
Adaptive Tessellation in Screen Space Curved Reflections

Attila Szabo∗

Supervised by: Reinhold Preiner

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

Mirroring objects play an important role in the rendering
of every-day scenes, as they aid in the recognition of ma-
terials, objects and the distance relations between them.
Due to their complex nature, an accurate solution gener-
ally requires an expensive computation, which is mostly
done using methods based on ray tracing. To reduce the
workload, recent methods try to perform the computation
in screen-space. However, in order to ensure accurate re-
flections, the geometry of the scene needs to be sufficiently
tessellated to reduce the artifacts created by the linear in-
terpolation of the GPU rasterizer. This creates a vast pre-
processing effort and storage-overhead for the tessellated
vertices.

In this paper, we present a method that performs this
tessellation on the fly, reducing the error in the reflective
image by inserting extra vertices where necessary. We
prove the effectiveness of our approach in comparison to
the state of the art and discuss limitations and ideas for
possible future work.

Keywords: computer graphics, rendering, real-time ren-
dering, deferred shading, tessellation, reflections

1 Introduction

In rendering, it is oftentimes the goal to render mirrors and
reflective objects. Materials like metals and glass, make
the scene feel believable to the viewer and contribute to
the realism and beauty of images. Perfectly mirror-like
surfaces can be often found in many man-made environ-
ments, such as in washroom appliances or cars.

In rendering systems, rendering specular reflections can
be viewed as the process of finding reflection points, the
places of reflection visible from the camera, and then re-
flecting the reflected points radiance at the reflection points
toward the camera [10] (Figure 3(a)).

For rendering reflections, several methods and tech-
niques have been developed. Usually, they either aim for
maximizing realism, the physical accuracy, or believabil-
ity, in which case the result will often only be ”correct
enough” for it to look relatively accurate to the viewer, but

∗e0925269@student.tuwien.ac.at

Figure 1: Left: Erroneous reflection of a square. Its sides
are linear interpolations between the corners’ reflections.
Right: Correct reflection after sufficient tessellation of the
square.

gain faster performance, be easier for a designer to work
with, look aesthetically more pleasing, or similar.

The efficient rendering of planar mirrors has been ex-
amined extensively [7]. However, the case of curved sur-
face reflectors requires special consideration since the re-
flections can become exceedingly complex. Light rays are
traced up to the reflectors, the reflected rays computed and
recursively traced until a non-specular surface is reached.
In general scenes, the number of light rays and recursive
computation steps can become very high. Therefore, ef-
fective storage of scene geometry and specialized process-
ing of light rays are needed to guarantee robust perfor-
mance.

CPU solutions usually create and maintain sophisticated
scene data structures and optimized calculations to achieve
good performance, while most GPU based techniques take
advantage of the fast GPU rasterization capabilities [10].
The GPU processor is usually given access to the scene
geometry by storing it in uniform parameters or in textures
[10].

Both approximate [1] and accurate [11] methods have
been developed to tackle this problem, trading perfor-
mance for precision and vice versa. Screen-space methods
for reflection rendering [4] are especially attractive since
they are able to maintain both good accuracy and perfor-
mance. Here, Deferred Shading [3] is used to relay the
computation of a reflected image to a second rendering

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Left: Approximate reflection using Environment
Mapping with errors. Right: Accurate reflection.

pass. First, the camera perspective of each mirror’s sur-
face is rendered into a series of textures. Then, the reflec-
tion of an object is rendered on top of it by mapping all
its vertices onto their reflection points on a mirror’s screen
space projection (the virtual geometry) and exploiting the
graphics hardware to triangulate the full reflected image.

This method is generally fast, but can lead to artifacts.
In the virtual geometry reflected by the mirror, triangles
can become curved patches, and triangle edges can be-
come curves. However, the GPU is built to rasterize only
non-deformed triangles with straight edges. A denser tes-
sellation of one triangle reduces the size of triangles allow-
ing edges to be closer to the curvature of the mirror. For
the reflection to be free of artifacts, the geometry of the
scene needs to be sufficiently tessellated, as shown in Fig-
ure 1. However, pre-tessellating a whole scene is generally
unfeasible, since storing and processing a high number of
vertices can quickly get computationally too expensive.

In this paper, we introduce an extension to this method
to improve the visual quality of the resulting image. Our
approach tessellates the geometry on the fly and only in
the parts where it makes a visible difference. We con-
trol this mechanism by using a simple and flexible error
metric. We show that our approach can efficiently pro-
duce accurate reflection images on curved mirrors without
any pre-tessellation of the scene, while maintaining a good
rendering performance.

2 Related Work

Accurate reflections are commonly computed using Ray
Tracing [11]. In this approach, for every pixel, a number
of viewing rays are cast into the scene and their interac-
tions calculated. The main disadvantage of Ray Tracing
is its high computational cost, since it generally requires a
very high number of viewing rays and the interactions may
be complex. Online rendering usually implies heavy per-
formance constraints in order to retain interactivity. While
improvements have been proposed to make the algorithm
work effectively on graphics hardware [9], Ray Tracing is
still not always suitable to provide interactive frame rates
in many cases and mostly relies on building and maintain-
ing spatial data structures [12]. This is especially prob-

(a) (b)

Figure 3: (a) Reflections are found by tracing light paths.
(b) The relation between the viewpoint O, the world vertex
V and a point P on the reflector surface ρ . The reflection
point R is such that their bisector vector BR and the surface
normal NR coincide.

lematic in dynamic scenes, in which these data structures
have to be rebuilt or updated when objects move.

Environment Mapping [2] allows an approximation of
the reflection to be found very rapidly. In this approach,
the environment around the reflector is rendered into a tex-
ture, such as a cube map. When shading a pixel belongig
to a reflective surface, the reflected surface point in the
environment is looked up in the cube map. However, this
approach is not always physically accurate. Since environ-
ment mapping assumes that the environment is infinitely
distant from the object, the reflection is approximately cor-
rect if the scene is sufficiently far away from the reflector
surface [6, Chapter 7]. Figure 2 shows an example com-
parison between approximate and accurate reflections.

Reflections in planar mirrors are usually rendered by
drawing the scene twice - once from the common view-
point and once from the viewpoint reflected on the mirror-
ing plane. The mirror image is then drawn on top of the
mirror in the original image. Non-Planar mirrors however
require a more sophisticated treatment, as their reflections
cannot be modelled by linear projection as in the planar
case above. The rendering technique proposed by Estalella
et al. [4] addresses this circumstance. It follows the same
idea of rendering virtual geometry inside a mirror, but ex-
tends it to curved mirrors. In the first rendering pass, the
mirror’s surface positions and normals are rendered into a
series of textures. In the second pass, for each vertex in the
scene, a pixel-by-pixel search across these textures is used
to find the point that comes closest to its actual reflection
on the mirror. To find this point, the following principle is
used:

Consider a vertex V of world geometry that is to be re-
flected and the virtual camera’s viewpoint O. For every
point P on the surface of a curved reflector ρ the bisector
vector BP of the angle between O and V in P can be de-
fined, as well as the curved reflector’s surface normal NP,
see Figure 3(b). The point of reflection R on ρ is such that
its bisector vector BR and its surface normal NR coincide.
This point of reflection is unique across closed convex re-
flectors [5]. We use this principle later in Section 4.2 to
determine adaptively the required degree of tessellation.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: Overview of the rendering passes.

The result is a set of virtual ”mirrored” vertices, which
are triangulated and rasterized on top of the original image.
Although the mirror image is accurate for each of the ver-
tices, their triangulation only represent a linear approxima-
tion to the correct non-linear curved mapping. Therefore,
geometry must be tessellated fine enough for a sufficient
piecewise linear approximation in screen space.

3 Overview

Reflections are rendered in a multi-pass approach. An
overview is given in Figure 4. In the first pass, the mir-
ror’s surface positions and normals are rendered into the
gBuffer. In the second pass, the gBuffer is used to cal-
culate the reflection points of all vertices in the scene in
the vertex shader stage (Section 4.1). The vertices are
stored as vertex-triples forming triangles. The triangles are
passed on to the geometry shader stage where based on a
reflection error metric we check for each triangle whether
whether it is sufficiently tesselated. If so, they are finalized
for rasterizing. If not, the triangles are subdivided into four
equal triangles and fed back to the vertex shader stage us-
ing transform feedback. The evaluation and subdivision of
triangles is described in Section 4.2. The iterative subdivi-
sion of triangles continues until all triangles are finalized
or an iteration limit has been reached. Finally, the triangles
are rasterized to render the reflection.

4 Implementation

4.1 Screen Space Reflection

The system assumes the scene to consist of triangle prim-
itives, which are marked to be mirrors or non-mirrors.
Each scene object’s vertices have a world-space position
and a surface normal vector of the surface they belong to.
The procedure of rendering accurate screen-space reflec-
tions for the mirroring scene is outlined by Algorithm 1.

Each reflector is rasterized from the camera’s point of
view, and its world-space position and surface normals
stored in two 2D textures (Position Map and Normal Map).

foreach NonMirror n do
Draw(n);

end

foreach Mirror m do
gBuffer← RenderGbuffer(m) ;

foreach NonMirror n do
DrawReflection(gBuffer,n);

end
end

Algorithm 1: Functional outline of how a frame is ren-
dered.

function FindReflectionPoint(gBuffer,
vertex)

CurrentPixel← MirrorCenter();
repeat

PreviousPixel← CurrentPixel;
CurrentPixel← BestNeighbour();

until PreviousPixel == CurrentPixel;
return GetPosition(gBuffer ,CurrentPixel);

function GetPixelError(gBuffer, Pixel)

S← GetPosition(gBuffer,Pixel) ;
N← GetNormal(gBuffer,Pixel) ;
po← normalize(CameraWorldPosition - S);
pv← normalize(VertexWorldPosition - S) ;
bisector← normalize(po +pv) ;
return dot(bisector, N);

Algorithm 2: The method for calculating the reflection
error of one pixel.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

These two maps together are referred to as gBuffer [8,
Chapter 9] in the following.

The next processing step is executed inside a vertex
shader. The input of the vertex shader are individual ver-
tices. The resulting vertices are passed on to the geometry
shader. There triples of vertices are interpreted as triangles
to be either drawn directly or subdivided, the resulting ver-
tices being fed back into this stage.

Given a mirror’s gBuffer and a vertex, Algorithm 2
shows how to find the vertex’ reflection point on the mir-
ror surface. The function starts its search at the the center
of the reflector in screen space, and then iteratively steps
towards the pixel position of the reflection point. At each
currently considered pixel, its four directly neighbouring
texels are examined and their reflection error calculated.
This error is computed in the GetPixelError func-
tion.S and N are the position and the normal of the mirror
surface point stored in this pixel, and po and pv are the di-
rection vectors from the surface point S to the camera and
the vertex position, respectively (see Figure 3(b)).

The deviation of the current pixel location to the sought
reflection point (i.e., the reflection error) is measured by
the dot product between the bisector vector between these
two direction vectors and the reflector surface normal.
This error is calculated for all four neighbours and the
current pixel and then simply considers the neighbouring
pixel with the lowest reflection error (highest dot product).
This process is repeated until no neighbouring pixel with
a lower reflection error current one can be found, at which
point the final reflection point is found.

To ensure correct visibility when rendering a vertex, the
z-buffer needs to be updated according to the reflected
depth, i.e., the distance between the vertex and its reflec-
tion.

Some vertices do not have their reflection point on the
visible surface of the reflector. For a reflector with closed
uniformly convex geometry, such as a sphere, these are
the vertices hidden behind the projection of the reflector
in screen space. Taking such hidden reflection points into
account for triangulation would result in incorrect trian-
gles, and therefore have to be discarded. We identify such
hidden vertices using the condition [4]:

pv ·N < 0

Vertices for which this condition is true are marked and
their corresponding triangles are discarded. In addition,
for reflectors which are not closed, such as reflectors that
are partially obscured, the reflection point is found when
the search terminates at the edge of the reflector projection
[4].

4.2 Adaptive Tessellation

To address the problem of reflection artifacts for low-poly
geometry (Figure 1), we perform an adaptive tessellation
at render time.

(a) (b)

Figure 5: (a) The reflection error E. (b) The subdivision
rule used to tessellate a triangle.

This rendering stage is implemented in the geometry
shader. The input are triples of vertices, forming triangles,
resulting from the vertex shader stage (Section 4.1). The
triangles are evaluated for subsequent subdivision. The re-
sulting triangles are written to one of two vertex buffers,
the working buffer and the finished buffer, using transform
feedback. This rendering stage is outlined in Algorithm 3.

function adaptiveTess(A, B, C)

E1← calcError(A,B) ;
E2← calcError(B,C) ;
E3← calcError(A,C) ;
triError← max(E1, E2, E3) ;
if triError < threshold then

streamOut(f inished);
else

subdivide();
streamOut(working);

end

Algorithm 3: Overview of adaptive tessellation function.

An input triangle is defined by its three vertices A, B
and C, whose reflection points were calculated in the ver-
tex shader stage. To decide whether a triangle is to be
tessellated, the reflection error triError of the triangle
is defined. The edge errors E are calculated for each of the
three edges, formed by pairs of vertices, and triError
is the maximum of the three E. For one edge, E is cal-
culated in the function calcError using the following
formula:

E = 1−
NRARB ·bvr +1

2

This relation is visualized in Figure 5(a). NRARB is the
normal at the linearly interpolated median point between
RA and RB on the reflector surface, v is the viewing ray
direction from the median point to the camera position, r
is the direction from the median point to the median be-
tween the original world vertices A and B, and bvr is the
normalized bisector between the two. The dot product is

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: The tessellation loop iterates until the working
buffer is empty or maximum iterations is reached.

normalized to lie inside (0,1), where 0 means no error. E
describes the difference between the linearly interpolated
reflection of an edge and the one showing accurate curva-
ture.
triError is compared against a user-set threshold.

The threshold describes the highest acceptable deviation
from the accurately curved reflection. If triError is
less than the threshold, the triangle is deemed sufficiently
tessellated and is finalized. Its three vertices are appended
to the finished buffer using transform feedback (function
streamOut).

If triError is greater than the threshold, the trian-
gle is subdivided (function subdivide). The sub-
division rule used is shown in Figure 5(b). The three
halfway points along the edges MAB, MBC and MCA are
used as vertices with the three triangle vertices to form
four equal triangles. The twelve vertices forming the four
new triangles are written into the working buffer (function
streamOut).

The rendering pass is repeated using the working buffer
as input for the vertex shader stage. After their vertices be-
ing reflected, the triangles reach the geometry shader stage
again to be finalized or further subdivided. This tessella-
tion loop iteratively refines the tessellation of triangles un-
til either no vertices are written into the working buffer, or
a maximum number of iterations (the tessellation level) is
reached. A visualization of the loop can be seen in Figure
6. If the iteration limit is reached, remaining vertices in
the working buffer are copied into the finished buffer.

The tessellation level ensures that there is a hard limit
to how often a triangle can be subdivided. The subdivision

limit is usually not reached, unless the error threshold is
set very low (close to 0), in which case subpixel accuracy
is reached and further subdivisions can be limited. In ad-
dition, the limit avoids an infinite loop when the threshold
is equal to 0.

After this rendering pass, the vertices in the finished
buffer are rasterized. The result is a rendering of an ac-
curate mirror image.

5 Results

5.1 Rendering Quality

Adaptive tessellation allows to render scenes as if they
were fully tessellated. Figure 7 shows a scene being re-
flected in a mirroring ball. The scene contains both mod-
els with a very coarse and a very high original degree of
geometry tessellation. Without adaptive tessellation (left),
the result is visibly wrong. The tablecloth and candlestick
are modelled using only a small number of quads. The
corners of those quads are reflected correctly, but the lin-
ear interpolation between them does not suffice for a cor-
rect mirror image. The teapot is modelled with many more
vertices and therefore produces a reflection image of much
better quality. A full tessellation of the entire scene using
four subdivision iterations is shown at the right image. For
the teapot, this adds a lot of superfluous vertices, since the
reflection does not improve. Using adaptive tessellation
(middle) allows us to address both these problems. Coarse
models are tessellated until quality of the rasterized reflec-
tion image is sufficient. On the other hand, geometry with
already sufficient degree of detail, are not further subdi-
vided, when drawing their reflection image.

Adaptive tessellation is very robust regarding different
circumstances. Both simple reflections and complex sur-
faces are handled as accurately as needed. Our proposed
error metric is derived from the screen space accuracy of
the reflection and it relates directly to the errors visible
in the rendered image. The error threshold represents a
tradeoff parameter between quality and performance. It
can be adjusted, even during runtime, to accommodate ei-
ther faster performance or more accurate images. In fact,
one could set the threshold to a sufficiently small value
(subpixel size) to eliminate all visible artifacts.

As shown in Figure 7, our method can produce accu-
rate reflections without the need for any pre-tessellation
of the scene. It follows that content creators need not
worry about specifically adjusting their models, and the
technique can be implemented in a rendering system with-
out big impact on established functionality.

5.2 Performance

The error threshold parameter allows for trading between
accuracy and performance.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: An example scene containing both coarse and fine meshes.

Figure 8: Adaptive tessellation with different error threshold values.

Figure 8 shows the results of using different thresholds.
The rendering has been performed on a PC with an Intel
Core2Duo CPU and a Nvidia GeForce GTX 260 graph-
ics card. If the threshold is higher, larger errors are al-
lowed and fewer subdivisions are performed. A too re-
laxed threshold results in a reduction of quality and intro-
duces artifacts. We found that a value of 0.1 or larger is
too high. A value between 0.1 and 0.01 generally creates
perfectly acceptable results while maintaining goog per-
formance. In particular, high curvature surface parts are
subdivided often enough to provide accurate results. If
the threshold is set even smaller, close to 0, the geometry
is tessellated very finely. In this case, interactive perfor-
mance can not be provided anymore. The value 0 itself
causes full tessellation to be performed, in which case all
triangle subdivision is repeated until the tessellation level
is reached. Conversely, 1 stands for no tessellation.

Figure 9 shows a comparison of resulting vertex num-
bers between full, adaptive and no tessellation in the exam-
ple scene (Figure 7). It can be seen that adaptive tessella-
tion results in fewer vertices compared to full tessellation,
requiring fewer expensive reflection point searches.

Furthermore, the performance of adaptive tessellation
does not depend on any spatial data structures that cause
a maintenance overhead. Therefore, dynamic scenes, in

Figure 9: Number of vertices resulting from different tes-
sellation levels in the scene from Figure 7.

which objects move or are otherwise animated, are han-
dled without negative impact on the performance.

5.3 Limitations

As shown in Figure 10(a), our subdivision pattern can re-
sult in holes appearing in the reflection where triangles of
different tessellations meet. The size of the hole relates to
the difference in error of the two neighbouring triangles.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) (b)

Figure 10: (a) A hole between triangles with few and many
subdivisions. (b) A simple polygonal mirror.

However, the error is only this severe if the camera is at a
steep angle and a close distance to the reflector. In addi-
tion, with our error threshold the extent of the gaps is eas-
ily controllable. If the use of the threshold is restricted, one
could instead imagine an extension in which the threshold
is adjusted dynamically based on the probability of such
holes appearing.

In addition, the base algorithm we use for finding reflec-
tion points assumes that vertices only have one reflection
point [4]. As mentioned above, this holds for all convex
mirror surfaces, and for concave surfaces of sufficiently
large distances to the reflected geometry. Figure 10(b)
shows an example for an arbitrary polyongal mirror.

5.4 Future Work

The problem of holes appearing between triangles could
be solved by using different patterns of triangle subdivi-
sion. We use our subdivision rule because it is computa-
tionally simple and equally suited for any kind of reflector
surface. However, it could be investigated to use irregular
subdivision of triangles to achieve the same level of tes-
sellation along shared edges, which would prevent holes
from appearing between them.

Another improvement to the algorithm would be to ex-
tend it to arbitrarily shaped mirrors. This is a property of
the underlying reflection point search algorithm. It could
be solved by finding a method to split up the mirror into
segments of uniform curvature and finding the reflection
on each of them [4].

6 Conclusion

In this paper a method for rendering an accurate reflec-
tion on the surface of a curved reflector in real-time has
been examined. It is a multi-pass approach in which first
the image space reflection point of each vertex is found.
The triangles formed by the vertices are tessellated adap-
tively according to an error metric, which is based on the
difference in quality resulting from a subdivision iteration.
Subdivision steps are skipped if they do not cause a notice-
able effect in the final image, greatly reducing the number

of vertices needing to be reflected. The subdivision is re-
peated until the triangles are sufficiently tessellated. Fi-
nally, the reflected geometry is rasterized by the graphics
hardware. The method can provide interactive framerates
for dynamic scenes. Discussed results show that the tech-
nique examined in this paper is a robust choice in real-time
rendering and may well serve as an anchor point for future
considerations extending its applicability.

References

[1] James F. Blinn. Simulation of wrinkled surfaces.
SIGGRAPH Comput. Graph., 12(3):286–292, Au-
gust 1978.

[2] James F Blinn and Martin E Newell. Texture and
reflection in computer generated images. Communi-
cations of the ACM, 19(10):542–547, 1976.

[3] Michael Deering, Stephanie Winner, Bic Schediwy,
Chris Duffy, and Neil Hunt. The triangle processor
and normal vector shader: a vlsi system for high per-
formance graphics. In ACM SIGGRAPH Computer
Graphics, volume 22, pages 21–30. ACM, 1988.

[4] Pau Estalella, Ignacio Martin, George Drettakis, and
Dani Tost. A GPU-driven algorithm for accurate in-
teractive reflections on curved objects. In Proceed-
ings of the 17th Eurographics conference on Render-
ing Techniques, EGSR’06, pages 313–318, Aire-la-
Ville, Switzerland, Switzerland, 2006. Eurographics
Association.

[5] Pau Estalella, Ignacio Martin, George Drettakis,
Dani Tost, Olivier Devillers, Frederic Cazals, et al.
Accurate interactive specular reflections on curved
objects. In Vision Modeling and Visualization (VMV
2005), 2005.

[6] Randima Fernando and Mark J Kilgard. The Cg Tu-
torial: The definitive guide to programmable real-
time graphics. Addison-Wesley Longman Publishing
Co., Inc., 2003.

[7] Mark J Kilgard. Improving shadows and reflections
via the stencil buffer. Advanced OpenGL Game De-
velopment, pages 204–253, 1999.

[8] Matt Pharr and Randima Fernando. Gpu gems 2:
programming techniques for high-performance
graphics and general-purpose computation.
Addison-Wesley Professional, 2005.

[9] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray tracing on programmable graph-
ics hardware. In Proceedings of the 29th annual con-
ference on Computer graphics and interactive tech-
niques, SIGGRAPH ’02, pages 703–712, New York,
NY, USA, 2002. ACM.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

[10] Lszl Szirmay-Kalos, Tams Umenhoffer, Gustavo Pa-
tow, Lszl Szcsi, and Mateu Sbert. Specular effects on
the gpu: State of the art. Computer Graphics Forum,
28(6):1586–1617, 2009.

[11] Turner Whitted. An improved illumination model
for shaded display. Commun. ACM, 23(6):343–349,
June 1980.

[12] Kun Zhou, Qiming Hou, Rui Wang, and Baining
Guo. Real-time kd-tree construction on graphics
hardware. In ACM SIGGRAPH Asia 2008 Papers,
SIGGRAPH Asia ’08, pages 126:1–126:11, New
York, NY, USA, 2008. ACM.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

