
Hatching for Metaball Surfaces

Ferenc Tükör
Supervised by: Ĺaszĺo Sźecsi∗

Institute of Computer Graphics
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

This paper presents a highly parallel algorithm for the styl-
ized, real-time display of fluids and smoke. We use meta-
balls to define a fluid surface from a particle-based fluid
representation, but instead of the costly complete recon-
struction of this surface, we only trace the motion of ran-
dom seed points on it. Hatching strokes are extruded along
the lines of curvature. We propose methods for hidden
stroke removal and density control that maintain anima-
tion consistency.

Keywords: Hatching, NPR, Metaball

1 Introduction

Hatching is an artistic technique that is often emulated
in stylistic animation. Implicit surfaces are becoming in-
creasingly important in real-time applications for visual-
izing fluids simulated by particle-based methods. Thus,
we aim to extend real-time hatching to deforming implicit
surfaces, and specifically to metaballs. In addition to en-
abling fluid rendering in hatching-style NPR, we also con-
sider this approach a more feasible alternative to expen-
sive polygonization [12, 18], ray casting [15, 3], or screen-
space filtering [20], when visualizing scientific isosurface
or fluid simulation data.

2 Previous work

In pencil drawings artists convey the shape and illumi-
nation of objects with the density and orientation of thin
hatch lines [23, 7]. To mimic this, we should define aden-
sity and adirection fieldin the image plane that is as close
as possible to what an artist would use. Density is influ-
enced by illumination, while the direction field is deter-
mined either by theprincipal curvature directions[6], the
tone gradient [10], or in case of animation, the direction of
motion.

Hatch strokes should appear hand-drawn, with roughly
similar image-space width, dictated by brush size, but they
should also stick to surfaces to provide proper object space

∗szecsi.laszlo@gmail.com

shape and motion cues. Hatches can be generated into
textures and mapped onto animated objects, with level-
of-detail mechanisms to approximate image space behav-
ior [17]. In absence of surface parametrization, this ap-
proach is not applicable to implicit surfaces.

Hatch strokes can be generated directly in image
space [9, 11], but if they are fixed in their position and
cling to the view plane instead of the animated objects,
movement will appear as if seen through textured glass.
This is known as theshower door effect. In order to avoid
this disturbing phenomenon, lines can be moved along
with an optical flow or image space velocity field, but plac-
ing new strokes on emerging, previously non-visible sur-
faces still poses problems. Especially if strokes are long,
following curvature or feature curves of object surfaces,
they should appear consistent even when only tiny frac-
tions have become visible. This cannot be assured when
only using image space information. For implicit surfaces,
it is often prohibitively expensive to render a full image, or
even to find isosurfaces in some pixels.

Several works [13, 19] proposed the application ofpar-
ticlesor seedsattached to objects, extruding them to hatch
strokes in image space. The key challenge in these meth-
ods is the generation of the world-space seed distribution
corresponding to the desired image-space hatching den-
sity. This approach is well-suited to implicit surfaces.

Much effort was directed at rendering implicit surfaces,
esp. metaballs photorealistically in real time, based on
ray casting [8]. This is computationally demanding as it
requires a high number of field function evaluations to
find the visible isosurface in every pixel. The styliza-
tion of the result is straightforward only with image-space
techniques, as no surface parametrization or visibility-
independent object-space shape information is extracted.

Several aspects of stylized rendering of implicit surfaces
have been studied. Brazil et al. [22] useseed pointsto gen-
eraterender pointson isosurfaces. They require the user
to edit seed point distribution manually, excluding appli-
cation for deforming surfaces. Elber [5] proposed the ap-
proach of first obtaining a Euclidean-space on-surface uni-
form point distribution, then extruding strokes along sym-
bolically computed principal curvature directions [26, 16].
For the generation of uniformly distributed points on im-
plicit surfaces, they refer the reader to Witkin [24], who

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

proposes an adaptive resampling of deformed implicit sur-
faces, for purposes of sculpting, by the means ofrepul-
sion forces, fissioningand killing operating on a set of
floater particles. Kooten et al. [21] employ a similar con-
cept more specifically for isosurface rendering of metaball
models. Both solutions require a fullself-spatial joinon
surface particles to compute repulsion forces, and allow
particles to float on surfaces. We consider this detrimen-
tal for our purpose of hatching stylization, as hatch lines
not moving with the surface could provide inappropriate
motion cues. A rejection-based density control approach
from [19] does not require repulsion forces to achieve de-
sired distribution.

3 Implicit surfaces and metaballs

An implicit surface is defined as an isosurface at valueL
of field function f (x) with the implicit equationf (x) = L.
Its gradientg(x) is ∇ f (x).

Metaballs [14, 2] constitute a special case where the
fluid is represented by a number of balls oratomsas

f (x) =
M−1

∑
j=0

f j (x) =
M−1

∑
j=0

ρ j
(∥

∥x− a j
∥

∥

)

, (1)

with M as the number of atoms,ρ j the generator ofradial
basis function fj (x) for an atomcentered ata j . If ρ j(r)
has finite support, i.e.∃Rj ∈ R : ∀r > Rj : ρ j(r) = 0, then
we callRj theeffective radiusof atom j.

The gradientg(x) and HessianH(x) can be computed as
sums of atom gradientsg j(x) and atom HessiansH j(x).

Gaussian and mean curvaturesK andH, the principal
curvaturesκ1 andκ2, principal curvature directionst1, t2

can be computed [1] using the HessianH(x). Where the
determinantD= H2−K is close to zero, the principal cur-
vatures are not well defined, and we regard the surface
point as umbilical.

The approach we employ extrudes textured triangle
strips along a metaball surface, in the principal curvature
directions. The method we use to move seeds along a
metaball surface is similar to [21]. First we cover formula
derivations for popular radial basis functions to get the
above-mentioned, necessary quantities then we describe
the details of curvature computation.

3.1 Gradients and Hessians

In order to be able to evaluate the curvature formulae,
we need to compute the field function, its gradient,
and Hessian. Those are all obtained as the sum of
respective functions for metaball atoms. Here we give
the formulae for the infinite supportBlinn [2] and finite
supportWywill [25] functions. We give all base functions,
gradients and Hessians as functions ofd = x− a, wherea
is the atom position. This is to avoid having to subtracta
at every instance ofx.

Before the derivations let us introduce the vectors of
pure and mixed second-order partial derivatives as

p =
[

∂ 2f
∂x2

∂ 2f
∂y2

∂ 2f
∂z2

]T

and

m =
[

∂ 2f
∂x∂y

∂ 2f
∂y∂z

∂ 2f
∂z∂x

]T
.

With these Hessian is

H =

px mx mz

mx py my

mz my pz

 .

The Blinn base function is:

f Blinn(d) =
1

‖d‖2 .

The gradient is:

gBlinn(d) =−d
2

‖d‖4 .

Let us introduce the notation for aswizzleof a vectory

yyxz=

yy

yx

yz

 ,

and similarly for any order of elements. With this the vec-
tor of pure second derivativesp(d), usinge = d◦d, where
◦ is the Hadamard product operator, is:

pBlinn(d) =
6e−2(eyzx+ ezxy)

‖d‖6 .

The vector of mixed second derivativesm(d) is

mBlinn(d) =
8d◦dyzx

‖d‖6 .

The Wywill base function has finite support. LetR be
the effective atom radius, and introduce the shorthandδ =
‖d‖/R. With these, the Wywill base function is:

f Wywill (d) =

{

0 if δ > 1,

1+ −4δ 6+17δ 4−22δ 2

9 if δ ≤ 1.
(2)

With

G=
4
(

6δ 4−17δ 2+11
)

9R2 ,

the gradient is:

gWywill (d) =

{

0 if δ > 1,

−dG if δ ≤ 1.

The vector of pure second derivativesp(d), usinge= d◦d
is:

pWywill (d) =

0 if δ > 1,

4e(17−12δ 2)
R4 −

G

G

G

if δ ≤ 1.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

The vector of mixed second derivativesm(d) is:

mWywill (d) =

{

0 if δ > 1,

dxyz◦dyzx
4(12δ 2−17)

9R4 if δ ≤ 1.

3.2 Curvature computation

Here we continue using the notations for the vectors of
pure and mixed second order partial derivatives and the
Hessian from Section 3.1.

The following method of curvature computation is
based on [1]. All quantities are functions ofx, which we
will omit in the notation for ease of reading.

The Gaussian curvatureK is

K =−
1

‖g‖4

∣

∣

∣

∣

H g
gT 0

∣

∣

∣

∣

. (3)

With normaln = − g
‖g‖ , and Laplacian∆f = ∂ 2f

∂x2 +
∂ 2f
∂y2 +

∂ 2f
∂z2 the mean curvatureH is

H =
1
‖g‖

[

nTHn−∆f
]

.

The principal curvatures are:

κ1 = H +
√

(H)2−K,

κ2 = H −
√

(H)2−K.
(4)

We need to construct the matrix
(

n ·nT − I
)

H− Iκ1‖g‖ ,

where I is the identity matrix, then take the maximum
length one out of the three possible pairwise cross prod-
ucts of its rows. Normalized, it gives principal direction
t1. Then,t2 = t1×n.

Using theswizzlenotation from Section 3.1 the deter-
minant of equation 3 can be computed without explicitly
constructing the matrix as

∣

∣

∣

∣

H g
gT 0

∣

∣

∣

∣

=

2(p◦myzx) · (gyzx◦ gzxy)

− (pzxy◦pyzx) · (g ◦ g)

+ (m◦m) · (gzxy◦ gzxy)

−2(mxzy◦myxz) · (gxzy◦ gzyx).

(5)

4 Seeds and their motion explained

Seeds are particles moving along the deforming isosur-
face. The velocity vector used to move a seed is found
by using the formulae described in [21]. There are three
effects that contribute to this motion: fluid motion, field
shift, and correction.

4.1 Complete seed velocity

4.2 Fluid motion

The fluid medium itself is moving. Its motion is defined
for atoms with atom velocitiesq j . How we construct the
flow velocity at a point from these relies on the require-
ment that points on the isosurface should remain on the
isosurface. How much the linear motion of an atom in-
fluences the isosurface depends on the length of the base
function gradient at the isosurface point. Thus, linear atom
velocities should be weighted with this gradient length to
get the flow velocity:

vfl(s) =
∑M−1

j=0

∥

∥g j(sk)
∥

∥q j

∑M−1
j=0

∥

∥g j(sk)
∥

∥

.

The seeds need to travel along the isosurface, so the
fluid velocity must be projected on it. The component per-
pendicular to the surface is found as

vperp
k =

g(sk)
(

vfl
k ·g(sk)

)

‖g(sk)‖2 ,

and thus the projected fluid velocity is

vpfl
k = vfl

k − vperp
k = vfl

k −
g(sk)(vfl

k ·g(sk))

‖g(sk)‖2 .

4.3 Surface pull

Seeds need to move towards the isosurface either because
they are distant due to initial or accumulated error, or be-
cause the isosurface itself has moved. For both effects, we
will be able to find the desired rate of change in field value
at the seedδ =

∂ f (sk)
∂ t , and need to compute the seed ve-

locity vpull
k = ∂ sk/∂ t from this. We move the seed along

the gradient, sovpull
k = ξ g(sk) with someξ . It must be true

that
δ = (ξ g(sk)) ·g(sk).

Solving this forξ gives

ξ =
δ

‖g(sk)‖2 ,

and then

vpull
k =

g(sk)δ
‖g(sk)‖2 .

Correction

As neither the temporal nor the spatial linearizations ap-
plied are accurate, the seeds positions would accumulate
error and drift away from the isosurface. Also, when ini-
tialized, the seeds are at random positions and need to be
drawn to the isosurface rapidly. Therefore, a correction
term with boldness factorΦ is applied. The boldness fac-
tor Φ is the inverse of the time in which the seed is sup-
posed to reach the isosurface. Thus,δ corr is (L− f (sk))Φ.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: The components of seed velocity: the surface-projected fluid velocity (left), the correction term toward the
surface along the gradient (center), and the term following the isosurface shift due to chagingfield values (right).

However, largeΦ values can lead to instabilities near
strongly non-linear regions of the field function.

vcorr
k =

g(sk)(L− f (sk))Φ
‖g(sk)‖2 .

Field shift

As atoms move, the field value at ask is going to increase
or decrease. This change will make the isosurface ofL
move along the gradient. The rate of change at seedk due
to atom j moving is:

δ shift
j =−g j(sk) ·q j ,

and the total effect of all atoms is:

δ shift =−
M−1

∑
j=0

g j(sk) ·q j .

This makes the shift velocity:

vshift
k =−

g∑M−1
j=0 g j(sk) ·q j

‖g‖2 .

All terms, save for the unprojected fluid velocity, con-
tain the gradient divided by its length squared. Their sum
can therefore be written as:

vk = vfl
k − (6)

g(sk)

‖g(sk)‖2

(

vfl
k ·g(sk)+ (f (sk)−L)Φ+

M−1

∑
j=0

g j(sk) ·q j

)

A visual representation of this equation can be seen in
Figure 1.

5 The algorithm

Our algorithm moves seeds along a metaball surface simi-
lar to [21], applies a screen-space approximate version of
the density control approach from [19], and extrudes tex-
tured triangle strips along principal curvature directions.

We propose a solution for the seed visibility problem based
on the idea employed byvariance shadow maps[4]. The
algorithm performs the following steps in every frame of
an animation:

1. Initialization of spawned seeds.

2. Seed animation.

3. Seed filtering by visibility testing and rejection.

4. Curve extrusion from seeds.

5. Triangle strip extrusion from curves.

6. Stroke weighting and rendering.

Along the process, various weighting factors are com-
puted for the seeds—wprox for proximity to isosurface,
wage for age ,wvis for visibility, wrej for density control
by rejection. The product of thesewΠ is used in the fi-
nal rendering step for opacity weighting, with the opti-
mization that seeds with zero weight need not be extruded
into hatch strokes. The weight without density control,
wpre = wproxwagewvis is used for estimatingpre-rejection
density.

When seeds are initialized, they are placed randomly on
atom-centered spheres within the effective radius. They
are not guaranteed to be on the compound isosurface, and
the isosurface-projected distribution might not be uniform.
Those requirements are to be achieved by consequent seed
animation and rejection steps, over the course of several
frames. Seed points are re-initialized after a fixed lifetime
to avoid excessive clustering. Seed point ages are evenly
distributed, so that only a small percentage of seeds are re-
initialized in every frame. Weightwprox is computed as a
smooth step function on the difference of the field value at
the seed point and the desired isosurface. This is to elim-
inate seeds not yet converged to the surface. Weightwage

fades to zero at the beginning and the end of the seed life-
time to avoid suddenly appearing and disappearing hatch
lines.

Seed point animation is based on the technique pro-
posed by [21], without using repulsion forces to achieve

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

uniform density, thus eliminating the need for a self-spatial
join on seeds. Seed animation according to Section 4.3 re-
quires the field value and the gradient. We compute these,
and also the world spacestroke directionalong the isosur-
face. The computation of the stroke direction involves first
finding the pure and mixed second derivatives forming the
Hessian, the principal curvatures and curvature directions,
the determinantD indicating whether the seed is at an um-
bilical point, the cosine of the view angle cosΘ indicating
whether the seed is near a silhouette, and the local illumi-
nationV at the seed, normalized to a desired tone.

Generally, the stroke direction is the principal curvature
direction of the isosurface, but near umbilical points, we
employ a custom direction, obtained as the cross product
of the surface normal and a per-atom direction vector. The
choice of this per-atom vector might be random, or subject
to artistic consideration. In order to produce simple out-
lines, a different direction scheme is applied to lines near
the silhouette: the stroke direction there is perpendicular to
both the view direction and the surface gradient (see Fig-
ure 2). The three direction schemes are combined based
on D and cosΘ, so that there are no abrupt changes in the
stroke direction. For any directiont, the corresponding
curvatureκ can be found asκ = κ1 (t · t1)

2+κ2(t · t2)
2 .

Seed points have to pass two filters to see if they should
be extruded into hatch strokes. The first is the visibility
test needed to decide if the seeds are seen from the cam-
era. For this purpose, we render all seeds as isosurface-
oriented billboards into a low-resolution buffer, outputting
fragment depths and their squares. The purpose here is to
approximate the depth of the isosuface itself by using the
depth values of the billboards covering it. Using the idea
of variance shadow maps[4], this low-resolution depth
map is heavily filtered by two-pass separable Gaussian fil-
tering. The resulting approximate variance depth map can
be used for a smooth and lenient rejection of hidden seeds,
producing visibility factorwvis. Using this visibility factor
to modify hatch stroke opacity causes strokes at and be-
hind the boundaries of the surface to fade out smoothly,
enabling partially visible strokes to appear. As we are em-
ulating the hand-drawn style, the error—from approximat-
ing the isosurface with billboards, using a low-resolution
map, aggressive filtering, and testing for visibility only at
seeds—is not only acceptable, but welcome.

The second rejection step is to achieve an illumination-
dictated screen space density of seed points (Figure 3).
The full cover densityϒfull is an artistic parameter that
specifies the seed density corresponding to surfaces devoid
of illumination. This, modulated by seed toneVk gives the
desired on-screen density near a seed. Let us refer to the
local density of all screen-projected seed points (weighted
by wpre) asϒpre. The ratio ofVkϒfull/ϒpre gives the per-
centage of seed points to be kept. If all seed points have
a random normalized priority valuepk, then those with
priorities above the desired percentage should be rejected.
The ϒpre density is approximated by rendering all visi-
ble seeds, extruded into approximate hatch strokes, with

additive blending, weighted bywpre into a low-resolution
buffer, and performing heavy filtering to eliminate raster-
ization artifacts. Note that what we get is not exactly the
density of seeds, but an approximate density of hatching
coverage. Thus, it helps to eliminate not only the clus-
tering of seeds, but also the clustering of aligned strokes.
Weight wrej is computed as a smooth step function of
Vkϒfull/ϒpre− pk. Thus, rejection is performed smoothly,
thus avoiding temporal visual artifacts, i.e. suddenly dis-
appearing, appearing, or flickering hatch lines.

The seeds surviving visibility testing and rejection are
extruded into curves. For short strokes, it is sufficient to
use the local curvature at the seed, but longer lines require
integration along the isosurface. In the latter case, visi-
bility testing has to be performed for all samples. Curves
are extruded into triangle strips to a uniform image space
width. This width, and also the length of strokes, is an
artistic parameter.

In the final rendering step the stroke is textured with an
artist-drawn stroke image, with weights applied as opacity
modifiers. We only discard the seeds if the weight would
indeed be zero.

6 Implementation

The steps of our algorithm are implemented in five passes,
depicted in Figure 4.

seed

data

seed

animation

atom

data

isosurface

depth

depth

splatting

Gaussian

blur

pre-rejection

stroke density

stroke

extrusion

Gaussian

blur stroke

extrusion

with

rejection
frame

buffer

Figure 4: Shader passes of the implementation.

The first pass performs seed animation. All seed data
is stored in textures used as data tables, where rows cor-
respond to atoms, and the elements of the rows are indi-
vidual seed points. Aging and re-initialization of seeds is
performed by a rotating pipeline. In fact, in every texture
row, seed attributes are shifted out to the right and reini-
tialized seeds shift in from the left, at a constant rate. The
textures are also shifted vertically, to account for newborn
and dying atoms, if so dictated by fluid simulation. For
computation of quantities derived from the field function
we used a regular grid space subdivision scheme to access
relevant atoms.

The second pass produces the variance depth map of the
isosurface to be used for a visibility filtering. Billboards
are only extruded for seeds already converged to the sur-
face to avoid unnecessary occlusion by seeds that are still
trying to find their place. The depth values are blurred us-
ing a Gaussian filter, in accordance with the VSM tech-
nique, eliminating jagged edges in the depth map that
could cause flickering hatch strokes in the final image.

The fourth pass is used to produce an image ofϒpre

values. These are needed for rejection of seeds later, to

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Hatching of an LSD molecule discarding seeds near silhouettes (left) and rotating strokes to produce outlines
(right).

achieve uniform screen space density. It extrudes hatch
strokes from all visible seed points, and applies the same
opacity weighting to them—for visibility, age and prox-
imity to the isosurface—, as would be when rendering on-
screen strokes. Rejection for density, however, is not ap-
plied, since the goal is to approximate the hatching den-
sity from all visible seeds. After visibility determination
and curve extrusion, the hatch strokes are rendered, given
color and opacity values that smoothly fall off towards the
edges of the strokes. The output of this pass is rendered
to a texture, using additive blending to generate high den-
sity values for high density areas on the screen.Theϒpre

density values also need to be blurred, to avoid rasteriza-
tion artifacts caused by jagged edges of approximate hatch
strokes.

In the final pass, the process of rejection and opacity
weighting based on visibility and hatch stroke extrusion is
the same as it was during rendering theϒpre density. In ad-
dition, this pass also weights seed points using theϒpre val-
ues, and illumination values calculated on the fly, before
extruding the hatch strokes themselves. If the compound
weight of the seed is positive, the strokes are extruded, tex-
tured, and opacity is modulated by all weighting factors.

7 Results and future work

We ran our tests on a PC with an ATI5850 graphics card.
At a resolution of 1024×768, with 65K seeds, which we
deemed sufficient for rendering quality, and regardless of
the number of atoms, we measured frame rates around 20
FPS.

Extruding long hatch curves requires several curvature
samples on the isosurface, and as curves travel into zones
of different curvature characteristics they tend to cross

each other. Density estimation at seeds is also less accurate
in this case. Therefore, we wish to investigate the possi-
bility of using several linked seeds points for every hatch
curve. Another limitation of the method is that the seed
density cannot exceed what is provided by rendering all
seeds at unit weight. This is made worse if the distribution
of seed points gets uneven because of seed motion. Thus,
we plan to add seed fissioning and killing to improve per-
formance and provide much wider level-of-detail support
without increasing the seed count.

8 Acknowledgments

This work has been supported by OTKA PD-104710 and
the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

References

[1] Alexander G Belyaev, Alexander A Pasko, and
Tosiyasu L Kunii. Ridges and ravines on implicit
surfaces. InComputer Graphics International, 1998.
Proceedings, pages 530–535. IEEE, 1998.

[2] J.F. Blinn. A generalization of algebraic surface
drawing. ACM Transactions on Graphics (TOG),
1(3):235–256, 1982.

[3] N.K.R. Bolla. High quality rendering of large point-
based surfaces. Master’s thesis, International Insti-
tute of Information Technology, Hyderabad-500 032,
INDIA, 2010.

[4] William Donnelly and Andrew Lauritzen. Variance
shadow maps. InProceedings of the 2006 symposium

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Uniform hatching of an LSD molecule with and without illumination.

on Interactive 3D graphics and games, pages 161–
165. ACM, 2006.

[5] Gershon Elber. Interactive line art rendering of
freeform surfaces. InComputer Graphics Forum,
volume 18, pages 1–12. Wiley Online Library, 1999.

[6] Ahna Girshick, Victoria Interrante, Steven Haker,
and Todd Lemoine. Line direction matters: an ar-
gument for the use of principal directions in 3d
line drawings. InProceedings of the 1st interna-
tional symposium on Non-photorealistic animation
and rendering, pages 43–52. ACM, 2000.

[7] A. Hertzmann and D. Zorin. Illustrating smooth
surfaces. InProceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques, pages 517–526. ACM Press/Addison-Wesley
Publishing Co., 2000.

[8] Y. Kanamori, Z. Szego, and T. Nishita. GPU-based
fast ray casting for a large number of metaballs. In
Computer Graphics Forum, volume 27, pages 351–
360, 2008.

[9] Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong
Lee. Line-art illustration of dynamic and specular
surfaces. InACM Transactions on Graphics (TOG),
volume 27, page 156. ACM, 2008.

[10] Yunjin Lee, Lee Markosian, Seungyong Lee, and
John F Hughes. Line drawings via abstracted shad-
ing. In ACM Transactions on Graphics (TOG), vol-
ume 26, page 18. ACM, 2007.

[11] Zoltán Lengyel, Tamás Umenhoffer, and László
Szécsi. Screen space features for real-time hatch-
ing synthesis. InProceedings of the 9th conference
of the Hungarian Association for Image Processing

and Pattern Recognition, KEPAF ’13, pages 82–94,
2013.

[12] W.E. Lorensen and H.E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
In ACM Siggraph Computer Graphics, volume 21,
pages 163–169. ACM, 1987.

[13] Barbara J Meier. Painterly rendering for animation.
In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages
477–484. ACM, 1996.

[14] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shi-
rakawa, and K. Omura. Object modeling by distribu-
tion function and a method of image generation.The
Transactions of the Institute of Electronics and Com-
munication Engineers of Japan, 68(Part 4):718–725,
1985.

[15] T. Nishita and E. Nakamae. A method for display-
ing metaballs by using bézier clipping. InComputer
Graphics Forum, volume 13, pages 271–280. Wiley
Online Library, 1994.

[16] Afonso Paiva, Emilio Vital Brazil, Fabiano
Petronetto, and Mario Costa Sousa. Fluid-based
hatching for tone mapping in line illustrations.The
Visual Computer, 25(5-7):519–527, 2009.

[17] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. InPro-
ceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, page 581.
ACM, 2001.

[18] László Szirmay-Kalos, György. Antal, and Ferenc
Csonka. Háromdimenzíos grafika, aniḿació és
játékfejleszt́es. ComputerBooks, Budapest, 2003.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

[19] T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos.
Hatching for motion picture production. InCom-
puter Graphics Forum, volume 30, pages 533–542,
2011.

[20] W.J. van der Laan, S. Green, and M. Sainz. Screen
space fluid rendering with curvature flow. InPro-
ceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, pages 91–98. ACM, 2009.

[21] K. van Kooten, G. van den Bergen, and A. Telea.
Point-based visualization of metaballs on a GPU.
GPU Gems, 3:123–148, 2007.

[22] Emilio Vital Brazil, Ives Macêdo, Mario
Costa Sousa, Luiz Velho, and Luiz Henrique de
Figueiredo. Shape and tone depiction for implicit
surfaces. Computers & Graphics, 35(1):43–53,
2011.

[23] Georges Winkenbach and David H Salesin.
Computer-generated pen-and-ink illustration. In
Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages
91–100. ACM, 1994.

[24] Andrew P Witkin and Paul S Heckbert. Using parti-
cles to sample and control implicit surfaces. InPro-
ceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 269–277.
ACM, 1994.

[25] G. Wyvill, C. McPheeters, and B. Wyvill. Data struc-
ture for soft objects.The visual computer, 2(4):227–
234, 1986.

[26] Johannes Zander, Tobias Isenberg, Stefan
Schlechtweg, and Thomas Strothotte. High
quality hatching. InComputer Graphics Forum,
volume 23, pages 421–430. Wiley Online Library,
2004.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

