
Base Manifold Meshes from Skeletons

Michal Piovarči∗

Supervised by: Martin Madaras

Faculty of mathematics physics and informatics

Comenius university

Bratislava / Slovakia

Abstract

We propose an algorithm that generates a base mani-

fold mesh from an input skeleton, based on Skeleton to

Quad Dominant Mesh (SQM) algorithm which converts

skeletons to meshes composed mainly from quadrilaterals.

Each node in skeleton has assigned a sphere with a pre-

defined radius. SQM algorithm first creates branch node

polyhedrons for each sphere corresponding to a branch

node. These polyhedrons are bridged with quadrilaterals

in order to create the final base mesh. We have extended

the algorithm to support generation of meshes from cyclic

skeletons. We have also generalized skeleton nodes to el-

lipsoids instead of spheres. Finally, we extended the al-

gorithm to generate meshes from linear skeletons without

branching and from skeletons which root node is not a

branch node. The generated base mesh is tessellated on

GPU for better visual results.

Keywords: skeleton, convert, base mesh, manifold

1 Introduction

Skeletal structures are often used in computer graphics to

represent basic topology of a model. This representation

allows artists to conveniently animate articulated models,

by manipulating key points represented as joints in skele-

tons. Skeletons corresponding to a model, are often pro-

vided by an artist, or extracted directly from the model

[1]. Since skeletal structures carry an information about

the topology of a model, we could apply a reverse process

to skeleton extraction and recover the base mesh repre-

sented by a skeleton.

Such base meshes, generated directly from skeletal

structures, could be used to ease the modelling of base

models of articulated characters. An artist would only de-

sign the skeleton of the model and the base mesh would be

generated automatically. This technique can also be used

to procedurally generate articulated models. A base mesh

generated from a supplied skeleton can be augmented with

procedurally generated displacement maps in order to gen-

erate a complex model.

∗michal.piovarci@gmail.com

In Section 2, the state of the art methods used in the

area are described. In Section 3, the original SQM algo-

rithm and its drawbacks are discussed. In Section 4, our

implementation of base mesh generation is described. In

Section 5, our proposed solutions to discussed drawbacks

of the original SQM algorithm are presented. Finally, in

Section 6 the results of our implementation are presented.

2 Related Work

The most notable algorithms generating base meshes from

skeletons are B-mesh [4] by Ji et al. and SQM [2] by J.

A. Bærentzen et al. The input for both algorithms is a

skeleton with a sphere defined for each node of the skele-

ton which represents the local geometry of desired output

base mesh. Both algorithms present a different way how to

approach generation of base meshes from the input skele-

ton.

The former B-Mesh algorithm firstly generates geom-

etry for paths connecting skeletal branch nodes. These

paths are then stitched together at each branch node and

the resulting mesh is evolved to better approximate the in-

put skeleton. On the other hand SQM algorithm uses a

reverse process. First polyhedrons corresponding to each

branch node are generated. The generated polyhedrons are

joined together via a tube consisting of quadrilaterals. The

resulting mesh is subdivided to increase visual quality.

There are more techniques that generate base meshes

but are not limited or used on skeletal structures only. In

Solidifying wireframes [7] Srinivasan et al. proposed a

method similar to B-Mesh. The proposed method firstly

generated mesh corresponding to tubular parts of wire-

frames. These paths are later joined at branch nodes in

a similar manner as in B-Mesh. Although the method is

more general than B-Mesh it suffers from the same draw-

backs mainly the stitching geometry which produces un-

desired triangular faces. In a more recent paper Leblanc

et al. [6] proposed generating base meshes by iteratively

combining blocks into cuboid shapes. Since our algo-

rithm should operate on skeletal structures, by limiting

the connectivity of blocks to skeletal structures only, we

would lose many of the advantages of the original tech-

nique. Base mesh could be also recovered from medial

axis transform [8]. However, due to the nature of me-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



dial axis transform it is not suitable for editing by artists.

Taking in account all the previous drawbacks and that ”B-

Mesh produces three to four times more irregular vertices

than SQM” [2], we have decided to base our algorithm on

SQM.

3 Original SQM Algorithm

The algorithm consist of four steps and one preprocessing

step:

Preprocessing: Skeleton straightening - serves to sim-

plify step number 3 of the algorithm.

Step 1: BNP generation - generation of branch node poly-

hedrons (BNPs).

Step 2: BNP refinement - subdivisions of BNPs.

Step 3: Creating the tubular structure - bridging of BNPs.

Step 4: Vertex placement - reverting straightened mesh to

its original pose.

Figure 1: Steps of SQM algorithm. (a) the input skeleton;

(b) generated BNPs; (c) refined BNPs; (d) BNPs bridges

with quadrilateral tubes; Image from [2].

.

Straightening This is a preprocessing step of the algo-

rithm that simplifies the generation of tubular structures.

For each connection node its child is rotated, so that the

edge between connection node and its child is parallel with

the edge between connection node and its parent. This is

useful, because during step 3 the algorithm needs to gen-

erate straight tubes only and does not need to take rotation

into account.

BNP Generation A Branch Node Polyhedron (BNP) is a

polyhedron assigned to a branch node. Vertices of a BNP

correspond to a set of points that are generated by inter-

secting the sphere assigned to a branch node with each

edge connected to said branch node. We will call these

vertices as intersection vertices. To form a BNP intersec-

tion vertices are triangulated. After that each triangle is

split into six triangles by inserting one vertex in the mid-

dle of each triangle and in the middle of each of the edges

of the triangle. These vertices are then projected back onto

the sphere associated with a branch node. This projection

is needed because if the intersection vertices are coplanar,

or nearly coplanar the generated polyhedron would have

zero volume, or very small volume, respectively. The re-

sult of this step can be seen in Figure 1b.

BNP Refinement During step 3 of the algorithm, the

BNPs connected via path are bridged with tubes consist-

ing solely of quadrilaterals. This is done by connecting the

one-rings of two corresponding intersection vertices with

faces. To ensure that we can use only quadrilaterals the

one-rings need to have the same valence. Each BNP is re-

fined so that the valence of two intersection nodes lying

on the same path are equal. We take the notion of a Link

Intersection Edge (LIE): ”An LIE is simply a set of edges

in a subdivided BNP which belong to the links of two path

vertices”, from [2]. During the refinement phase only one

representative edge of each LIE is subdivided. Subdivided

BNPs are displayed in Figure 1c.

Creating the Tubular Structure After previous step of

the algorithm, connected BNPs can be joined by a tube

formed by quadrilaterals. The tube is divided into seg-

ments. Each of the segments corresponds to a connection

node. Vertices corresponding to a certain connection node

are projected onto its corresponding sphere. Leaf nodes

are terminated with a triangle fan, which central vertex

corresponds to the leaf nodes position. The result is il-

lustrated in Figure 1d.

Vertex Placement The base mesh is now finished. All

that remains is to reverse the rotations used to straighten

the input skeleton. After final vertex placement the result-

ing mesh is smoothed with three iterations of Laplacian

smoothing and attraction scheme.

Discussion Because SQM generates BNPs, it resembles

the geometry of the input skeleton even without smooth-

ing or evolution of the mesh. SQM produces small num-

ber of triangles because after the joining step triangles re-

main only in parts of the mesh corresponding to leaf nodes.

Limitations of the algorithm are:

1. The root of the input skeleton has to be a branch node,

as discussed in McDonells Skeleton Based Interac-

tive 3D Modelling [3].

2. SQM can not generate a base mesh from linear skele-

tons without branching.

3. SQM supports only a sphere defined for each node

of a skeleton to represent the local geometry where a

more general input as ellipsoids may be desired.

4. A different termination method for leaf nodes, for ex-

ample capsule termination, may be desired.

5. SQM can not handle implicitly defined cycles in the

input skeleton.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



The goal of our adaptation of SQM algorithm will be to

improve upon all of the listed drawbacks as well as moving

final vertex placement on GPU.

4 Our Base Mesh Implementation

Skeleton Straightening Skeleton straightening is a pre-

processing step that simplifies bridging of branch node

polyhedrons. Straightened skeleton is a skeleton which

nodes in every path between two branch nodes, two leaf

nodes, or a branch node and a leaf node are co-linear. In

addition we have added an extra condition that angles be-

tween branch nodes child nodes should be the same in

straightened skeleton as they are in the input skeleton. To

achieve the first condition for each connection node, we

take the normalized direction of a vector formed by con-

nection nodes parents position and connection nodes posi-

tion. The direction vector can be seen in Figure 2 as the

green arrow. Then we project the child node onto the di-

rection vector. The projected position is the position of the

child node in the straightened skeleton. We then calculate

rotation between connection nodes child original position

and its new position, in respect to the position of connec-

tion node. Finally, we rotate all descendants of the con-

nection node. In order to conform to the second condition,

at each branch node we do not alter the position of its child

nodes.

Figure 2: Skeleton straightening. Left: input skeleton;

Right: straightened skeleton.

Skinning In final vertex placement, we need to revert

the rotations applied to the input skeleton during straight-

ening. We have decided that the best solution is to use

skinning since it can be implemented on GPU and we

wanted to move all post-processing on the GPU. Straight-

ened skeleton represents bind pose for skinning purposes

and the input skeleton represents reference pose. Now

we can calculate rotations, represented as quaternions, re-

quired to transform bind pose to reference pose. Tradi-

tionally, this would require to find the rotation between

two corresponding nodes in respect to their parent. Rotat-

ing all child nodes in bind skeleton using the same rota-

tion and propagate the rotation calculation to child nodes.

However, since we know precisely how bind pose was

constructed, we can exploit this knowledge and avoid the

rotation of child nodes. In fact, we do not even need the

bind skeleton itself because the positions can be calculated

from reference pose. We want to calculate the rotation that

would transform a node from its bind pose to its reference

pose. We know that the nodes parent is already in refer-

ence pose. We also know that bind pose was constructed in

such a way that all connection nodes childes are co-linear

and preserve the distances between nodes. That means

from nodes parent reference pose we can calculate where

would the node be in bind pose, if we would apply on it the

same transformation matrices as were applied to its parent

node. The distance between parent and child nodes re-

mains constant in both poses. And the direction at which

the child node would be in bind pose is the same as the di-

rection from its grandparent node to its parent node. Now

we only need to store the rotation between calculated child

node position in bind pose and its actual position in refer-

ence pose with respect to its parent node. The following

formula demonstrates the calculation of a quaternion re-

quired to transform one node from straightened bind pose

to input reference pose:

node← nodeInRe f erencePose

parent = node.Parent

grandParent = parent.parent

distance = dist(node, parent)

direction = normalize(parent− grandParent)

nodeInBind = parent + distance∗ direction

u = normalize(nodeInBind− parent)

v = normalize(node− parent)

rotation = QuaternionBetweenVectors(u,v)

BNP Generation We generate BNP as in original SQM

algorithm. First we generate intersection vertices. Second

we triangulate and subdivide these vertices. The newly in-

serted vertices now should be projected onto the sphere as-

sociated with their corresponding branch node. However,

a detailed description of this projection was not given in

the original SQM article. We have explored various pos-

sible projections. In the end we have decided to use a

ray-sphere intersection. The sphere is branch nodes cor-

responding sphere onto which we want to project new ver-

tices. The origin of the ray is the position of each newly

inserted vertex. The direction of the ray is mean normal of

the faces that are connected with the vertex. This means

that for the vertices in the center of each face the normal

of the subdivided face is used. For vertices inserted in the

middle of each edge the mean normal of faces correspond-

ing to that edge is used. This method does work if the

center of the sphere is not in the generated BNP as well as

if the generated BNP is coplanar.

BNP Refinement During BNP refinement we always

split only representative edges of each LIE. In order to

maintain roughly equal distribution of edges in a LIE

we are applying a smoothing scheme after each subdivi-

sion. The smoothing is very important, because gener-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



ated base mesh quality directly depends on the smoothing

scheme. Ideally, the length of each edge in a smoothed

LIE would be equal. However since smoothing is ap-

plied after every subdivision, the smoothing algorithm

should be reasonably fast. We propose three smoothing

schemes. These smoothing schemes are illustrated in Fig-

ure 3, where the polyhedron from Figure 3a is smoothed

with various smoothing schemes.

Averaging smoothing calculates new position for each

vertex on a LIE by averaging vertices in its one-ring neigh-

bourhood. We start with the last vertex of a LIE, that is the

vertex on the last edge of a LIE and move towards the first

vertex. We move each vertex, except the first and the last

vertices, to the barycentre of its one-ring neighbourhood

and project them back onto the sphere corresponding to

BNPs node. The resulting smoothed polyhedron is shown

in Figure 3b. This approach is iterative and would need

several iteration to achieve global optimum, however we

have found that one iteration is enough for our needs.

Quaternion smoothing calculates a quaternion repre-

senting the rotation from the first vertex of each LIE to

its last vertex. From each quaternion we extract its corre-

sponding axis of rotation and angle of rotation. We smooth

only points between the first and the last vertex so the cal-

culated axis of rotation and angle are constant. During

each smoothing step we first count the number of vertices

in a LIE. Then we divide the angle of rotation by that num-

ber and form a new quaternion from already calculated

axis of rotation and the newly calculated angle. For each

vertex in a LIE between first and last we apply the rota-

tion stored in the quaternion and update its position. This

method produces LIEs that lie on small circles of their cor-

responding sphere. The spacing between vertices is regu-

lar and thus its very suitable for our needs. The result of

quaternion smoothing is shown in Figure 3c.

Laplacian smoothing adapts the algorithm described in

[1]. The weights used for smoothing are based on the one-

ring area of each vertex. We use one iteration of Lapla-

cian smoothing and then project the new vertices back onto

their corresponding sphere. The smoothed mesh is shown

in Figure 3d. The result is not as good as either Avaraging

or Quaternion smoothing.

Figure 3: LIE smoothing schemes. (a) original poyle-

hdron; (b) polyhedron after applying averaging smooth-

ing; (c) quaternion smoothing; (d) Laplacian smoothing.

BNP Joining After refinement of BNPs intersection ver-

tices connected via path have the same valence. Now

BNPs can be joined by tubes consisting from quadrilater-

als only. We loop through each branch node in a depth-first

search from skeletons root. We process each BNP in the

following manner. We start with the whole BNP Figure 4a.

We loop through all intersection vertices corresponding to

current BNP. We remove each intersection vertex and its

corresponding faces and edges from current BNP. In Fig-

ure 4b we can see the removal of third intersection ver-

tex after first and second intersection vertices were joined.

After the removal of an intersection vertex we continue

joining all nodes on the path that produced the removed

intersection vertex. For each node, we generate new ver-

tices and connect them with corresponding vertices from

previous node. If the path leads to a branch node we re-

move the destination branch node corresponding intersec-

tion vertex and faces and edges connected to it. The tube

generated from connection nodes is then joined with desti-

nation intersection vertex former one-ring. This approach

is more suitable for our data structure than the approach

proposed in SQM. Splitting a quadrilateral face into two

faces is equally difficult as creating two new faces. That

means the split operation would need more time in our data

structure as our approach.

Figure 4: BNP joining process. (a) polyhedron before

joining; (b) polyhedron with removed faces corresponding

to an intersection vertex; (c) new vertices for connection

node before projection; (d) projected vertices of connec-

tion node.

Final Vertex Placement We use quaternions calculated

during skeleton straightening. For each skeletal node we

accumulate the final rotation in a matrix. Matrices are used

because they are more suitable for GPU calculations than

quaternions. Linear blend skinning, as described in [5], is

used to combine skinning matrices corresponding to each

vertex on GPU. We apply skinning transformation on GPU

in tessellation shaders.

5 Our Base Mesh Improvements

In this Section we propose solutions for several limitations

of original SQM algorithm discussed in Section 3. We also

describe how we implemented each solution.

1. Root That Is Not a Branch Node If the root of the

input skeleton is not a branch node and a branch node is

present in the skeleton, we can find it with a depth first

search. When we have at least one branch node we can

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



re-root the tree so that the located branch node would be

the root of the tree. This change simplifies the modelling

process as user does not need to be aware of the number

of neighbours of the root node.

2. Linear Skeletons Linear skeletons, which do not

have branch nodes, lack the initial geometry that is gener-

ated during BNP generation step. Additional nodes could

be inserted into the input skeleton to form at least one

branch node, but we have found that it needlessly disturbs

the flow of the output mesh. Instead we decided to use a

different approach. We introduce an additional input pa-

rameter N which specifies how many vertices should be

generated, for each node of the linear skeleton. This pa-

rameter does not decrease the robustness of our approach,

because additional vertices are generated during tessella-

tion and the original number of vertices is negligible.

First step of the algorithm is setting the root to be the

head of the input linear skeleton. Next step of the algo-

rithm is straightening of the input linear skeleton. The in-

put skeleton is shown in Figure 5a. Next, N vertices are

generated around first connection node, which is a child

of the root node. These vertices are distributed regularly

around the node by slerping a quaternion, which center

of rotation is nodes position, axis of rotation is the di-

rection from connection node to root node and magnitude

is 360/N. Newly generated vertices are then joined with

other vertices as in original base mesh algorithm. Leaf

nodes form a triangle fan and connection nodes form a

tube of quadrilaterals. The joined linear base mesh is

shown in Figure 5b. Skinning matrices are used to trans-

form the generated linear skeleton into its input pose Fig-

ure 5c.

Figure 5: Linear base mesh generation. (a) input linear

skeleton; (b) straightened and joined linear skeleton; (c)

final linear base mesh.

3. Ellipsoid Nodes An ellipsoid can be defined as a

sphere with associated transformation matrix. We take

advantage of this representation of ellipsoids. Instead of

more complex ray-ellipsoid intersection that would have

to be computed at each ellipsoid node, we have decided

to represent each ellipsoid node as a sphere and a trans-

formation matrix. First our base mesh algorithm is evalu-

ated as described in Section 3 with spherical nodes. After

that we send the transformation matrices corresponding to

each ellipsoid node to GPU. The vertices corresponding

to each ellipsoid node are transformed directly in vertex

shader. Thanks to this, ellipsoid nodes require minimal

extra computing resources from CPU. The results can be

seen in Figure 6.

Figure 6: Ellipsoid nodes. (a) skeleton with ellipsoid

nodes specified; (b) base mesh generated from skeleton;

(c) base mesh from different angle.

4. Capsule Ending A capsule is a hemisphere gener-

ated at each leaf node of the input skeleton. Generation

of capsules can be approached in two ways. The first is

to generate a capsule at each leaf node corresponding to

its radius. The second is inserting additional nodes into

the input skeleton with decreasing radius that would ap-

proximate a capsule. We have implemented the second

approach because it fits nicely into our pipeline. Capsules

generated this way, can be directly tessellated on the GPU

without any additional processing. At each capsule leaf

node, we insert additional nodes into the input skeleton,

proportional to the radius of the capsule node. The ra-

dius of each node is decreased according to the follow-

ing equation: newRadius =
√

nodeRadius2
∗ (1− step2)

where nodeRadius is the radius of capsule node and step

is a number between (0− 1], that represents the distance

from center of the capsule to its edge. Final tessellated

capsule is shown in Figure 7.

Figure 7: Capsule generated by our algorithm.

5. Cyclic Skeletons Our last improvement is generation

of base meshes from cyclic skeletons. The cycle can be

located anywhere in the input skeleton. The base algo-

rithm could not be modified to allow generation of cyclic

meshes, because during BNP refinement step of the algo-

rithm a cycle could cause an infinite loop. However we can

modify the input skeleton in a way that would allow us to

generate cyclic skeletons. As the input we have a cyclic

skeleton Figure 8a. Cyclic edge is marked with dark blue

color and cyclic nodes with dark green (upper node) and

dark violet (lower node) colors. First, we split the cycle

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



by removing the cyclic edge. To each cyclic node we add

an extra child node as shown in Figure 8b. Light green

node for dark green cyclic node and light pink node for

dark violet cyclic node. These new nodes serve to preserve

the skinning matrices that will rotate tubes generated from

cyclic nodes to face each other. This can be seen in Figure

8c. Base mesh was generated as described in Section 4

with one exception. We do not generate geometry for light

green and light pink nodes. Now the gap between cyclic

nodes should be closed. We first project vertices associ-

ated to each cyclic node to a plane with origin at O(0,0,0)
and normal n(0,1,0). Next, we normalize the vertices so

that vertices associated with violet node lie at a circum-

ference with radius 1 and vertices associated with green

node lie at circumference with radius 2. The position of

projected points is shown in Figure 8e, outer points corre-

spond to dark green node and inner points correspond to

dark violet node. Now we execute a Delaunay triangula-

tion on the transformed points. After the triangulation is

done, we exclude triangles generated solely between inner

or outer vertices. The remaining triangles, Figure 8f repre-

sent the faces that should be generated between vertices of

cyclic nodes in our generated base mesh in order to close

the gap. Final cyclic mesh is shown in Figure 8d.

(a) Cyclic skeleton, cyclic

edge marked with dark

blue color, cyclic nodes

with dark green and dark

violet

(b) Split cycle with one

inserted node for each

former cyclic nodes light

green for green node and

light pink for violet node

(c) Generated base mesh

before the cycle is closed

(d) Generated base mesh

after the cycle is closed

(e) Vertices correspond-

ing to green and vio-

let cyclic nodes projected

onto the same plane

(f) Faces generated by tri-

angulation that will be

used between original un-

projected vertices

Figure 8: Cyclic skeleton base mesh generation.

6. Tessellation Tessellation shaders available since

OpenGL 4.0 are used to tessellate the generated base

mesh. Two connected spherical nodes, a parent and a

child, implicitly define a truncated cone between them.

The base of the cone has the radius of parent spherical

node and the top of the truncated cone has the radius of

child spherical node. Each vertex generated during tessel-

lation is projected onto this cone. The projection is done

by translating the vertex along its normal until it reaches

the surfaces of the cone. A generated base mesh is shown

in Figure 9a and after tessellation in Figure 9b. However

during this step the generated base mesh gains volume and

the newly generated vertices can intersect the tessellated

base mesh. This effect can be seen in Figure 9c. To re-

cover from this situation, we detect sharp vertices in the

input mesh and apply a radius scaling scheme. Sharp ver-

tices are vertices which faces are forming acute angles. In

tessellation shader we have access only to one patch and

its vertices. So we compute the sharpness of each vertex

by comparing and thresholding the normal of each vertex

with the direction of the patch. The smaller the angle be-

tween vertex normal and patch direction is, the sharper the

vertex is. We apply Bézier curves to modify the radius of

the truncated cone. We use Bézier curves that yield val-

ues between [0,1]. For each tessellated vertex its distance

from the beginning of the patch is calculated. The dis-

tance is equal to tessellation parameter v computed by the

GPU. Scaling reduction factor is calculated by sampling a

point on Bézier curve at point t = distance. The radius of

each vertex is then multiplied with calculated factor. The

smoothed mesh is shown in Figure 9d. Currently, the scal-

ing bezier curve is constant, but it could be dynamically

changed based on the sharpness of the vertices.

Figure 9: Tessellation. (a) non-tessellated mesh; (b) tes-

sellated mesh with 20 subdivisions; (c) tessellated mesh

with self intersection; (d) tessellated mesh with scaling.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Model Node Distribution Timing of steps in milliseconds

#nodes #branch #connection #leaf straightening generation subdivision joining Total

worm 23 21 2 0 0 0 0 5 5

dummy 56 2 49 5 0 4 2 15 21

cycle 14 1 12 1 0 4 2 18 24

octopus 131 1 117 13 1 9 5 54 69

dummy 2 140 5 122 13 1 11 6 39 57

goat 150 9 123 18 1 16 10 47 74

Table 1: Table showing statics of base mesh algorithm. From left to right: name of the model, node distribution in skeletal

structure, timing of each step of the algorithm measured in milliseconds.

6 Results

The algorithm was implemented in C++ in Visual Studio

2012. Mesh is stored in open source half-edge data struc-

ture OpenMesh 2.2. OpenGL 4.3 is used to visualize the

algorithm and tessellate the generated base mesh. We have

also developed an interactive system, where the user can

create, save and load skeletons. Nodes can be edited di-

rectly with mouse input, or using node property inspector.

New nodes can be inserted into the skeleton with mouse

clicks.

Performance of the algorithm is shown in Table 1. The

table shows from left to right: the name of measured

model, distribution of branch, connection and leaf nodes in

the model and time required for each step of the algorithm

measured in milliseconds. Time was measured on Intel R©

CoreTM i7-3615QM a four core processor with each core

clocked at 2.3 GHz. From the table, we can see that the

joining step, during which the tubular structure is gener-

ated, took the most time. Therefore, it is a candidate for

optimization since other steps of the algorithm took nearly

no time to execute. However, even at current speed we can

generate base meshes at interactive frame rate.

Our algorithm is also capable of generating base meshes

from skeletons on which SQM would fail. For example, in

Figure 10a we can see a fish produced in SQM without el-

lipsoid nodes. The generated base mesh resembles an eel.

Our algorithm with ellipsoid nodes, Figure 10b, produces

a base mesh that corresponds to a fish. In Figure 10d we

can see a cyclic mesh generated by our algorithm. We tried

to generate similar mesh in SQM from the same skeleton,

Figure 10c. Producing a similar mesh in SQM is not pos-

sible as the cycles do not lie in symmetrical region of the

input skeleton and SQM would not close them.

7 Conclusion

We have managed to improve all the drawbacks discussed

in Section 2. Our algorithm is capable of generating base

meshes from linear skeletons, explicitly defined cyclic

skeletons, as well as from skeletons with root that is not

a branch node. We have moved Final Vertex Placement

step of the algorithm on GPU. Lastly, we can set arbitrary

ellipsoids at each skeletal node and improve visual quality

of generated base mesh in tessellation shaders.

References

[1] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo

Chu, Daniel Cohen-Or, and Tong-Yee Lee. Skele-

ton extraction by mesh contraction. ACM SIGGRAPH

2008 papers, pages 1–10, 2008.

[2] J. A. Bærentzen, M. K. Misztal, and K. Wel-

nicka. Converting skeletal structures to quad domi-

nant meshes. Computers & Graphics, 36(5):555–561,

2012.

[3] Michael Mc Donnell. Skeleton-based and interactive

3d modeling. Master’s thesis, Technical University of

Denmark, 2012.

[4] Zhongping Ji, Ligang Liu, and Yigang Wang. B-mesh:

A fast modeling system for base meshes of 3d artic-

ulated shapes. ComputGraphForum, 29(7):2169–77,

2010.

[5] Ladislav Kavan, Steven Collins, Jiri Zara, and Carol

O’Sullivan. Skinning with dual quaternions. In

2007 ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games, pages 39–46. ACM Press,

April/May 2007.

[6] Luc Leblanc, Jocelyn Houle, and Pierre Poulin. Mod-

eling with blocks. Vis Comput, pages 555–563, 2011.

[7] Vinod Srinivasan, Esan Mandal, and Ergun Akleman.

Solidifying wireframes. Proceedings of the 2004

bridges conference on mathematical connections in

art, music, and science, 2005.

[8] Roger Tam and Wolfgang Heidrich. Shape simplifica-

tion based on the medial axis transform. In Proceed-

ings of the 14th IEEE Visualization 2003 (VIS’03),

VIS ’03, pages 63–71, Washington, DC, USA, 2003.

IEEE Computer Society.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Fish without ellipsoid nodes as would be generated by SQM

(b) Fish with ellipsoid nodes generated by our algorithm

(c) Mesh from cyclic skeleton as would be generated by SQM

(d) Mesh from the same skeleton generated by our algorithm

Figure 10: Comparision of SQM to our implementation.

Figure 11: Goat creature generated with our base mesh

algorithm.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


