
Comparative Evaluation of Photon Mapping Implementations

Tomáš Lysek∗

Supervised by: Pavel Zemčı́k†

Department of Computer Graphics and Multimedia
University of Technology

Brno / Czech Republic

Abstract

The paper focuses on the photon mapping method, which
is one of the global illumination methods used in com-
puter graphics. The paper presents a short summary of the
photon mapping method and proposes decomposition of
photon mapping into a set of simpler algorithms. Each of
these algorithms is evaluated in the experimental imple-
mentation in order to identify bottleneck(s) in the method.
The results of the experimental evaluation are presented in
the paper and some suggestions regarding alternative im-
plementation and/or optimization of the computationally
expensive parts are presented as well. Finally, the paper
presents the results of some of the optimization and draws
conclusions.

Keywords: photon mapping, global illumination, kd tree,
nearest neighbors

1 Introduction

Photon mapping is one of the advanced rendering meth-
ods, which belong to the global illumination methods.
Photon mapping is capable of creation of images using ad-
vanced photorealistic elements, such as indirect illumina-
ton and causitcs. Among the global illuminaton tehniques,
photon mapping is one of the fastest one which is able to
render highly photoroealistic images. Recently, new tech-
niques for acceleration of computer graphics were discov-
ered. For this reason, it is interesing to test these tech-
niques and algorithms with photon mapping.

Photon mapping was first introduced by Henrik Wann
Jensen in 1996 [6]. Jensen also wrote a great book [7]
about photon mapping where he is comparing photon map-
ping with other global illumiation methods and presents
advanced techniques in photon mapping such as subsur-
face scattering or rendering participating media. Many ex-
tensions to Photon mapping exists, like Progressive Pho-
ton mapping [4] and Stochastic Progressive Photon Map-
ping [3].

Many researchers worked on fast ray-triangle intersec-
tion. Good results were achieved by Wald [11] or Shevt-

∗xlysek03@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

stov [10]. The currently best performance has the new
method by Havel [5]. In his paper, very good comparison
on ray-triangle intersection methods are shown.

Kd-tree was first presented by J. L. Bentley in 1975 [2].
Using KD-tree with triangles is a little more complicated
then using it with points. For this reason, complicated
heuristic must be performed. Paper by Wald [12] and
Havran is dedicated to fast creation of KD-tree on trian-
gles with complicated heuristics. The paper by Zhou [13]
shows even more speedup of KD-tree construction using
GPGPU.

For fast nearest neighbor searching, it is possible to
combine clasical nearest neighbor searching with aprox-
imate searching. The aproximate searching was first pre-
sented by Area and Mount [1] in 2000.

In the presented work, the main focus was on the above
techniques that were examined, measured on real photon
mapping datasets, the best combination was proposed In
order to achieve the fastest solution.

2 Photon Mapping

Photon mapping is a two-pass rendering method. It was in-
troduced by Henrik Wann Jensen in 1996 [6]. It is based on
aproximation of rendering equation [8] by calculating the
incoming radiance of the selected point, where local illu-
mination model is computed, through the nearest photons.
In photon mapping, the Photon is a bigger particle than
photon known from physics, that, which carries a certain
amount of light energy (higher than real photon) but its
behavior is similar to photon. Before searching for nearest
photon, photon map has to be created for the whole scene.
Photon map is a set of distributed photons on the scene
which represents illumination of the scene. For this rea-
son, photon mapping is two-pass rendering method. In the
first pass, photons are emitted from light sources. These
photons are propagated through scene and if the photon
hits a diffuse surface, the value of the photon energy is
stored into the photon map. Consequently, these photons
are recursively being sent to the scene with direction based
on surface characteristics [7]. The photons, which get
propagated through any transparent objects, are creating
caustics on diffuse surfaces and these caustic photons are

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Indirect Illumination

stored in a separate photon map. Caustics are refracted
light rays which are concentrated into small areas and they
are creating shiny places on diffuse material.

Figure 2: Caustics

Rendering of photon map is possible using several dif-
ferent methods. Probably the most photorealistic results
can be achieved by distributed raytracing [7]. Also very
good results are achievable by the classic raytracing ex-
tended by computing indirect illumination and caustic by
nearest photons in photon map [7].

Figure 3: Block diagram

The Photon mapping task is possible to divide into sev-
eral functional blocks, subtasks, which will be described
later and analyzed:

• Ray-triangle Intersection
There are many methods for computing intersection
of ray with triangle. In paper Yet Faster Ray-Triangle
Intersection [5] is presenting the currently fastest
method. Also, during the performed work, it was

measured how the another ray-triangle intersection
method compares with others. In this comparison,
their method has best result. For exploitation of this
method, some precalculated values have to be pre-
pared for each triangle.

• Spatial index (spatial partitioning)
Spatial index is data structure which divides space
into more smaller subspaces. For each subspaces, all
triangles which lie in a subspace are stored in a list
connected to the individual subspace. When a ray is
being shot through the scene, the ray-triangle tests are
performed only on those triangles, which lie in sub-
spaces which intersect with that ray.

There are many spatial indexes. Performance of each
spatial index is highly dependent on scene setup. It is
impossible to determine fastest index.

The most used spatial indexes are octree and KD-tree.
Octree is a spatial index, which recursivly divides its
space into eight subspaces of the same size. The re-
cursive division is performed to specific level or re-
cursivly dividing is terminated when count of trian-
gles in subspase falls under some specific threshold.

KD-tree is spatial index which recursively divides
space into two subspaces using a dividing plane. This
dividing plane is parallel with one of the axes. Sev-
eral methods exist to determine the dividing plane.
The simpler methods include median split on one of
the axes (e.g. circularly changed). The more ad-
vanced methods use heuristics for determining where
the best dividing plane should lie. With these heuris-
tics, is possible to accomplish better results.

Probably the most used heuritic, used with KD-trees
in spatial triangle indexing, is Surface Area Heuris-
tic [13]. This heuristic attempts to maximize the area
of subspaces and quantity of triangles in these sub-
spaces.

Another possible optimization of KD-tree is ropes
[9]. Ropes are connections between leafs of the spa-
tial index tree. Using this extension, it is possible to
traverse the tree directly through leaf subspaces and
avoid slow crawling up and down the tree.

• Creating photon map
In this block, light propagation is simulated from the
light sources into the scene and the process results in
the photon map. The simulation itself is performed
by discrete sampling of light transmission. One sam-
ple represents the photon and carries fraction of the
light source energy. The light transmission is calcu-
lated for example by rejection sampling [7], in which
photon is sent from the light source in random direc-
tion and then it is propagated through the scene.

The photons are propagated through the scene simi-
larly to the rays in raytracing. If a photon hits diffuse

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



surface, energy, direction, and position of the pho-
ton are stored. Recursively, another photon from this
position is sent further to the scene. The direction of
such photon is based on material properties and e.g. if
the material is shiny and transparent, two photons are
investigated one reflected, second transmitted. For
this purpose, an acceleration technique called Rus-
sian roulette was created. When the Russian roulette
is being used, actions and generation of photon (stor-
age, reflection, refraction) are based on random num-
ber with threshold depending on material properties
[7].

Photons, which pass through transparent object cre-
ate caustics. For photorealistic caustic rendering, a
large number of photons, which pass through trans-
parent object, is needed. For this purpose, new simu-
lation is started but photons in this simulation go only
through transparent objects and save values only to
caustic photon map. So, in the end, photon mapping
has two photon maps, one for indirect illumination
and a second one for caustics.

• Raytracing
For the final rendering of the scene, classical raytrac-
ing is used. The values representing indirect illumi-
nation and caustics are treated as a local illumination
model. These values are obtained by searching N
nearest neighbors in photon maps. With increasing N,
the quality of the photorealistic results are improved.

• Finding nearest photons
Nearest neighbor search is performed for each com-
putation of local illumination, hence this block is very
critical and it has very important role in the rendering
performance. The speed of this block is dependent on
the size of the photon map and on the number of the
neighbors.

For acceleration of the nearest neighbor search, it is
appropriate to use searching index. Many different
methods focusing on nearest neighbor search exist.
Some of them are available in libraries. One of the
interesting ones is ANN Aproximate Nearest Neigh-
bor Library and another one is FLANN Fast Library
for Approximate Nearest Neighbors.

ANN is an older library, this library is used for
searching of the KD-trees and BD trees [1]. The
FLANN library is used for indexing using the ran-
domized KD-tree. Both libraries are very often used
in computer vision for nearest neighbor searching in
image features and they are very well optimized for
mulidimensional datasets. In our case, analysis in
lower dimensionality 3D is needed. Both libraries
provide approximate searching search with a small
acceptable error is enabled.

3 Experimental Evaluation

The purpose of the experiments is to test selected methods
on photon mapping datasets. On these datasets, their per-
formance is evaluated, compared against the other meth-
ods, and the method which fit best for photon mapping is
then selected.

Experiments which were performed are:

• Spatial subdivision test - comparing spatial indexes,
octree and KD-tree for acceleration ray-triangle inter-
section.

• Creating photon map compare speed of creat-
ing searching indexes on KD-tree and BD-tree in
FLANN and ANN libraries

• Nearest searching - neighbor number - Comparing
nearest neighbor search time with increasing number
of neighbors to find.

• Nearest searching - size of map - Comparing near-
est neighbor searching time with increasing size of
photon map.

• Approximate nearest search - identification of max-
imum acceptable error and comparison of the approx-
imate searching times.

All the experiments were performed on laptop with Intel
core i7 M620 processor @ 2.67 GHz with 2x 2GB DDR3
RAM 1066Mhz, 7-7-7-20. For compiling, the MSVC 11
(Visual studio 2012) compiler was used. All the measure-
ments were performed on real photon mapping data.

Spatial subdivision test

This test compares speed of spatial indexing methods. In
this test, three methods are being compared. First, the
naive method with no indexing simply bruteforce method
was measured. Then the method is compared to octree and
to KD-tree with ropes.

To compare these methods, I created a simple scene
with 12140 triangles and performed 100 000 ray-triangle
intersection test with this scene. All intersection tests
pointing on same spot.

Name Speed Precomputing

Naive 47.567s -
Octree 1.159s 0.04s

KD-tree with ropes 0.453s 0.16s

Table 1: Comparing spatial indexes

The results of the comparison show that KD-tree with
ropes is approximately two times faster than octree. This
test also shows that using spatial indexes is indeed efficient
and any of the methods outperforms the naive approach.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



The KD was 88 times and octree 44 times faster than the
naive method.

These test also shows speed of creation of the spatial in-
dex. Octree is approximately four times faster than KD-
tree. As the spatial index is created only once in this
method while the ray-triangle intersections are performed
many times - in photon map creating and raytracing. The
KD-tree with ropes is generally the best of the tested ones.

Creating photon map

This test compares times of spatial index creation in pho-
ton maps depending on the total number of photons in
the map. ANN library and FLANN library were used for
nearest neighbor searching on multidimensional datasets.
From the ANN library, KD-tree index and BD-tree were
chosen.

As for the FLANN library, the randomized KD-tree and
special single index KD-tree was chosen. Single index
KD-tree is optimized for lowerdimensional spaces. This
KD-tree is optimized for lower dimensional data and it is
called single index.

For this test, I created a simple scene 1 and photon maps
with 50k, 100k, 200k, and 500k photons. To generate this
amount of photons, I have used photon map block so this
test was performed on the real photon mapping data.

Figure 4: Dependence of map creation time on photon
count.

Figure 5: Average times of creating photon map with in-
creasing photons count.

The results show that BD-trees have the worst time of
index creation. Both of the FLANN indexes KD-tree and
single index have approximately the same time of index
creation in fact, KD-tree is little faster than single KD-
tree. The ANN KD-tree is approximately five times faster
than BD-tree, but two times slower than both of FLANN
indexes.

1Scene is available at http://lyso.cz/dp/house.zip

Nearest search

This test was performed in order to compare the indexing
methods depending on the number of neighbors to search
for. The indexing methods for this test were the same as
in the previous test - ANN KD-tree + bd tree as well as
FLANN randomized KD-tree + single index KD-tree.

The same scene as in the previous tests was used. The
photon map with 500 000 photons was created and on this
map, the search indices were created. During the testing,
the progressively increasing number of nearest neighbor to
find were used.

Figure 6: Dependence of searching time on photon count.

Figure 7: Average time for searching one photon depend-
ing on number of neighbors to search for.

The results show that both ANNs indices and FLANN
single index have the best performance for cases in which
little number of photons is required to be searched for.
However, with the increasing number of photons to search
for, ANN is increasingly worse and FLANN KD-tree be-
comes better than the other two indices.

This test is similar to the previous one but in this case,
the number of neighbors is fixed and the size of the photon
map is changing. In this experiment, the number of neigh-
bors was set to 5 000. The size of the photon maps ranges
from 50 000 to 500 000.

The result shows that increasing size of photon map
does not have too big influence on the achieved speed and
that the size of the number of photons to search for has
large impact on speed.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Dependence of searching time on photon map
size.

Figure 9: Average time for searching one photon depend-
ing on number of searching neighbors.

Approximate nearest search

The FLANN and ANN libraries provide also an approx-
imate searching method search in which some error is
allowed in the result and which is somewhat faster than
the exact case. It should be interesting to find out how
much influence the approximate searching has on the qual-
ity of rendered images and how much acceleration can be
achieved. As the approximate searching leads into worse
results in terms of quality, it should be found out how
much error is acceptable and then how much it influences
the speed.

For this test I created a simple scene, where only the
indirect illumination was rendered. This indirect illumina-
tion was achieved by search for the nearest photons in the
photon map. Photon map size was 500 000 photons and
in every calculation of indirect illumination 5 000 photons
were used.

Figure 10: Dependence of searching time on epsilon.

Figure 11: Average time for searching one photon depend-
ing on epsilon.

Figure 12: This images shows what influence the allowed
error epsilon has on quality of the rendered image. The top
images are those with epsilon equal to 0, the second ep-
silon equal to 1, the third epsilon equal to 2 and the fourth
epsilon equal to 4

For measurement acceleration of such approximate
searching, another test must be created. For this test, the
same simple scene as described above was used. The pho-
ton map with 500 000 photons was created and 5 000 pho-
tos were used for indirect illumination.

The results show that with the increasing error rate ep-
silon, the time for searching decreases. The times are de-
creasing faster when ANN library is used with increasing
epsilon but not enough to cause the ANN library to out-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



perform the FLANN library. Also, usage of epsilon higher
than one has side effects in bad quality of rendered images,
as it was mentioned and as it was shown above. For this
reason, this approach is generally unusable as it does not
produce good enough photorealistic images.

In these experiments, testing of several types of acceler-
ation structures was successfully accomplished. From the
results of these experiments, it can be seen what are the
best fastest in the application acceleration structures: For
spatial index on ray-triangle intersection it is KD-tree with
ropes and for acceleration on searching in photon map is
the single index KD-tree from FLANN library.

4 Conclusion

In this paper, photon mapping was described along with
some selected acceleration techniques. The photon map-
ping method was subdivided into smaller functional blocks
and these blocks were analyzed and their acceleration at-
tempted the acceleration was specifically performed on
the slowest blocks of the whole computational process.
First experiment was comparing the spatial indices for ray-
triangle intersection search. From the results of this text,
the KD-tree with ropes was selected as the better one com-
pared to the octree. The experiments with photon map
were intended to measure time of creation of the index
of a photon map. Several indexing methods were tested
and the best performance was accomplished by FLANN
indices. Another experiment was performed on evaluation
of time for searching for photons in a photon map with
increasing number of photons to be searched for. From
this experiment single index KD-tree from FLANN library
was better. Yet another experiment was performed only to
demonstrate that the strongest influence on photon map-
ping comes from the number of the photons to be searched
not size of photon map. Also, when the images are ren-
dered using photon maps, the size of photon map should
be bigger. The final experiment was performed on the ap-
proximate searching that seemed quite promising. How-
ever, this test shows that using approximate searching has
side effects in worse quality of rendered image. From
all of these experiments on photon maps, it is clear that
the single index KD-tree from FLANN library is the best
and should be chosen for photon mapping applications.
Further work includes more acceleration structures explo-
ration more complex scenes as well as attempt to speedup
that could be accomplished by using paralelism for exam-
ple port photon mapping into GPGPU.

References

[1] Sunil Arya and David M. Mount. Approximate
range searching. Comput. Geom. Theory Appl., 17(3-
4):135–152, December 2000.

[2] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517, September 1975.

[3] Toshiya Hachisuka and Henrik Wann Jensen.
Stochastic progressive photon mapping. ACM Trans.
Graph., 28(5):141:1–141:8, December 2009.

[4] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann
Jensen. Progressive photon mapping. ACM Trans.
Graph., 27(5):130:1–130:8, December 2008.

[5] Jiri Havel and Adam Herout. Yet faster ray-triangle
intersection (using sse4). IEEE Transactions on Vi-
sualization and Computer Graphics, 16(3):434–438,
2010.

[6] Henrik Wann Jensen. Global illumination using pho-
ton maps. In Proceedings of the Eurographics Work-
shop on Rendering Techniques ’96, pages 21–30,
London, UK, UK, 1996. Springer-Verlag.

[7] Henrik Wann Jensen. Realistic Image Synthesis Us-
ing Photon Mapping. A. K. Peters, Ltd., Natick, MA,
USA, 2001.

[8] James T. Kajiya. The rendering equation. SIG-
GRAPH Comput. Graph., 20(4):143–150, August
1986.

[9] Stefan Popov, Johannes Günther, Hans-Peter Seidel,
and Philipp Slusallek. Stackless kd-tree traversal
for high performance GPU ray tracing. Computer
Graphics Forum, 26(3):415–424, September 2007.
(Proceedings of Eurographics).

[10] Maxim Shevtsov, Alexei Soupikov, and Er Kapustin.
Ray-triangle intersection algorithm for modern cpu
architectures. In in Proceedings of GraphiCon 2007,
pages 33–39.

[11] Ingo Wald. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graphics
roup, Saarland University, 2004.

[12] Ingo Wald and Vlastimil Havran. On building fast
kd-trees for ray tracing, and on doing that in o(n log
n). In IN PROCEEDINGS OF THE 2006 IEEE SYM-
POSIUM ON INTERACTIVE RAY TRACING, pages
61–70, 2006.

[13] Kun Zhou, Qiming Hou, Rui Wang, and Baining
Guo. Real-time kd-tree construction on graphics
hardware. ACM Trans. Graph., 27(5):126:1–126:11,
December 2008.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


