.

First we used VisualSFM [1, 6] which implemented Sift-

GPU [5] for feature matching between images, calculated

the camera positions within the world coordinate system

and performed the sparse terrain reconstruction using the

Structure from Motion method. That information was then

used for two more applications; CMPMVS [2] and SURE

[4]. In order to perform dense reconstruction, the CMP-

MVS application uses the augmented Labatut CGF 2009

method, while the SURE application applied an improved

Semi-Global Matching (SGM) algorithm.

7 Results

A test flight covering around 170,000m2 was performed,

which generated 38 useful images (see Figure 12). After

processing the images the result were obtained for the area

seen in Figure 13.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 12: Pictures used in reconstruction

Figure 13: Ortho-photo of the reconstructed terrain

VisualSFM produced a point cloud consisting of 1 mil-

lion points, resulting in a resolution of approximately 5.9

points per square meter. A section of the generated point

cloud can be seen in Figure 14.

CMPMVS produced a point cloud of 2.3 million points,

resulting in a resolution of approximately 13.7 points per

square meter. A section of the generated point cloud can

be seen in Figure 15.

SURE produced a point cloud for every image pair,

which when combined form a point cloud with 43.7 mil-

lion points, resulting in a resolution of approximately

257.3 points per square meter. A section of the generated

point cloud can be seen in Figure 16.

8 Conclusions

The constructed unmanned aerial vehicle platform per-

formed well enough to successfully perform initial testing,

but there are of course some drawbacks. Namely, this con-

figuration of the model requires a decent landing strip for

takeoffs and landings. Battery life is an issue due to weight

constraints. The current version of the autopilot would be

good enough for simple flyovers and return-to-home, but

not stable enough for precise maneuvers to acquire clear

images.

Future work on this platform will concentrate on up-

grading the used airplane with a bigger model wthin a

pusher configuration where the propeller is mounted be-

hind the engine, and the engine itself will be mounted on

top of the fuselage. This will remove the need for a landing

gear and landing strip, since it will be possible to launch

the model by hand and land it anywhere without damage.

Also an update of the customized electronics with a pass-

through from receiver to the phone would allow a fly-by-

wire type autopilot, whereby the autopilot would adjust the

control surfaces of the airplane to maintain the position in-

put by the ground controller.

References

[1] Brian Curless Changchang Wu, Sameer Agarwal and

Steven M. Seitz. Multicore bundle adjustment. In

CVPR, pages 3057–3064. IEEE, 2011.

[2] Michal Jancosek and Tomas Pajdla. Multi-view re-

construction preserving weakly-supported surfaces. In

CVPR, pages 3121–3128. IEEE, 2011.

[3] Jernej Kranjec and Božidar Potočnik. Razvijanje

360◦ panoramske slike iz leče s sferičnim zrcalom (in

slovene - english title: Unrolling a 360◦ panoramic

image from a spherical mirror lens). In ROSUS, pages

129–136. University of Maribor - Faculty of Electrical

Engineering and Computer Science, 2013.

[4] Dieter Fritsch Mathias Rothermel, Konrad Wenzel and

Norbert Haala. Sure: Photogrammetric surface recon-

struction from imagery. In Proceedings LC3D Work-

shop, Berlin, 2012.

[5] Changchang Wu. Siftgpu: A gpu implementation of

scale invaraint feature transform (sift), 2007.

[6] Changchang Wu. Visualsfm: A visual structure from

motion system, 2011.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 14: Point cloud generated by VisualSFM

Figure 15: Point cloud generated by CMPMVS

Figure 16: Point cloud generated by SURE

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


