Gaze-dependent Ray Tracing

Adam Siekawa*

Supervised by: Radoslaw Mantiuk'

Institute of Computer Graphics
West Pomeranian University of Technology
Szczecin / Poland

Abstract

In this paper we introduce a method for acceleration of
the real time ray tracing by using characteristic traits of
visual perception. Ray tracing is a demanding rendering
technique which is much slower than currently dominating
scanline methods. Performance hit especially arise when
we use huge amount of samples for anti-aliasing or other
sample-based effects. We show how to decreases number
of rays by increasing the perceptual size of selected pixels
by using combination of eye tracking and the human gaze-
dependent contrast sensitivity. Our study shows that num-
ber of processed pixels can be reduced three times without
perceptually noticeable quality loss. As a result, we can
greatly increase performance of ray tracing.

1 Introduction

The gaze-dependent vision is a characteristic way in which
the human visual system builds an image of the world.
We perform frequent and rapid eye movements, called sac-
cadic movement, and follow moving objects in the smooth
pursuit movement [2]. These rapidly changing snapshots
are combined by the Human Visual System (HVS) in a
stable image of the entire scene. Interestingly, a gaze-
dependent model of image synthesis is not used in contem-
porary computer imaging systems, even despite the fact
that a significant reduction of computation complexity is
possible during image rendering in the parafoveal and pe-
ripheral regions of vision.

Ray tracing is a popular image synthesis technique
which can benefit from the gaze-dependent characteris-
tic of vision. Generally, even using the basic Whitted
model [11], the ray tracing can produce images of the
higher quality that the scanline techniques. However, this
is achieved at the expense of larger computation complex-
ity. The main bottleneck of this technique - finding inter-
sections - can be reduced by decreasing the number of pri-
mary rays. In this work we propose a gaze-dependent ray
tracing in which the number of rays per unit angle fits the
sensitivity of HVS. We use the gaze-dependent contrast
sensitivity function (CSF) to reduce sampling in peripheral

*adamsiekawa@gmail.com
Trmantiuk @wi.zut.edu.pl

vision. Temporal location of the gaze point is captured by
the eye tracker and used by the interactive ray tracing sys-
tem to render images with the highest quality only in the
gaze-point surrounding.

In Sect. 2 we outline the directionality of the human vi-
sion, introduce the gaze-dependent CSF and discuss exist-
ing gaze-dependent techniques of image synthesis. Sect. 3
presents our gaze-dependent ray tracing system based on
the weighted sampling. In Sect. 4 we show how the gaze-
dependent sampling was implemented in our ray tracer.
Sect. 5 discusses the achieved performance boost with re-
spect to image quality deterioration. The paper ends with
conclusions and future work in Sect. 6.

2 Background

In this Section we present a basis of the human eye
physiology and describe technologies used in the gaze-
dependent rendering frameworks.

2.1 Gaze-dependent contrast

function

sensitivity

Human vision has a strong feature of the directionality of
view. We can see the details only in a small viewing angle
subtended 2-3 degrees of the field of view. In this range, a
human sees with a resolution of up to 60 cycles per angular
degree, but for a 20-degree viewing angle, this sensitivity
is reduced ten times [6].

The fundamental relationship describing the behaviour
of the human visual system is the contrast sensitivity func-
tion (CSF) [1]. It shows the dependence between the
threshold contrast visibility and the frequency of the stim-
ulus. The CSF can be used to e.g. better compress the
image by removing the high frequency details that would
not be seen by humans. An extension of the CSF, called
the gaze-dependent CSF, is measured for stimuli observed
in various viewing angles [3, 12]. It models the impact of
deviations from the axis of vision (called eccentricity (E))
to the most recognisable stimulus frequency (see Fig. 1).

In this work we use the gaze-dependent CSF proposed
by Peli et al. [3]:

Ct(Evf):Cl(ovf)*exp(ka)v (1)

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Gaze—dependent contrast sensitivity function (CSF)

ol i i i i i i i i i
0 5 10 15 20 25 30 35 40 45

eccentricity (E) [deg]

Figure 1: Gaze-dependent contrast sensitivity function.
The dashed line shows the maximum frequency of our dis-

play.

where C; denotes contrast sensitivity for spatial fre-
quency f at an eccentricity E, k determines how fast sen-
sitivity drops off with eccentricity (the k value is ranged
from 0.030 to 0.057). Based on the above equation, the
cut-off spatial frequency f. can be modelled as:

Jfe(E) = min(max_display_cpd,E| xEy /(E2 +E)), (2)

where E, is retinal eccentricity at which the spatial
frequency cut-off drops to half its foveal maximum (it
ranges from E;=43.1 to 21.55), and E, = 3.118 (see de-
tails in [13]). An example region-of-interest mask com-
puted for our display based on the gaze-dependent CSF
is presented in Fig. 2. Applying this mask, one can e.g.
sample an image with varying frequency generating less
sampling rays for the peripheral regions of vision.

Figure 2: Region-of-interest mask computed based on
CSF for an image of 1920x1080 pixel resolution (gaze
position at (1000,500)), lighter area denotes higher fre-
quency of HVS.

2.2 Gaze-dependent image synthesis

Information about temporary gaze direction was previ-
ously used to reduce the computational complexity of the
image synthesis. An example of this approach is the tech-
nique called the level of detail (LOD), in which the simpli-

fied models of objects are located in the peripheral areas
of vision [7, 9].

In the ray casting [9] and volumetric rendering [5] the
gaze-dependent sampling is applied in the screen space.

A similar solution was used to accelerate the ambient
occlusion algorithm [8]. This technique introduces a novel
filtration method, in which the global lighting is calculated
only for the area surrounding the gaze point. In peripheral
areas of vision only fast computations based on the local
lighting model are performed. The perceptual experiments
showed that the participants did not notice the quality de-
terioration of the generated images.

The models of the gaze-dependent vision seems to gain
an increasing importance in improving the efficiency of
the image synthesis. The leading IT companies are inter-
ested in new gaze-dependent rendering techniques. For
example, in the solution proposed by Gunter and others
in [4], the scanline-based rendering engine generates three
low-resolution images corresponding to the different fields
of view. Then, the wide-angle images are magnified and
combined with non-scaled image of the area surrounding
the gaze point. Thus, the number of processed pixels can
be reduced by 10-15 times.

3 Gaze-dependent rendering

Fig. 3 presents the gaze-dependent rendering scheme. Our
system requires the eye tracker data which represents a
momentary gaze direction of a human observer. We render
the scene using ray tracing. The screen space is sampled
(the primary rays are generated) according to the gaze-
dependent contrast sensitivity function. Less rays is gen-
erated in parafoveal and peripheral regions. The output
image is reconstructed from the non-uniformly distributed
samples and displayed in real time on the screen.

I real time rendering

.
‘ gaze-dependent sampling h |
\ |
|
|
A

gaze data
(filtration)

—>

| ray tracing h
| ["screen mapping h
[

display

eye tracker

observer
interaction

human
observer

Figure 3: Gaze-dependent rendering system.

The whole system must be scaled in the real-world di-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

mensions. We transform the gaze data to screen space us-
ing physical dimensions of a display, its resolution, and
viewing distance between observer and the display screen.

3.1 Gaze-dependent sampling

The gaze-dependent CSF defines a solid angle in which
a human cannot see details. This angle defines a limit of
the HVS resolution and can be scaled in the perceptual
JND units. We call this angle a perceptual unit angle. The
further from gaze point a sample is, the larger the angle
becomes. In this angle the human eyes integrate the im-
age, i.e. it computes the average luminance. To sample
an image during rendering, we use the constant number of
rays per perceptual unit angle. For peripheral vision, the
perceptual unit angle covers more pixels and the number
of rays per image area decreases (see Fig. 4).

9

Perceptual Unit Angles

Figure 4: Less sampling rays falls on the area in the pe-
ripheral vision. The perceptual unit angles are marked in
colours.

The perceptual unit angle () covers an area derived
from CSF:

E;

=1/(2%E
o=1/2x I*E—i—Ez

)ldeg], (€)

where E denotes a viewing angle subtended from the
gaze direction to the direction towards a considered pixel,
E=43.1, E>=3.118 [3]. This angle can be computed using
equation:

Pdistance * Psize

d

where pgisrance 18 @ distance between pixel and the gaze
point in [pixels], psize is a physical pixel size in [cm], and
d denotes a distance from the screen to observer’s eyes
expressed in [cm].

The number of pixels covered by a perceptual unit angle
a can be derived from:

E = atan()[deg], 4

o
=15l 5
p=ligl ®)

where f3 is viewing angle in [deg] corresponding to one
pixel.

In the gaze dependent renderer one can reduce the
number of rays shoot per pixel based on the informa-
tion whether a considered pixels belongs to the larger or
smaller perceptual unit angle.

In our system we group together pixels belonging to one
perceptual unit angle and form cells. Then, the image is
sampled based on distribution of the cells. We shoot the
constant number of anti-aliasing rays per cell (see details
in Sect. 4.2) but, as the cells are larger in peripheral vi-
sion, the total number of sampling rays is reduced. Cells
positioned further from gaze point will produce less anti-
aliased results, however the artefacts will not be visible for
the human observer. Cells are put together into an image
after rendering. Visual representation of cell distribution
is presented in Fig. 5.

Figure 5: Cell map generated for an example location of
the gaze point. Each cell larger than original pixel size
is given a random color, non scaled cells are coloured
in white. The enlargement shows unique structure of the
map.

3.2 Rendering

The ray tracing was used for rendering because of sim-
plicity of implementation of complex sampling schemas
in the screen space. We implemented the Whitted ray trac-
ing model which supports Phong lighting, shadows, reflec-
tion and refraction rays. See the implementation details in
Sect. 4.1.

In this work we use a prototype renderer which does not
work in real time. This solution does not meet the main as-
sumption of the gaze-dependent rendering system, i.e. the
gaze-driven rendering in which image content is changed
with the gaze movement. However, our setup allows to
perform the quality tests based on the offline results.

In future work we plan to adapt a real time ray tracer,
such as OptiX [10] or Octane Renderer. Alternatively, we
consider implementation of own ray tracer engine based
on OpenCL or CUDA APIs. In the raw estimation, one
ray should be rendered in 3¢~ [sec] to generate 60 frames-
per-second in a typical viewing conditions. This require-
ment seems to be a challenge for a typical ray tracer and
the gaze-dependent solution which significantly reduces
the number of traced rays is highly beneficial (see details
in Sect. 5).

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

4 Implementation

We implemented our own ray tracer extended with the
gaze-dependent sampling technique. All images presented
in this paper were rendered with this application.

4.1 Ray tracer

Ray tracer that was used in our project as a proof-of-
concept is an off-line renderer implemented in C Sharp.
It is build in a content based fashion, where one can create
material by adding extra effects to the base type. There are
two lighting models implemented: Phong and Ashikhmin-
Shirley models. The ray tracer supports reflections, refrac-
tions, textures, and both hard and soft shadows.

One can load 3D scene stored in most of the popu-
lar formats, e.g. Wavefront OBJ format, COLLADA, or
Autodesk 3DS file. The ray tracer can also render non-
triangulated spheres. A scene is created in a code, i.e. one
can position loaded models, created spheres, lights and
camera then append them to the rendering list. The octree
acceleration structure is applied to improve performance.
Moreover, C# style parallel foreach is used for sampling
each cell individually and utilise all available CPU cores.
Results are saved as a linearly tone-mapped bitmap image.
It is also possible to output image sequence which can later
be put into a video.

Our ray tracer implements stochastic, regular (sam-
ples are distributed in a grid fashion) and adaptive anti-
aliasing techniques. However, we found the most useful
the stochastic sampling based on the random samples dis-
tribution. We use this type of anti-aliasing in all tests.
Sample rays are distributed to fit the whole cell region (see
details in 4.2). The first ray is always shoot in the centre
of the cell (pixel or group of pixels). For the following
samples we generate random single precision value which
is used for offsetting ray direction.

4.2 Cell map generator

A cell map generator is an implementation of the gaze-
dependent sampling in which cells are the discrete repre-
sentation of the perceptual unit angles (see Sect. 3.1). One
cell can cover one or more pixels, as seen in Fig. 6. Our
algorithm requires information about gaze point (obtained
from eye tracking device) and viewing conditions (width,
height and viewing distance from a display) to compute
number of pixels p that is within perceptual unit angle size
(see Sect. 3.1). Result of the cell map generator is a cell
vector with one cell per one unit angle and a cell mask
which stores relationship between cells and pixels.

Single cell is a structure described by the set of param-
eters:

e unique cell id stored also in the cell mask

e size p, when equal to 1 it indicates that cell is cover-
ing single physical pixel.

cell mask

gaze point location

cell vector

[0 [[21 [3] (=1 (51 =1 (=1 (= =

Figure 6: A cell vector for a 5x6-pixel image. Groups of
pixels covered by the unit angle computed for a current
distance from the gaze point (pixel with index of 9) are
assigned to consecutive indices in the cell vector.

e pixel’s centre position in the screen space
e camera information
e default luminance value (clear color)

The cell id is necessary for image reconstruction. Size,
position and camera data is used during ray tracing proce-
dure to generate the primary rays. The cell mask forms a
matrix (with the size of destination image), which contains
cell ids and helps to maintain the overlapping cells.

The cell vector is sent to ray tracing pipeline and is
used during AA rays generation. We distribute the con-
stant number of samples in a region covered by a given
cell.

Final step is image reconstruction, for that we need to
use cell mask mentioned earlier. As illustrated in Fig. 6,
pixels have the same cell id as the cell that covers them.
In order to retrieve our image, we need to iterate over that
mask and extract the final color value from a cell with the
same cell id and write it into a place holder for an image
(e.g. DirectX or OpenGL texture).

5 Results

We rendered a set of images applying the gaze-dependent
sampling calibrated for our hardware setup: 1080p res-
olution display measuring a 50 [cm] screen width and
35 [em] height, observed from 60 [cm]. We used 32 sam-
ples for the stochastic anti-aliasing. This number seems
to generate almost perfectly anti-aliased images of our test
scene. The computational complexity remains the same as
in classic ray tracing and cell map generation is not taken
into account since it is used as a precomputed input. Ex-
ample renderings are presented in Fig. 7. In the top image
atypical ray tracing technique with the per-pixel stochastic
anti-aliasing was used. The bottom image was generated

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

using the gaze-dependent technique with 32 anti-aliasing
rays per cell (perceptual unit angle). The quality of image
with reduced number of samples is noticeably worse, how-
ever this deterioration is not visible if observer is looking
at the gaze point. This phenomena is even better visible
on video we delivered in the supplementary materials. We
prepared a HDTYV clip (1080p, 25 FPS) with sampling rate
reduced to 4 anti-aliasing rays per a cell.

Figure 7: Comparison of the full frame (top) and the gaze-
dependent rendering (bottom). Gaze point is marked as the
red cross in the bottom image. The enlargements on the
right depict borders between region with p =1 and p = 2.
Left enlargements show artefacts in region far away from
the gaze position.

Cell overlapping

The cell mapping produces more apparent artefacts with
increasing distance from the gaze point. Some of the cells
may overlap each other, creating characteristic shapes sim-
ilar to letter "L, which are visible in Fig. 5. These artefacts
are appearing when cell of size p = n neighbours cell with
size of p = n — 1, causing displacement of each consecu-
tive cell. However, observer couldn’t see this artefacts.

Performance

We measured the rendering performance on the laptop
with Intel i3-2310M CPU, 2.1 GHz with 2 cores, 4 threads
in total. It took 48 minutes and 16 seconds to render
full frame anti-aliased image (see Fig. 7,top). During this
time a 66.35 million anti-aliasing rays were traced. The

cell map method needed only 14 minutes and 52 seconds
with 20.65 million anti-aliasing rays shoot. The gaze-
dependent technique was more than 3 times faster and al-
most 70% of sampling rays was required.

The acceleration will be even more significant for future
displays of the retinal resolutions (60 cycles per visual an-
gle). Our display should have a resolution of 5400x3900
pixels to reach the HVS resolution. In this case a typical
full frame ray tracing would require 674 million sampling
rays, but with cell map approach we would need only 27
million million rays, which is around 95% less.

6 Conclusions and Future Works

In this work we introduced gaze-dependent rendering as a
sample reduction method for increasing ray tracing perfor-
mance. Our algorithm is based on gaze-dependent CSF. It
takes into account viewing conditions and physical dimen-
sions of the display. We demonstrated how the cell map-
ping algorithm based on perceptual gaze-dependent sam-
pling of the screen space can result in major performance
boost. Although presented algorithm generates artefacts in
the parafoveal region, they are unnoticeable for a viewer.
In the paper we mainly focus on improving performance
by accelerating anti-aliasing algorithms, but we expect that
the same concept can be applied to other performance
heavy algorithms based on sampling.

In future work we plan to deploy a real-time version of
the system. In addition to the implementation of a fast ray
tracker, our cell map generation process might proof to be
difficult for parallel computing. One way of solving this
issue is creating a precomputed cell map, which would use
extra memory (four time more than map generated during
runtime). We also want to address the problem of over-
lapping cells. Our algorithm might also proof useful in
increasing performance of other rendering techniques i.e.,
path tracing or photon mapping.

References

[1] P. G.J. Barten. Contrast sensitivity of the human eye
and its effects on image quality. SPIE Press, 1999.

[2] Andrew T. Duchowski. Eye Tracking Methodology:
Theory and Practice (2nd edition). Springer, Lon-
don, 2007.

[3] Jian Yang Eli Peli and Robert B. Goldstein. Image
invariance with changes in size: the role of periph-
eral contrast thresholds. JOSA A, Vol.8, Issue 11,
1991.

[4] Brian Guenter, Mark Finch, Steven Drucker, Desney
Tan, and John Snyder. Foveated 3d graphics. ACM
Trans. Graph., 31(6):164:1-164:10, 2012.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

[S] Marc Levoy and Ross Whitaker. Gaze-directed vol-
ume rendering. In Proceedings of the 1990 sym-
posium on Interactive 3D graphics, 13D *90, pages
217-223, New York, NY, USA, 1990. ACM.

[6] L. C. Loschky, G. W. McConkie, J. Yang, and M. E.
Miller. The limits of visual resolution in natural
scene viewing. Visual Cognition, 12:1057-1092,
2005.

[7] David P. Luebke and Benjamin Hallen. Perceptually-
driven simplification for interactive rendering. In
Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, pages 223-234, London, UK,
UK, 2001. Springer-Verlag.

[8] R. Mantiuk and S. Janus. Gaze-dependent ambient
occlusion. Lecture Notes in Computer Science (Proc.

of ISVC’12 Conference), 7431(1):523-532, 2012.

[9] Hunter A. Murphy, Andrew T. Duchowski, and
Richard A. Tyrrell. Hybrid image/model-based gaze-
contingent rendering. ACM Trans. Appl. Percept.,
5:22:1-22:21, February 2009.

[10] Steven G. Parker, James Bigler, Andreas Dietrich,
Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix: A general
purpose ray tracing engine. ACM Transactions on
Graphics, August 2010.

[11] Turner Whitted. An improved illumination model
for shaded display. Graphics and Image Processing,
23(6):343-349, 1980.

[12] J. Yang, T. Coia, and M. Miller. Subjective eval-
uation of retinal-dependent image degradations. In
Proceedings of PICS 2001 : Image Processing, Image
Quality, Image Capture Systems, Society for Imaging
Science and Technology, pages 142-147, 2001.

[13] J. Yang, X. Qi, and W. Makous. Zero frequency
masking and a model of contrast sensitivity. Vision
Research, 1995.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

