
Automated Lighting Design For Photorealistic Rendering

Silvana Podaras∗

Supervised by: Károly Zsolnai†

Institute of Computer Graphics
Vienna University of Technology

Vienna / Austria

Abstract

We present a novel technique to minimize the number of
light sources in a virtual 3D scene without introducing
significant perceptible changes to it. The implementation
is done as an extension of LuxRender, a state-of-the-art,
physically based and open-source renderer. The algorithm
adjusts the intensities of the light sources in a way that
a set of light sources can be substituted by a smaller set,
thus enabling to render a similar image with significantly
less number of light sources, introducing a remarkable re-
duction to the execution time of scenes where many light
sources are used.

Keywords: radiosity, global illumination, constant time

1 Introduction

With the advance of technology, the use of computer
graphics has become an everyday routine in motion pic-
ture production. Since the making of “Toy Story”, the first
feature-length film that was entirely computer-animated,
there have been a lot of improvements in technology.
Nowadays, it is possible to create images that are almost
indistinguishable from reality. One of the key elements in
order to make a film look “real” is to simulate physically
correct light transport when computing an image.

One of first attempts for such a simulation was made
by Appel [1], who introduced the ray tracing algorithm.
Although the images rendered with that method were far
from photorealistic, the fundamental concept has become
the basis of state-of-the-art algorithms. A major problem
of photorealistic rendering is the time needed to gain
high-quality images, because rigorous mathematical and
statistical methods are used to simulate realistic effects.
Depending on the desired effects and used hardware,
render times can be prohibitively long - it can take up to
hours or days to obtain images with satisfying quality [10].

Speeding up the rendering process has thus been a
hot topic in science and industry for years, and was
usually involving the creation of more efficient sampling

∗spodaras@cg.tuwien.ac.at
†zsolnai@cg.tuwien.ac.at

strategies or better rendering algorithms. The problem can
also be addressed from a different angle to speed up this
process by means of reducing the number of light sources
used in a scene. This idea came up when considering the
way how industry giants like PIXAR use physically based
ray-tracing systems in their daily work [4]. In order to
achieve not only a physically plausible image, but also
adhere to a certain look and feel desired by the artist,
many light sources are placed in a scene - even up to
hundreds of them [2]. Such vast number of light sources
directly affects render time, because more of them have to
be sampled in order to get a smooth and converged output.
When having so many light sources in a scene, would it
be possible to render an (almost) identical image with
fewer light sources? For a large number of sources, the
answer to this question can hardly be given in a reasonable
amount of time when letting a user try out all different
settings. Instead, the idea came up to let an algorithm
perform the adjustment of the light intensities in order to
find a similar result image which uses less lights than the
initial setup. The overall concept how such an algorithm
could be designed is explained in more detail in Section 3.

This work is founded on the assumption that using
less light sources results in faster execution times. In
order to show the validity of this assumption, an empirical
evaluation on several scenes was done. Those measure-
ments were made by means of testing on five carefully
chosen scenes with a varying number of light sources,
light sampling strategies and a comparison to the ground
truth image. The results are presented in Section 5.

2 Related work

Although various efforts were made to speed up the ren-
dering process, little research has been made to reduce the
number of lights used in a scene. The most noticeable
work is ’Lightcuts’ by Walter et al. [13]. In this approach,
lights in a scene are first clustered by spatial proximity
and similar orientation. Those clusters get hierarchically
organized in form of a binary tree. Every cluster is repre-
sented by one of the lights it consists of, and can be further
refined to smaller clusters, which also use one light as rep-
resentative, and so on. To reduce light sources, a “cut”

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

through the tree is made and only the representative lights
of the clusters in the cut are used to illuminate the scene.
The representative light in a cluster gets modified in order
to approximate the resulting illumination if all the lights
in the cluster would be used. If the error of such an ap-
proximation is so small that it is not perceivable, only the
representative light is used when rendering the scene, else
the cluster is refined and more lights are used.

Apart from that approach, little prior work has been
done to automatically reduce the number of light sources
in a scene. Instead, the more general field of automated
lighting design has been a popular topic. This field focuses
on computationally adjusting parameters like for example
light intensities and emission colors, instead of letting the
user handle the fine-tuning.

The majority of methods let the user define a “desired”
image as input, and the computer tries to calculate the ac-
cording parameters to achieve this effect. Schoeneman et
al. [11] for example assume that the designers of a vir-
tual scene know where to place light sources, but fail in
choosing the right intensities or colors. After having the
designer “paint” effects such as shadows and spots of light
on a target image, an optimization process is started to
determine the settings that match the painted image best.
Similar work has been done by Costa et al. [3] and Kawai
et al. [6].

A contrary approach is “interactive evolution”, which
lets the user explore a set of possible solutions that the
computer creates. Sims [12] used evolutionary algorithms
in combination with user input to generate different sets of
plant structures, procedural textures and animations. The
quality for each solution is determined by the subjective
judgment of the user, before the next evolution step is
applied. Thus the user can “guide” the results in a spe-
cific direction without having to know about the underly-
ing mechanisms for calculating the parameters.
The design galleries approach of Marks et al. [8] lets the
computer set up many different light settings and present
them to the user, who can choose the setup that seems most
appealing to him.

3 Concept

When rendering a scene which makes use of many lights,
eventually the same result image could be achieved by us-
ing fewer lights when turning some of them off or when
changing their intensities. Trying out all variations manu-
ally is not an option, because the vast amount of possible
settings would make this a time-consuming and cumber-
some task. On the other hand, automatizing this process
is relatively simple. An algorithm for this task would have
to try out different light settings for a scene and compare
the resulting images to an initial image the user wants to
achieve. The more similar a new image is to the desired
one, and the less light sources are used, the better the so-
lution is.

Despite the idea itself is very simple, it is crucial to un-
derstand that the problem space is remarkably high dimen-
sional. When trying to reduce the number of lights by only
turning them on and off, a binary integer programming
problem has to be solved, which is known to be in the NP-
hard complexity class. Although the number of solutions
increases with the number of lights used, the total amount
is finite (up to 2amount o f lights). This method would be suf-
ficient for simple scenarios, where several light sources
clearly have no contribution to the scene. This could be
the case if an artist has created a light source with almost
no intensity in the scene, or when a light source gets oc-
cluded by some object and suddenly has no contribution to
the image. To decide if a proposed solution is close enough
to the original image, a user-defined threshold could be set.

In practical applications, such easy scenarios will be the
minority of cases. To reduce the overall amount of lights,
changing the intensity of some of them before turning oth-
ers off will be necessary. The solution space in this case
varies drastically from the first one: an infinite amount
of solutions exists, and each one is a valid image gained
with certain light settings. For an arbitrary scene, it is un-
clear which light intensities have to be changed in what
way. Exploring this search space without making more
constraining assumptions is a non-trivial task. This prob-
lem can be addressed by using classical constrained opti-
mization algorithms. In our work, we have used a genetic
algorithm due to its capability to explore such vast search
spaces. How such an algorithm was designed for our prob-
lem is described in the following paragraphs.

Genetic Algorithms (from now on referred to as “GA”)
are search heuristics inspired by the processes and mech-
anisms of natural evolution and can be applied to a large
class of practical problems. The only requirement is that
solutions for the problem can be encoded in a form that
they can be processed by genetic operators such as mu-
tation, crossover and fitness. In a GA, those encoded so-
lutions are also called “chromosomes” [9], [5]. In our
case, a possible solution can be represented by a vector
of values which stores the intensities of each light. Those
values are binary if the lights should simply be turned off
and on, or they can encode continuous intensity values if
the optimization routine should change the light intensi-
ties as well. A collection of initial solutions is generated
by assigning the initial light settings to several chromo-
somes. Then, to gain new solutions, each chromosome
gets randomly modified by either mutation or crossover
operations. Mutation chooses one index of the vector at
random and either flips the bit in binary-mode or adds or
subtracts a small value for continuous optimization. The
crossover operator simply chooses two chromosomes at
random and recombines them at a randomly chosen index
to form a new chromosome.

After the initialization, an evaluation step has to take
place which determines how good a solution is (in terms
of a GA: the fitness of a solution has to be evaluated).
First, the amount of lights used would have to be calcu-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

lated. This is done by summing up all non-zero compo-
nents of a vector containing the individual light source in-
tensities, i.e. ~Xn = [a1,a2,a3, ...,an]. This is done either by
calculating the l0 quasi-norm or l1-norm of a vector:

‖Xn‖0 = 0

√
n

∑
i=1
|ai|0, ∀ai,ai ∈ R, (1)

‖Xn‖1 =
n

∑
i=1
|ai|. (2)

The first case would be an integer optimization problem
where lights only get turned off or on, the second metric
adapts the lights intensities. However, using only the l0- or
l1-norm of a vector to determine the fitness of a solution
would be not sufficient, because it lacks the constraint that
the output should be faithful to the input image.

A simple method to determine if a solution is good
enough would be to define a threshold, which determines
the maximum allowed difference between the initial image
and a possible solution image. Calculating the difference
is done by subtracting the images pixel-wise from each
other and summing up the squared absolute differences.
The solution is only considered as valid if the difference
lies below the threshold, otherwise it is discarded. For
valid solutions, the fitness gets calculated as the weight
of a vector.
This trivial formalization is, however clearly not feasible
as it leaves two problems unresolved. The first problem is
that when creating an invalid solution, the algorithm never
gets any kind of feedback on how close it was to a valid
one. Not having this knowledge of how “close” a solu-
tion is makes optimization no better than any exhaustive
sampling technique. The algorithm needs more elaborate
feedback in order to know if the optimization is heading in
a good direction. The second problem can be depicted by
the following scenario: two valid solutions are available,
both of them use three lights out of many. The three lights
used in the first solution are different from the ones in the
second - which of the two solutions is the better one, when
both of them have the same fitness?

To solve both problems at once, the difference between
the initial image and a temporary solution image is added
after calculating the norm - in this way, the faithfulness of
the output image is also considered, and with this knowl-
edge, the algorithm can generate better and better solutions
in every iteration. The overall fitness f () of a solution
vector ~Xn gets calculated as described in equation 3. The
first term is the calculation of the norm ‖Xn‖s, as explained
above in equations 1 and 2. The second term calculates the
distance between the two images. This is done by sum-
ming up the squared differences of the pixels, where Ti j
stands for the pixels of “target image” and Ci j for the pix-
els of the “current solution image”. There are also two
parameters for weighting the lights (pL) and the difference
(pD). They act as a kind of quality switch and allow more

control on the optimization procedure. The contribution to
the weight of the vector of each light is multiplied by the
factor pL, therefore better fitness values are achieved if the
algorithm tries to turn off lights instead of finding a solu-
tion which has little difference to the initial image. If on
the other hand, a result image that’s very close to the orig-
inal is desired, the weight for the difference would have to
be set to an appropriate value.

f (~Xn) = pL · ‖Xn‖s + pD ∑
i, j
‖Ti j−Ci j‖2, (3)

where s ∈ {0,1}. Adding the second term to the overall
fitness can be done both in integer and in continuous op-
timization mode. A threshold-value as mentioned above
can also be used to let the user control how close a so-
lution must match the original image to be considered as
valid.

Thus, an objective quality metric has been defined for
determining how good or similar a solution is, and a
smaller number encodes a better solution. After having
defined the fitness function, the general procedure of the
algorithm follows the schema of a typical genetic algo-
rithm. In each generation, new solutions are processed and
ranked according to their fitness values. The best solutions
are kept by the principle of elitism, while the others are
modified in order to gain better solutions from generation
to generation. The algorithm would have to find the set-
tings which result in the smallest number representing the
quality of a solution. Mathematically speaking, the whole
problem can be seen as an optimization problem, where a
global minimum has to be found among all possible solu-
tions:

min(f (~Xn)), ∀~Xn ∈ Rn. (4)

4 LuxRender

LuxRender is a physically based, state-of-the-art open-
source software renderer based on Pharr’s and Humphrey’s
physically based renderer, PBRT [10], which was devel-
oped for educational and academic use. LuxRender is a
stand-alone renderer and not a modeling software. Thus
the creation of scenes and models has to be done in other
software, and then they have to be exported for rendering.

In 2007, the creators adapted the original source code
to make it suitable for artistic use [7]. LuxRender imple-
ments different state-of-the-art rendering algorithms and
provides features such as different material types for ob-
jects, post-processing effects, HDR rendering, film re-
sponse among many others. The implementation pre-
sented in this paper works on level of the “Film” stage
depicted in figure 1 and makes use of a feature called Light
Groups. When modeling a scene with several lights, those
lights can be associated with a light group. An arbitrary

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Basic architecture of PBRT. The Sampler pro-
vides the SamplerRendererTask with random samples for
BRDF sampling. With that sample, the camera then con-
structs a ray towards the image plane for the next pixel
position and passes it to the Integrator. The integrator cal-
culates the radiance carried along that ray. The collected
radiance then gets saved on the film.
[10]

number of lights - also only a single one - can belong to
such a light group. During the rendering process, the light
contribution of each group is saved in a separate buffer.
Every group also has a intensity and a color temperature,
which can be controlled by two parameters. This enables
to change the initial light settings in a scene while the ren-
dering is still in process or after it is finished. The user can
modify those parameters in the GUI.

5 Results

The following section consists of two parts, the first show
our results of the empirical test study to verify the assump-
tion that rendering with less light sources increases over-
all rendering speed. The second part presents the results
achieved when using the light source cleaner (further re-
ferred to as LSC) on three specially designed test scenes.
The scenes were all rendered on a computer with an Intel
Core i7-2600K CPU @ 3.40GHz (8 (logical) CPUs), 16
GB DDR3 RAM, and an NVIDIA GeForce GTX 560 Ti
with 1 GB of memory.

(a) Cherry scene (b) Watch scene

Figure 2: Two of the scenes used for comparison of render
times depending on amounts of lights used. The results are
presented in Table 1.

5.1 Test scenes with many/less lights

To verify the assumption that render time can be saved
when using less lights in a scene, test renderings of five
scenes of varying complexity were done. The test scenes
where designed to make use of up to 47 light sources. Each
scene was rendered twice with different light source setup:
once only with a set of light sources that have a contribu-
tion to the lighting of the scene, and once with 17 addi-
tional light sources that have almost no contribution to the
scene. With the exception of the School Corridor scene,
which was rendered for half an hour due to its complex-
ity, the test scenes were rendered for 10 minutes each. A
ground truth image of each scene was also rendered for
one hour.
The resulting images were then compared to the ground
truth using the root mean square error metric (Table 1).
The scenes where less lights are used always have a
smaller difference to the ground truth image than the
ones with many lights. When rendering the test scenes
longer, the difference between using less or many lights
gets clearly visible for the human observer, without using
a comparison software.

(a) LuxBalls Scene

(b) Dragon Scene (c) Fish Scene

Figure 3: Scenes used for testing the algorithm.

5.2 Results of the LSC

We have used several scenes to test our method. In ev-
ery scene, each light used was assigned to a separate light
group - otherwise the light sources can not be manipulated
individually.

First, the integer optimization mode was tested with the
scenes that were already used in the empirical study. In
those scenes, there were “fake” light sources which had
no contribution to the lighting of the particular scene. The
assumption was that the “unnecessary” lights should be
easy to determine, so when running for enough genera-
tions, the algorithm should be able to detect all of them and
turn them off. This worked fine for the tested scenes and

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Scene Balls Dragon Corridor Cherry Watch
Lights 30 30+17UL 20 20 + 17UL 10 10 + 17UL 31 31 + 17UL 11 11+17UL
Path tracing 1040.44 1148.54 224.41 250.42 4918.52 5250.92 2012.82 2238.13 1246.18 1489.03
Bidirectional 1218.10 1333.16 257.46 275.04 2957.23 3827.03 2567.93 3115.10 1220.64 1887.13
Metropolis 1209.58 1347.72 283.97 304.10 3103.88 4082.38 2541.94 3031.82 1408.88 2342.89

Table 1: RMSE of the test scenes compared to ground truth image. Each scene was rendered two times, once with a
certain amount of light sources and a second time with 17 additional “unnecessary lights” (“UL”), which had no visible
contribution to the scene. Rendering time was 10 minutes for each scene except for the Corridor scene, which was
rendered for half an hour due to its complexity. The ground truth images were rendered for one hour. The table shows that
the scenes with less light sources have a smaller difference to the ground truth image than the scenes with many lights.
This verifies the assumption that rendering is more efficient when using less lights in a scene by canceling out lights with
almost no contribution.

should also work for any arbitrary scenes where lights are
used which have (almost) no contribution. However, we
show that our technique is capable of solving more com-
plex scenarios beyond these trivial cases.

For the testing the continuous optimization mode, three
additional scenes were modeled and tested (see Figure 3).
Two rather simple cases were constructed to show that the
algorithm generally works. The first one consists of two
beveled spheres on a pedestal standing in front of a wall.
Three area lights - two small lights and one big light - were
then arranged in the following way: each one of the small
lights is half the size and half the power of the big light,
and the lights were positioned so that the two small lights
together are covering the big light exactly. Also, the lights
are placed exactly at the same height. Figure 4 shows a
screenshot of the 3D-view of the scene for better under-
standing. The assumption was that if the algorithm worked
correctly, it should be possible to achieve the same light-
ing for a scene when turning off the small light sources
completely and increasing the intensity of the bigger area
lights. This makes a simple test case which translates to a
high-dimensional optimization problem, for which we ex-
actly know the analytic solution.
To make the whole scenario more challenging, this basic
setup of three lights was copied and pasted into the scene
several times, so that 12 of those arrangements (this makes
33 lights in total) are present in the scene.

The second scene features a dragon model illuminated
by 50 area lights, positioned pairwise on the same position
and height with the same light intensity. So in this scene,
it should be possible to turn off at least half of the lights
when increasing the intensity of the other half. A 6x3 array
of those lights illuminates the dragon from top, and 7 lights
from the front. The light setup is also rather simple here,
but the amount of lights is already high. Figure 5 depicts
a screenshot again for better understanding.

The third scene which shows an angler fish is the most
complex setup featuring 100 light sources. The majority
are blue area lights, and there are also point lights of no
contribution hidden behind the big stone wall. The algo-
rithm should be able to both turn off many of the point
lights and reduce the amount of area lights also signifi-

cantly. Contrary to the previous scenes, the area lights are
positioned arbitrarily instead of being arranged in a spe-
cial way. This was done to simulate a scene of practical
interest as it occurs in film production.

The initial images were rendered with bidirectional path
tracing, and the algorithm was run on each of them several
times for 100, 500 and 1.000 generations with 15 chromo-
somes each and different weighting parameters. At the be-
ginning, some runs which last only 100 generations were
made several times to ensure that the algorithm works
“right” and gives similar results on each run. Figures 6, 7
and 8 show the result images on the l1-norm of the light
vector at several stages of the optimization process.

Figure 4: Example for the light setup in the Luxballs scene.
The cyan colored rectangle marks the big area light, while
the two red ones mark where the two small area lights are
located. The small lights together cover the same area as
the big one and are placed exactly at the same height. 12
of those arrangements are present in the scene.

6 Conclusion and discussion

We presented a light source minimization technique to
provide a solution for reducing the overall amount of light
sources used in a scene by applying a genetic algorithm to
a multivariate optimization problem. A definitive strength
is the simplicity of the concept and its general applicabil-
ity. Although for this paper the implementation was done

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Example for the light setup in the Dragon scene.
The cyan and red rectangles exemplary mark two area
lights, which are placed exactly at the same position and
have the same intensity.

in LuxRender, this technique can be implemented in any
photorealistic rendering engine as long as there is a mech-
anism that stores the contributions of light sources at dif-
ferent locations. We demonstrated that our technique both
passes on scenes with known analytic solutions and also
works well on scenes of practical interest. We note that
as we are using unbiased and consistent rendering algo-
rithms, it is possible to reduce the number of light sources
while the rendering is still in progress.

Another issue is that a global metric is used to measure
similarity between two images. As the algorithm basically
does a pixel-wise comparison, images with local extrema
may impose problems due to the omittance of small lo-
cal features. Using mean squared error metric instead of
the simple difference between the pictures indeed helps,
but still there is no means to explicitly consider “impor-
tant” pixels like highlights or shadows. One possible im-
provement would be to let the user interactively pre-define
which local effects are important and should be kept after
optimization.

Our proposed technique is simple to implement, and
offers a significant speedup in the execution time of the
rendering step in difficult lighting scenarios with a vast
amount of light sources.

7 Acknowledgements

We would like to thank Kai Schwebke for providing the
LuxTime, Andreas Burmberger for the Cherry Splash, Si-
mon Wendsche for the School Corridor and Peter Sand-
backa for the Jade Dragon scene and the LuxRender com-
munity for the LuxBall model. The fish scene was created
by using various models, we like to thank Paul aka. Ma-
jorNightmare for the angler fish, Peter Sandbacka for the
sea weed and Chris Monson for the seabed.

References

[1] Arthur Appel. Some techniques for shading machine
renderings of solids. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference,
AFIPS ’68 (Spring), pages 37–45, New York, NY,
USA, 1968. ACM.

[2] Per H. Christensen, David M. Laur, Julian Fong,
Wayne L. Wooten, and Dana Batali. Ray differen-
tials and multiresolution geometry caching for dis-
tribution ray tracing in complex scenes. In In Euro-
graphics 2003, pages 543–552. Blackwell Publish-
ers, 2003.

[3] António Cardoso Costa, António Augusto de Sousa,
and Fernando Nunes Ferreira. Lighting design: A
goal based approach using optimisation. In Render-
ing Techniques, pages 317–328, 1999.

[4] Christophe Hery and Ryusuke Villemin. Physically
based lighting at Pixar, 2013. Accessed: 2013-12-04.

[5] John H. Holland. Adaptation in Natural and Artifi-
cial Systems: An Introductory Analysis with Applica-
tions to Biology, Control and Artificial Intelligence.
MIT Press, Cambridge, MA, USA, 1992.

[6] John K. Kawai, James S. Painter, and Michael F. Co-
hen. Radioptimization: Goal based rendering. In
Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’93, pages 147–154, New York, NY, USA,
1993. ACM.

[7] LuxRenderProject. http://www.luxrender.net. Ac-
cessed: 2013-12-30.

[8] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman,
S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfis-
ter, W. Ruml, K. Ryall, J. Seims, and S. Shieber.
Design galleries: A general approach to setting pa-
rameters for computer graphics and animation. In
Proceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’97, pages 389–400, New York, NY, USA,
1997. ACM Press/Addison-Wesley Publishing Co.

[9] Melanie Mitchell. An Introduction to Genetic Algo-
rithms. MIT Press, Cambridge, MA, USA, 1998.

[10] Matt Pharr and Greg Humphreys. Physically Based
Rendering, Second Edition: From Theory To Imple-
mentation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2nd edition, 2010.

[11] Chris Schoeneman, Julie Dorsey, Brian Smits, James
Arvo, and Donald Greenberg. Painting with light. In
Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’93, pages 143–146, New York, NY, USA,
1993. ACM.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Initial Image. Amount of lights used: 33 (b) Solution after 100 generations. Amount of lights used: 29

(c) Solution after 500 generations. Amount of lights used: 11 (d) Solution after 1000 generations. Amount of lights used: 12

Figure 6: Luxballs Scene. 33 Lights in total.

(a) Initial Image. Amount of lights used: 50 (b) Solution after 100 generations. Amount of lights
used: 41

(c) Solution after 500 generations. Amount of lights
used:26

(d) Solution after 1000 generations. Amount of lights
used: 24

Figure 7: Dragon Scene. 50 lights in total.

[12] Karl Sims. Artificial evolution for computer graph-
ics. In Proceedings of the 18th Annual Conference

on Computer Graphics and Interactive Techniques,
SIGGRAPH ’91, pages 319–328, New York, NY,

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Initial Image. Amount of lights used: 100 (b) Solution after 100 generations. Amount of lights used: 95

(c) Solution after 500 generations. Amount of lights used: 70 (d) Solution after 1000 generations. Amount of lights used: 58

Figure 8: Fish scene. 100 lights in total.

USA, 1991. ACM.

[13] Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P.
Greenberg. Lightcuts: A scalable approach to illumi-
nation. ACM Trans. Graph., 24(3):1098–1107, July
2005.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

