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Welcome to CESCG 2014!

This book contains the proceedings of the 18th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-6-8)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture
room in Bratislava, bringing together students from Bratislava, Brno, Budapest,
Graz, Prague, and Vienna. The idea found wide appraisal and the seminar moved
to the beautiful castle of Budmerice, where it was held for 8 consecutive years,
constantly growing in size and attraction. It was just in the 10th anniversary year
2006 that CESCG had to take a detour to move to Častá-Papiernička Centre,
while it was back in Budmerice castle since 2007. Unfortunately, since 2011 the
Budmerice castle is not available for scientific activities. After spending the one
year in Viničné, in 2012 we moved to the beautiful castle in Smolenice.

Who are the CESCG heroes who made this year’s seminar happen? In no par-
ticular order – because many people were involved equally – we would like to thank
the organizers from Vienna: Michael Wimmer, Anita Mayerhofer, Werner Pur-
gathofer, Katharina Krösl and Bernhard Steiner. Special thanks goes to Martin
Ilč́ık for taking care of the complete reviewing process and scientific program
preparation. We are very thankful to the CESCG organizers from Bratislava,
mainly Andrej Ferko, always an inspiration to CESCG; and Ela Šikudová, Janka
Běhal Dadová, David Běhal and Ivka Varhańıková for the excellent preparations
and on-site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. Therefore we are proud to state
that we have achieved again a very high number of 11 participating institutions
and a very tight time schedule of 20 valuable student works and two invited talks.
We welcome groups from Bratislava (UK and STU), Slovakia; Brno (VUT and
MU) and Prague (CTU), Czech Republic; Budapest, Hungary; Graz and Vienna
(TU), Austria; Szczecin, Poland; and Maribor, Slovenia.

We assembled a large International Program Committee of 16 members, allow-
ing us to have each paper reviewed by three IPC members during the informal
reviewing process. We would like to thank the members of the IPC for their con-
tribution to the reviewing process. The IPC of CESCG 2014 consists of:

Jǐŕı Bittner Jǐŕı Sochor
Silvester Czanner Markus Steinberger
Andrej Ferko Marc Streit
Jasminka Hasić László Szirmay-Kalos
Ivana Kolingerová Ania Tomaszewska
Rados law Mantiuk Michael Wimmer
Selma Rizvić Borut Žalik
Michael Schwärzler Pavel Zemč́ık



The first invited talk “The Role of Perception in Graphics” will be held by
Rafa l Mantiuk from Research Institute of Visual Computing of the School of Com-
puter Science of Bangor University, United Kingdom. The second invited talk by
Roberto Scopigno from Visual Computing Lab of the Institute of Information Sci-
ence and Technology of National Research Council of Italy, will be about “Visual
Media for Cultural Heritage: An Opportunity for Assessing, Finding Limitations
and Enhancing Technologies”.

The seminar is is co-organized with the Spring Conference on Computer Graph-
ics (SCCG), which takes place right after the seminar.

The organization of a seminar where there are only low expenses for the stu-
dents requires funding. We are very thankful to the sponsors of CESCG 2014:

– NVidia, The Way It’s Meant to Be Played,
– VRVis Research Center,
– OCG, The Austrian Computer Association,
– SISp, Slovak Society for Computer Science,
– Eurographics, The European Association for Computer Graphics.

The best paper will be awarded by an NVidia Shield console for development of
next-generation Android games and wirelessly streamed PC games.

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2014/.

April 2014, Michael Wimmer
Jǐŕı Hlad̊uvka

Martin Ilč́ık
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The Role of Perception in Graphics

Rafał Mantiuk

Bangor University
United Kingdom

Abstract

Today’s computer graphics techniques make it possible to create imagery that is hardly distinguish-
able from photographs. However, a photograph is clearly no match to an actual real-world scene.
I argue that the next big challenge in graphics is to achieve perceptual realism by creating artifi-
cial imagery that would be hard to distinguish from reality. This requires profound changes in the
entire imaging pipeline, from acquisition and rendering to display, with the strong focus on visual
perception.

In this talk I will give an overview of two projects that demonstrate the role of the visual percep-
tion in graphics. In the first project we integrated eye-tracking with real-time rendering to improve
the accuracy of an eye-tracker and to enhance the rendering using the gaze data. The much improved
eye-tracking accuracy let us use gaze-data in applications that have not been possible before, such
as gaze-contingent simulation of the depth-of-field effect or a gaze-contingent heads-up display. In
the second project we created a new model of the colour and luminance perception across the wide
range of luminance, accounting for both night and day-light vision. The model let us simulate the
appearance of night scenes on regular displays, or generate compensated images that reverse the
changes in vision due to low luminance levels. Such a simulator of visual perception can be used
in games, driving simulators, or as a compensation for displays used under varying ambient light
levels.

Bibliographical Details

Rafał Mantiuk is a senior lecturer (associate professor) at Bangor University (UK) and a member of
a Reasearch Institute of Visual Computing. Before comming to Bangor he received his PhD from
the Max-Planck-Institute for Computer Science (2006, Germany) and was a postdoctoral researcher
at the University of British Columbia (Canada). He has published numerous journal and conference
papers presented at ACM SIGGRAPH, Eurographics, CVPR and SPIE HVEI conferences, applied
for several patents and was recognized by the Heinz Billing Award (2006). Rafal Mantiuk inves-
tigates how the knowledge of the human visual system and perception can be incorporated within
computer graphics and imaging algorithms. His recent interests focus on designing imaging algo-
rithms that adapt to human visual performance and viewing conditions in order to deliver the best
images given limited resources, such as computation time or display contrast.
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Visual Media for Cultural Heritage: An Opportunity for Assessing,
Finding Limitations and Enhancing Technologies

Roberto Scopigno

National Research Council of Italy

Abstract

Digital technologies are now mature for producing high quality digital replicas of Cultural Heritage
(CH) artifacts. The research results produced in the last two decades have shown an impressive
evolution and consolidation of the technologies for acquiring high-quality digital 3D models, en-
compassing both geometry and color (or, better, surface reflectance properties); technologies for the
interactive visualisation of complex models and the integration of different media have been also an
important subject of research.

In this talk, I will present the more recent progresses, focusing on practical solutions which aim
at a major impact in real applications. The talk will also try to give a glance into the near future,
demonstrating how geometry processing and visualization could become a major instrument in the
study and dissemination of our cultural heritage.

Bibliographical Details

Roberto Scopigno is a Research Director at ISTI, an Institute of the Italian National Research Coun-
cil (CNR) located in Pisa, and leads the Visual Computer Lab. He graduated in Computer Science
at the University of Pisa in 1984, and has been involved in Computer Graphics since then.

He is currently engaged in several EU and national research projects concerned with multires-
olution data modeling and rendering, 3D digitization/scanning, scientific visualization, geometry
processing, virtual reality and applications to Cultural Heritage.

He published more than two hundreds papers in international refereed journals/conferences with
Google Scholar h-index 39 and more than 7100 citations. He presented invited lectures or courses at
several international conferences. He was Co-Chair of several international conferences and served
in the program committees of international events.

Since 2012 he is Editor In Chief of the ACM Journal of Computing and Cultural Heritage; he
served as Editor in Chief of the journal ”Computer Graphics Forum” (2001-2010). He is member of
Eurographics, served as elected member of the Eurographics Executive Committee since 2001 and
was the Eurographics Chairman on 2009-2010. He is recipient of several awards, including the EG
Distinguished Career Award (2014), the EG Outstanding Technical Contribution Award (2008) and
the Tartessos Virtual Archeology Award (2011).
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Integrating Motion Tracking Sensors to Human-Computer
Interaction with Respect to Specific User Needs

Michal Vinkler∗

Supervised by: Jiřı́ Sochor†

Faculty of Informatics
Masaryk University

Brno / Czech Republic

Abstract

This paper presents a novel framework for combining Mi-
crosoft Kinect device (Kinect) and Leap Motion sensor
with Java Monkey Engine and utilizing it for natural hu-
man computer interaction. The framework supports the
standard input devices (keyboard, mouse) as well as se-
lected motion tracking sensors Microsoft Kinect, Leap
Motion). To demonstrate its aplicability, the framework
was subsequently used for creating the demonstration ap-
plication called Labyrinth. This application was designed
according to the current requirements of psychologists
from the Department of Psychology at the Faculty of Arts,
Masaryk University, with respect to children with specific
disorders, such as ADHD (Attention Deficit Hyperactivity
Disorder). Similar kinds of applications are widely uti-
lized by psychologists for observing and evaluating their
impact on various groups of patients.

To make the application more realistic, our framework
integrates the stereo projection and the jBullet physics li-
brary for simulation of the gravitational force applied to
the scene. The resulting application forms a comprehensi-
ble basis for future applications based on this framework.

Keywords: virtual environment, human-computer in-
teraction, jBullet, physical simulation, Microsoft Kinect,
Leap Motion, motion tracking

1 Introduction

The expansion of modern technologies in the last decades
introduced the virtual environment and motion tracking to
the broader community of users. Moreover, these users
currently come from diverse fields, such as flight industry,
robotics, art or medicine. In the latter case, many appli-
cations utilizing interactive environments were created to
help both doctors during the medical intervention [2] [16]
and patients during the recovery process. Another very in-
teresting and important area is the usage of motion track-
ing in the process of the treatment and therapy for children

∗xvinkle1@fi.muni.cz
†sochor@fi.muni.cz

with various disorders, such as Attention Deficit Hyperac-
tivity Disorder or Oppositional Defiant Disorder.

Attention Deficit Hyperactivity Disorder (ADHD) is a
psychiatric disorder of the neurodevelopmental type in
which there are significant problems of attention, hyperac-
tivity, or acting impulsively that are not appropriate for the
person’s age [3]. Oppositional Defiant Disorder (ODD) is
described as an ongoing pattern of anger-guided disobedi-
ence, hostility, and defiant behavior toward authority fig-
ures that goes beyond the bounds of normal childhood be-
havior. Children suffering from this disorder may appear
stubborn and often angry [10].

Studies concentrating on the influence of playing video
games to different groups of users consistently show that
this activity improves the hand-eye coordination and in-
creases humans visuospatial skills. This increase of brain
activity is tied not only to playing games but also to sev-
eral other real-world scenarios. When the brain encounters
new visual and auditory stimulation, or new and different
way of processing information, it can influence the brain
in the most remarkable ways [1]. This improvement may
naturally mark in the person’s behavior and then be incor-
porated into the daily life [6].

The goal of this paper was to create the environment
which is straightforward to use and allows designing in-
teractive games for children with specific needs in easy
way. The resulting framework uses modern features and
devices in virtual environments, enables full body interac-
tion and can display the output using the stereoscopic pro-
jection. Moreover, the new system integrates the simula-
tion of physical forces which supports the plausibility and
perception of real environment of the implemented games.
Although the Microsoft Kinect used for motion tracking is
primarily designed for Microsoft Windows operating sys-
tem, our framework is platform independent as it uses Java
programming language and open source libraries for com-
munication with the Kinect device. For user convenience,
the detection of gestures for both hands was added.

The idea behind this project is to provide children with
smaller tasks in a form of a mini-games. Children are then
asked to keep playing and repeat the game to be able to
achieve mastery. The system supports basic logging thus
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the psychologists can subsequently evaluate if there is any
observable impact or improvement, for example that the
child can stay focused on one activity much longer than
before, etc.

For demonstration purposes we implemented a small
game called Labyrinth (see Figure 5). It basically aims
to strengthen the hand-eye coordination. In terms of prac-
tical application, this can help to improve real world skills,
such as handwriting or any other activity requiring the fine
motor activity. In the past, it was proved by various studies
that children with ADHD have had difficulties with vari-
ous hand-eye coordination skills [9]. When practicing, the
brain can learn how to focus on what the hand is doing.
With the repeated play, the brain can become more accu-
rate and more aware of the focus required for complete
control of the body.

The Labyrinth playing field is formed by the
rectangular-shaped maze (see Figure 1). Player can tilt the
board and therefore indirectly control the movement of the
metal-like ball located inside. The maze board contains
holes (so the ball can fall through) and obstacles defin-
ing the inner layout of the maze. The goal is to guide
the ball through the maze to the finish hole while avoid-
ing any other holes in the fastest possible time. There are
multiple levels predesigned with difficulty ranging from
very easy to hard. For evaluation purposes, selected values
are logged. For example, the runtime of the application,
the duration of each game, the idle time at the beginning
(when the user sees the maze for the first time and has to
make the decision about the route) and idle time at cross-
roads.

Figure 1: Example of the playing field in Labyrinth appli-
cation.

2 Related Work

Many studies have been done in last years to support the
hypothesis that the daily use of brain games can help to
strengthen the focusing ability and the executive function-
ing in adolescents with ADHD. Wegrzyn et al. [18] con-
firmed the positive impact on participants playing Nin-
tendo DS game Brain Age twenty minutes per day for five

weeks. Hashemian and Gotsis [7] created series of mini-
games, each one focused on a specific strength or weak-
ness prevalent in children with ADHD. The project uses
Microsoft Kinect for a full body motion tracking.

Virtual reality (VR) is an emerging technology with a
variety of potential benefits for many aspects of rehabili-
tation assessment, treatment, and research. Schultheis and
Rizzo [15] focused on examining the specific benefits VR
offers to consumers and providers of rehabilitation ser-
vices. They also discuss the potential areas of application
and important considerations in applying the VR technol-
ogy. Strickland [17] concentrated in her study on using
VR as a learning aid with an immersive headset system.
Finally, Parsons et al. [14] made a controlled clinical com-
parsion of attention performance of children with ADHD
in a VR classroom. These children exhibited more omis-
sion errors, commission errors, and overall body move-
ment than normal control children in the VR classroom.

Virtual environment enables to utilize new interaction
techniques mainly via spatial input tracking and stereo-
scopic rendering. From the technical point of view, var-
ious virtual reality systems were created which can be ex-
ploited by serious games. The VRECKO framework for
virtual reality [5] supports several kinds of stereoscopic
projection and is able to process data from various input
devices. Except for the traditional devices, such as mouse
and keyboard, the OptiTrack system can be used, enabling
to capture the position of objects in space, 3D mouse, Nin-
tendo Wii Remote and Microsoft Kinect.

3 System Overview

In this section we briefly describe the utilization of Java
Monkey Engine for our purpose. Then the motion track-
ing devices used in our solution are introduced. Finally
we will concentrate on the technical solution of devices
integration.

3.1 Java Monkey Engine

In order to utilize the most of already implemented and
tested features, our new framework was integrated into
the Java Monkey Engine 3.0 (JME) [8]. JME is free,
open source game engine, programmed entirely in Java,
intended for wide accessibility and quick deployment. It
is the high level programming engine using the underly-
ing toolkit and graphics library for low level tasks, such
as rendering 3D primitives, texturing, scene culling, etc.
JME itself does not integrate any motion tracking device.
We have chosen to implement the support for Microsoft
Kinect and Leap Motion sensors.

3.2 Devices

Microsoft Kinect is a full body motion tracking device.
By using a RGB camera and a four-element, linear micro-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
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phone array it can record both video and audio streams.
The depth sensor transmits invisible near-infrared light
and measures its “time of flight” after it reflects off the ob-
jects. Knowing how long the light takes to return, Kinect
can calculate how far away an object is. As a result, an
accurate depth map of the scanned area is created.

Leap Motion allows accurate movement tracking of
hands, fingers or other rigid objects (for example a pen)
working on a very similar principle as Microsoft Kinect.
Using two monochromatic IR cameras and three infrared
LEDs, the device observes a roughly hemispherical area,
to the distance of about 1 meter. The LEDs generate a 3D
pattern of dots of IR light which is reflected from the ob-
jects placed in the scanned area and then captured by IR
cameras.

3.3 Kinect – OpenNI Framework

The OpenNI organization [13] is an industry-led, non-
profit organization, formed to certify and promote the
compatibility and interoperability of Natural Interaction
devices, applications and middleware. The organization
has made an open source multi-language, cross-platform
framework available – the OpenNI framework – which
provides an application programming interface (API) for
writing applications utilizing natural interaction.

The main purpose of OpenNI is to form a standard API
that enables communication with both physical devices
(audio, video and depth sensors) and middleware compo-
nents, which further process the input data. In this project,
NiTE 1.3.1 Middleware was used (see Figure 2).

Figure 2: A three-layered view of the OpenNI concept
(taken from [13]).

3.4 Kinect – NiTE Middleware

NiTE Middleware [11] was based on the concept including
two base paradigms: Point Control and Full Body Control.

When Point Control is used, only one point (typically a
hand) is being tracked and NiTE gestures for this point
are recognized. There are three possible states for Point
Control:

• Not in Session: In this state, there is no active session,
hence the system is in a mode of scanning the scene to
detect a “focus gesture” (for example, waving). Once
this gesture is recognized, the state changes to In Ses-
sion.

• In Session: In this state, there is a hand that is cur-
rently in control and being tracked by the system.

• Quick Refocus: This is an intermediate state, in
which, while in session, the hand point is lost. We
don’t want to stop the session yet, but rather give
a grace time period in which the session can be re-
sumed with a different (perhaps shorter or easier)
hand gesture (referred as Quick Refocus Gesture).
While in Quick Refocus state, the session can also be
resumed using the regular focus gesture. Once the
grace period has timed out, the state changes to Not
in Session. The Quick Refocus state is optional.

When Full Body Control is active, the whole body is
being tracked. The player’s skeleton data is extracted
from the depth map and handed over for further process-
ing. Therefore, the application receives information about
position and rotation of up to 16 joints, together forming
user’s full-body skeleton.

In our framework, both controls were utilized. Based on
the user experience, the focus gesture was set to waving
user’s hand, whereas the quick refocus gesture is defined
as raising the hand. Unlike Point Control, Full Body Con-
trol does not determine any states and the flow between
them. Therefore, it was necessary to define, how will the
application react on the newly detected user in the scene.
In order to start skeleton tracking, it is often required to
strike a Psi pose (standing in front of the camera and hold-
ing arms up). NiTE Middleware can also be requested to
perform a skeleton calibration right after new user is de-
tected in the scene. If the calibration is successful, the
tracking is started (see Figure 3).

Also, initializing Kinect and accessing the events from
OpenNI framework is rather complicated. To make this
process easier and to achieve full integration with the JME,
the Kinect input was programmed to be handled by JME
as a standard input (the similar way as for example a joy-
stick). The initialization process is done automatically
when the application is started. If not successful (the de-
vice is missing or the drivers are not installed), the appli-
cation can still be controlled by standard input devices or
by Leap Motion.

In order to make the tracking-related information eas-
ily accessible, new structures representing tracked joints
and the whole skeleton were created. The application can
ask any time for the tracked skeletons and position of their

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
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Figure 3: The procedure for new user detection in the
scene.

joints. The framework also provides an interface for ac-
cess to all the important OpenNI and NiTE components
(for example VGA and depth image generators), and also
to all NiTE middleware events.

3.5 Kinect – Gestures Detection

NiTE defines a set of basic gestures recognized for active
hand in Point Control tracking. If we want to use the point
tracking for controlling the selector (i.e., mouse cursor),
the same hand would have to manage all the gestures as
well. In our framework, we wanted to have the possibility
to use both hands for controlling the application. Daria
Nitescu [12] mentions several strategies to accomplish the
select and click action. Based on our experience, selecting
the item with one hand and clicking with the other hand
is convenient and user friendly. This action however can-
not be accomplished using the NiTE gesture recognition
ability.

In order to provide as much freedom as possible when
controlling the application, we defined a new set of cus-
tom gestures. The input data is taken from Full Body Con-
trol, which allows us to define our gestures on any limb we
choose, overcoming the limitation of NiTE. Gesture man-
ager handles all registered detectors. Whenever the input
data is updated, the arm gestures detector checks if any
of the defined gestures was performed and fires respec-
tive events accordingly. Let us explain how the gesture
Arm Forwards (analogue of NiTE’s Push gesture) works.
The arm gesture detector retrieves the current position of

the joints representing the user’s shoulder and hand and
checks if the position is valid (i.e., NiTE can recognize the
joints location in the depth map). The distance between
the two joints must exceed a predefined value in depth in
order to activate the gesture (see Figure 4). Once the user
pushed in depth sufficiently enough, he or she has to re-
lease the hand. The depth value can be set manually or
estimated based on the user’s height.

If necessary, we could register for example leg gestures
detector (with a set of relevant gestures defined) in a simi-
lar way.

User

Kin
ec
t

hand

elbow

shoulder

distance

GESTURE 
DISABLED

GESTURE
ENABLED

Figure 4: Schematic representation of Arm Forwards ges-
ture detection.

3.6 Leap Motion

For Leap Motion integration, the official SDK was used.
The whole process is rather straightforward compared to
the Kinect integration. When the Controller object is cre-
ated, it connects to the Leap Motion software running
on the computer and makes hand tracking data available
through the Frame objects. Each computed frame con-
tains information about recognized hands and fingers of
a particular hand, finger tips position, recognized ges-
tures, hand’s sphere radius, normal vector and direction
and palm absolute position. The pitch, roll, and yaw can
be computed from the hand’s direction vector. All the in-
formation is available to the application through the Con-
troller interface.

3.7 Physical Simulation

Our framework utilizes the jBullet, Java port of Bullet
Physics Engine [4]. The jBullet is implemented into the
JME as one of the application states. Therefore, it can
be paused (resulting in freezing physical simulations) or
resumed as needed. The main features of jBullet in-
clude: discrete and continuous collision detection, swept
collision queries, ray casting with custom collision filter-
ing, support for generic convex and non-convex triangle
meshes.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
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3.8 Stereo Projection

JME was primarily designed for displaying monocular
image. By modifying some core classes we were able to
create side-by-side stereoscopic projection. It was neces-
sary to position two views with separate cameras into the
main window. Hardware cursor provided by the operat-
ing system cannot be duplicated, therefore it was replaced
with two software cursors displayed in both views. The
position of software cursors is calculated from the posi-
tion of the hardware cursor to match the stereo projection
accordingly. Also the GUI rendering was modified to ap-
pear in both views.

The two images representing the GUI projection are not
mutually shifted in x-axis so they do not create the spa-
tiality effect. However, the shift of the scene images is
customizable, which directly determines the parallax type
and the depth of the stereoscopic 3D effect.

4 Labyrinth Application

The objective of the sample mini-game in this project is
to demand focused attention while players use various
hand moves and body gestures to control the application.
This process aims to teach children to pay attention for
longer periods of time. The game can be fully controlled
by implemented motion tracking devices, either Kinect or
Leap Motion. When Kinect is used, the cursor move-
ment and tilting of the maze is controlled by user’s right
hand while the custom-defined gestures (Subsection 3.5)
are performed by left hand (see Figure 5). In the case of
Leap Motion being used, only one hand is necessary for
performing the actions mentioned above. To achieve the
realistic behavior, jBullet was used for controlling the ball
movement. The side-by-side stereo projection is also sup-
ported.

4.1 Events Logging

One of the main requirements from psychologists was log-
ging of the important events in the application. The logged
values are:

• Application runtime: Indicates, how much time the
user spent with practicing on the daily basis.

• Duration of each game: Used for comparing of the
progress.

• Time spent in the decision areas: Each maze contains
the defined “decision areas” – the starting area in the
maze and forks where the path splits. For each deci-
sion area the idle time spent in it is logged (see Figure
6).

• Ball falling through a hole: In both cases of ball
falling either into the finish or any other hole, the time
of the event and the ball position is logged.

Figure 6: Example of a maze with decision areas high-
lighted (green - the starting area, blue - the fork).

5 Discussion

We believe that our proposed system along with the logged
data will help to gain the novel insights for the psycholo-
gists. However, the evaluation of the system as well as the
Labyrinth mini-game is currently in an early stage, as this
preliminary version is standing at the very beginning of a
long-term research project. The definitions of events for
logging were provided by psychologists and correspond to
the events which are normally observed during personal
sessions with psychologists. In comparison with this tra-
ditional approach, our automated logging system has one
considerable advantage. It removes the posibility that the
conclusions made from observations are influenced by the
subjective view and experience of the psychologist.

6 Conclusion

In this paper we described the novel framework enabling
the integration of Kinect and Leap Motion sensors with
Java Monkey Engine. The main aim of the framework
was to provide the users with an easy way to develop var-
ious applications. The aplicability was demonstrated on
the Labyrinth mini-game which was designed with respect
to children with specific needs. As this mini-game should
also serve for further evaluation of the hand-eye coordina-
tion and the ability of the player to focus, the event log-
ging system was implemented and integrated. This helps
the psychologists to measure and easily compare the im-
provements.

In the future, the framework could also support the
recording of audio and video stream captured by Microsoft
Kinect and possibly analyzing these streams to reveal spe-
cific patterns in user behavior specified by the psycholo-
gists.
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Figure 5: Application controlled by Microsoft Kinect. The depth map and GUI are displayed. The red cross represents
the tracked point (right hand), the tracked person is highlighted. The left hand performs the Arm Forwards gesture.
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Abstract

In mixed-reality environments it is essential to integrate
virtual objects seamlessly into a real scene. Virtual ob-
jects should have similar appearances to those of real ob-
jects captured by a video camera. The aim of this work
is to integrate an existing method of statistics-based color
mapping into mixed-reality applications. This allows us to
simulate current luminance conditions of the scene as well
as changes in the camera driver settings and apply them
onto virtual objects. This paper contains a fast-running
approach to provide a color mapping between virtual ob-
jects and the real scene, which can be used in real-time
applications. The results show that this method increases
the immersion of virtual objects in a real scene.

Keywords: Mixed Reality, Augmented Reality, Color
Transfer, Differential Rendering, Tone Mapping

1 Introduction

Mixed-reality attempts to embed virtual objects into the
real world. This is typically done by using a video stream
of a camera, merging rendered objects into the video input
and presenting the result on an output device, like a PC
monitor or a mobile device. One goal might be to create a
perfect illusion such that virtual objects cannot be distin-
guished from real, existing objects. These techniques may
be used in (but are not limited to) edutainment systems, ar-
chitectural and urban visualizations or for marketing rea-
sons.

To create such an illusion, different approaches already
exist. Klein and Murray [4] introduced methods to simu-
late camera artifacts, e.g. distortion, chromatic aberrations
and blur on virtual objects. These artifacts are applied onto
the virtual objects, before they are merged with the video
stream. Other methods [6] are taking direct and indirect il-
lumination effects into account to simulate mutual lighting
effects between real and virtual objects.

Although these methods create accurate results, they
don’t consider matching the actual colors between the vir-
tual objects and the camera scene.

∗stefan.spelitz@tuwien.ac.at
†preiner@cg.tuwien.ac.at

(a) Source (b) Target (c) Result

Figure 1: Color matching between two images. Source image
(as in the one whose colors were changing) on the left. Target
image (as in the one whose colors we want to match to) in the
middle. Result after using color transfer [12] in CIELab color
space on the right.

Cameras map the radiance of the real world to an im-
age with RGB information, by using a camera-specific
transfer function. Virtual objects which are merged with a
camera image are easily categorized as artificial, because
their colors don’t match those in the scene (see Figure 5,
‘Tonemapping’ column for examples). The colors in the
image typically depend on the global illumination condi-
tions as well as the hue, saturation or white balance set-
tings of the camera. With a stable color mapping function
the behavior of the camera can be simulated and it is pos-
sible to adapt the colors of virtual objects to better suit
the colors available in the camera image. Virtual repre-
sentations of real objects registered within the system are
desirable, but not necessary for the algorithm to work.

The work in this paper is based on Differential Instant
Radiosity [6], which is used for the basis framework. My
method attempts to improve the previous work of ‘adap-
tive camera-based color mapping’ [7] by using a global,
statistics-based mapping, known as ‘color transfer’ [12] in
the domain of mixed-reality.

This paper’s main contributions are:

• An analysis of suitable color spaces in the domain of
statistics-based color matching (Section 3)

• A novel approach of using ‘color transfer’ [12] to
globally adapt the colors of virtual objects to that of
a camera image (Section 6)

• A fast-running implementation of the method as GPU
shader code (Section 6.1)

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Related Work

This paper is based on my bachelor thesis [15] which con-
tains additional information and an additional color map-
ping function. In the remainder of this section, the related
work on histogram matching between two images and ex-
isting applications in augmented reality are discussed.

Statistics and Histogram Matching: The first popu-
lar method by Reinhard et al. [12] matches the mean and
standard deviation of a source image to that of a target im-
age. This is done separately for each color channel in Lαβ
color space. Based on this method Kim et al. [3] proposed
a method which also works in Lαβ color space but is using
an additional pre-processing of the source image’s colors
and transforms only the α and β channels. The method of
Reinhard et al. produces convincing results, but it works
with statistical data of the whole image and thus can create
new colors in the result by mixing up two or more colors
of the target image. Xiao and Ma [17] tried to solve this
problem with histogram matching and a post-processing
step to preserve the gradients of the source image.

Another way of performing histogram matching is to
create an image dependent color space instead of using a
fixed one. This is done by eliminating the coherence be-
tween the color channels, also with the idea to perform
color mapping on each color channel separately. A non-
linear mapping with this approach has been proposed by
Grundland and Dodgson [2]. Similarly, not depending on
a fixed decorrelated color space, Xiao and Ma [16] de-
compose the source and target image data into its prin-
cipal components (with singular value decomposition) to
perform a one-dimensional color mapping.

Besides these methods which perform color mapping
on each color channel, there are those which are trying to
solve the color mapping in N-dimensions. Neumann and
Neumann [8] are using a computationally simple, permis-
sive, or optionally strict 3D histogram matching. Instead
of using opponent color channels they are using a cylin-
dric color space to map hue, lightness and saturation as
their main attributes. Another N-dimensional mapping has
been proposed by Pitié et al. [10]. In their work they use
a N-dimensional probability density function transforma-
tion with an involved post-processing step, which matches
the gradient field of the output image to the source image.

The requirements of a color mapping function, for us-
age in real-time mixed-reality applications are to transfer
the colors without additional user interaction and to al-
low real-time framerates. Methods which allow the user to
control the amount of transformation (like [11]) are useful
for a manual matching of arbitrary images, but in real-time
applications simple, fast-running methods are necessary,
which must be well suited for generic automated tasks.

Color Matching in Augmented Reality: Knecht et al.
[7] proposed an algorithm to match the colors between vir-
tual objects and the camera scene. This is done by creat-
ing color sample pairs based on matching similar colors
as well as through a heuristic function. A color mapping

function is then derived from the color sample pairs. The
method performs well if there are similar colors on virtual
and real objects. If there is not enough matching infor-
mation in the camera scene or the differences between the
colors of virtual and real objects are too extreme, a correct
mapping will likely fail and lead to incorrect colors in the
final result.

In the recent work of Oskam et al. [9], they provided
a color balancing technique while tracking a marker in
the real scene. They use the marker to compare its col-
ors with a virtual representation and build up correspon-
dences. To find corresponding points they use a RANSAC-
based algorithm. A radial basis function interpolation is
used to propagate the correspondences to the remaining
color space. The algorithm creates plausible results, but
needs initial correspondences.

3 Color Spaces

As stated in the previous section, color mapping algo-
rithms can typically be categorized into two classes. There
are those which operate in a N-dimensional color space
and those which operate on each color axis separately.
The mapping algorithm presented in this paper is work-
ing on a per-color-axis basis. It has been observed that if
the channels can be made strongly decorrelated then im-
age processing can be done in each channel independently
[12]. So it is assumed, that the choice of the color space is
important for algorithms which perform one-dimensional
matching.

The RGB color space tends to have axes, which are
strongly correlated. An example is displayed in Figure
2. In this example, the values are typically small in each
channel for dark colors. The values are getting larger as
the luminance rises. If the blue channel’s values are large,
then most values in the red and green channels are getting
larger, too. This results in an almost diagonal distribu-
tion between the axes, which signals a strong correlation.
Therefore, when changing the color of a pixel to match
another one, it is necessary to change all color channels si-
multaneously. This results in more complex color match-
ing techniques. Thus, for this paper, the RGB color space
will not be used to perform color mapping.

CIELab (also CIE L*a*b*) is a device independent
color space with three axes. ‘L’ represents the lightness of
the color with a range from 0 (black) to 100 (white). The
other two axes are representing the blue-yellow (channel
‘b’) and red-green (channel ‘a’) chromatic opponent chan-
nels with an unbounded range. It is a non-linear transfor-
mation of the CIE XYZ color space, while still remain-
ing reversible. It is considered to be perceptually uniform.
This means, that the euclidean distance of two colors in
CIELab are reflected as equally distant in perception.

Reinhard and Pouli [13] compared the quality of color
mapping in the domain of different color spaces (e.g.
CIELab, Lαβ , HSV, XYZ) in combination with several
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(a) Input image (b) RGB correlation (c) CIELab correlation

Figure 2: Decorrelation properties of color spaces. Color distribution of image (a) is plotted in RGB space (b) and in CIELab color
space (c). RGB shows an almost diagonal distribution on each pair of axes. CIELab distribution is along L* and b* axes. Plots created
with ColorSpace software [1].

environment settings (e.g. indoor, day, night). They con-
cluded in their work:

‘Surprisingly, we find that CIELAB, if used with
illuminant E as the white point leads on average to the

best performance, yielding a plausible colour transfer in
77 % of all cases tested.’

Although it seems plausible to see more indoor-specific
mixed-reality applications, color mapping in mixed-reality
environments cannot make assumptions about the environ-
ment it is used in. Therefore it is necessary to choose a
color space with overall good performance results. Be-
cause CIELab (E) performs well in all tested environments
and especially in indoor areas, it is the color space of
choice in this paper.

4 Differential Rendering

Knecht et al. [6] developed a method called ‘Differential
Instant Radiosity’ (DIR), which is the core of the frame-
work used in this paper. They combine differential render-
ing (DR) and instant radiosity to be used in mixed-reality
applications. By doing so it is possible to calculate effects
like shadow casting and indirect illumination between real
and virtual objects. The main aspect used from this paper
is the work about differential rendering.

To use DR the following information is needed:

• The camera image (CI)

• One global illumination (GI) solution for the local
scene containing virtual and real objects (LSrv)

• One GI solution containing only the geometric repre-
sentation of real objects (LSr)

Illumination is captured using a fish eye camera to adapt
the scene to environment lighting. For details on how the
global illumination solutions are obtained, see [6]. The ac-
tual DR process is done by creating the difference between

LSrv and LSr after both solutions have been tone and color
mapped. The difference (i.e. LSrv−LSv) is then applied to
a masked CI to obtain the final result.

By using a virtual representation of real objects (i.e.
LSr) it is possible to measure the difference between LSr
and the CI. This measurement can then be used to do the
actual mapping between virtual objects and the real scene.

It is assumed that geometric representations of real
world objects (at least some objects) are available. The
LSr and LSrv solutions contain geometric models of high
dynamic range (HDR). Because the captured camera im-
age is only in low dynamic range (LDR) a tone mapping
operation is necessary. The chosen global tone mapping
operator is based on the work of Reinhard et al. [14]. Af-
ter the tone mapping has been applied, all information is
in a common LDR color space.

As a result the method creates a merged image which
consists of the camera image, virtual objects, shadows and
reflections.

5 Application Flow

Figure 3 shows the abstract application flow with the help
of an example. In the camera image four real existing ob-
jects are available. The wooden surface and the color chart
have similar geometric representations in the application.
The red figure and the book have no virtual representation.
Therefore LSr contains the wooden surface and the virtual
representation of the color chart. LSrv contains in addition
to the content of LSr, the object to be rendered into the
real scene, which is another color chart. The actual color
mapping process is divided into four stages, which will be
explained next.

Stage 1: After LSr and LSrv have been tone mapped,
they are converted together with the camera image to the
CIELab color space. This is done to minimize correlation
between the color axes, so that manipulations of one color
axis don’t affect the other axes as well.
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Figure 3: The application workflow. By calculating the charac-
teristics of the real-world in comparison to LSr, the color map-
ping function is applied to the LSr and LSrv solutions. The color
mapping operates in the decorrelated CIELab color space. The
difference between the buffers is then merged with the camera
image to create the final result.

Stage 2: For the actual color mapping function we need
to calculate the differences between the representation of
the real-world (i.e. LSr) and the actual real-world itself
(i.e. the camera image). By determining the characteristics
of these two images, the resulting values can be used by
the ‘color mapping function’ (CMF).

Stage 3: The CMF applies the characteristics to both,
LSrv and LSr, in order to convert their colors to match those
of the camera image. This will be explained in detail in
Section 6.

Stage 4: The CIELab conversion was only necessary
to calculate the characteristics and perform the color map-
ping. So after the color mapping is done, LSrv and LSr will
be converted back to RGB color space.

Obtaining the result: We then get the final result by
calculating the difference

LSdi f = LSrv−LSr

and adding the difference buffer to a masked version of the
camera image.

Figure 4: This figure shows the LSr solution with two virtual rep-
resentations of real objects (table, color-chart). The black area
on the left indicates the end of the virtual table. The black area
in the center is the place for the virtual object to be rendered.

6 Color Transfer

The color mapping function is based on the work of Rein-
hard et al. [12]. Although its primary purpose is to transfer
the colors between two images (see Figure 1), in this paper
three images will be involved.

The first step is to calculate the color characteristics of
the source (i.e. LSr) and the target (i.e. CI) images. The
characteristics are the mean and the standard deviation of
the respective color distributions. Denoted by µs,µt and
σs,σt . The next step is to convert each data point (xi) of
the LSr and LSrv solutions:

x∗i = (xi−µs)
σt

σs
+µt

So we move the data points by the source mean, scale them
by using the standard deviations and move them again by
adding the target mean. Please note, that the same trans-
formation is applied to LSrv and to LSr. Therefore colors
which are the same in both solutions will remain equal af-
ter the mapping. This is an important feature, necessary
for differential rendering.

6.1 Color Characteristics on the GPU

One aspect when using the color transfer method is to
calculate the color characteristics in an efficient and fast
way. We will concentrate on doing that in the following
section with respect to GPU shader considerations.

Calculating the mean: The arithmetic mean is de-
fined as:

µ =
1
n

n

∑
i=1

xi

where xi is a data point of an image with dimensions [w,h].
With n being the number of data points, which is n = w ·h.

Calculating the arithmetic mean is easily done by creat-
ing mipmaps. Mipmapping will typically only work on
quadratic textures. Creating a quadratic texture from a
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rectangular one is done by bilinear point sampling. Be-
cause of using linear interpolation the mean does not get
affected.

The mean must be calculated for the camera image as
well as for LSr. Although calculating the mean for the
CI is straight forward, this is not the case for LSr. It con-
tains some areas with no information (see Figure 4). These
black areas must not have any influence on the calculated
mean value.

The count of pixels in the black areas is denoted as nzero.
The mean (µ), obtained by the mipmapping operation, can
be modified to exclude the black areas by using:

µcorrect =
µ ·n

n−nzero

Note 1: This works only because the data points we want
to exclude from the mean calculation have a value of zero.

Note 2: The corrected mean calculation could have
been applied to the masked version of the camera image,
too. The masked version contains black areas at each
point where a virtual object will be placed at. Although
it is possible, there are some drawbacks. The black areas
are ‘lost information’. These areas won’t be included in
the calculation, so we have less information about the
target environment we want to map to. Therefore we lose
precision in the color mapping. In addition, if a virtual
object covers the whole scene (and nzero = n), there won’t
be any information available from the camera image and
thus the mapping would fail.

Calculating the standard deviation: Because the
standard deviation is the square root of the variance, we
will concentrate on calculating the variance. The variance
for discrete values is defined as:

var =
1
n

n

∑
i=1

(xi−µ)2 (1)

The variance can easily be calculated. First, calculate the
squared deviation from the mean for each data point in
the texture (i.e. (xi − µ)2). This operation can be exe-
cuted in one shader pass. The next step is to make the
texture quadratic and execute mipmapping to get the arith-
metic mean of the sum of squared deviations. The result
of mipmapping is the variance.

When calculating the variance a similar problem occurs
as when calculating the mean for LSr. Because some data
points (count is nzero) shall be excluded from the calcula-
tion, we need to correct the variance calculation. Excluded
data points have values of zero, so we can rewrite the vari-
ance Eq. 1 to be:

var =
1
n
· (nzero · (0−µ)2 +∑

i∈R
(xi−µ)2) (2)

with R being the remaining set of data points and having
|R| = n− nzero. The corrected variance only contains the

remaining data points and is therefore, according to Eq. 1:

varcorrect =
1
|R| ·∑i∈R

(xi−µ)2 (3)

Which is equal to (using Eq. 2):

varcorrect =
1
|R| · (var ·n−nzero ·µ2) (4)

This shows that it is possible to exclude zero valued data
points by using the mipmap-calculated variance and ap-
plying Eq. 4 to get the corrected variance.

7 Results

The PC used for the test results has an Intel Core i7-950
Quad 3.06 GHz CPU with 6 GB RAM and a nVIDIA
GeForce 9800 GTX+ graphics card. The operating system
was a Microsoft Windows 7, 64 bit. The framework was
developed in C# using the DirectX 10 API in conjunction
with the SlimDX library. The used shader language was
HLSL.

To see the capabilities of the ‘color transfer’ method, a
test setup was created and evaluated under different con-
trast and saturation settings in the camera driver.

As seen in Figure 5(a), the test setup contains multiple
real-existing objects. A wooden surface, a book, a red fig-
ure and a color chart to the right. The application has only
two registered virtual objects, which is the wooden surface
and the color chart.

The goal is to render a virtual color chart object (placed
to the left of the real-existing one) which matches the color
settings of the surrounding environment. The virtual ob-
ject representation should match the real object’s appear-
ance. If there is no real object for comparison available,
the virtual object should fit into the environment in a har-
monic way without losing its overall color appearance.

Broadly speaking there are three different environ-
ments, in which the methods operate. These are

• the ‘default state’ without tweaks of the camera driver
settings (Figure 5(a))

• the scene with changed camera driver settings (i.e.
contrast, saturation) (Figure 5(b)-(e))

• the scene with obstacles occluding the color chart
(Figure 5(f)-(g))

By occluding the real-existing color chart with obstacles it
is impossible to find a direct mapping between the colors
of the virtual and the real color chart. The color mapping is
still expected to deliver good results even if there is no real
object for a virtual representation available in the scene.
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7.1 Comparison

The following methods have been compared:

• Color transfer (see Section 6)

• Adaptive camera-based color mapping by Knecht et
al. [7]

• Photographic tone reproduction (tone mapping) by
Reinhard et al. [14]

The tone mapping operation by Reinhard et al. is influ-
enced by the global illumination solution and does not re-
act on changes in the scene or camera settings. It is a tone
mapping operator and not a color mapping function. In
Figure 5 it is used as a comparison of how the virtual ob-
ject would look like without any color adaptation.

The method of Knecht et al. is based on a heuristic
which creates color sample pairs. These pairs are used
to define a color mapping function. The heuristic works
well as long as there is a virtual and a real representa-
tion of the same object in the scene (Figure 5(a)-(e)). It
fails to find a suitable color mapping with the real-existing
color checker board (Gretagmacbeth - ColorChecker Dig-
ital SG) occluding the color chart (Figure 5(f)). In Fig-
ure 5(g) with only some real-existing colored paper spread
out, the method nearly completely adapts to the existing
colors in the scene, which typically is not the desired re-
sult. Compared to the tone mapping operation, it is a rea-
sonably fast color mapping technique.

Using the ‘color transfer’ method results in a good adap-
tation to changed camera settings (Figure 5(b)-(e)), but
some color intensity is lost in the yellow, green and cyan
areas of the virtual object. Especially when using a high
contrast level (Figure 5(b)) or the color checker board
(Figure 5(f)). In the scene with only some colored pa-
per spread out (Figure 5(g)), the method does not adapt to
the new colored environment but only attempts to darken
the colors, when compared to the ‘tonemapping’ operator.
The performance results are quite similar to the results of
Knecht et al.

Essentially, the conclusion of the tests is that the ‘color
transfer’ method is the better choice for color mapping in
mixed-reality applications.

7.2 User Study

The ‘color transfer’ method, presented in this paper, has
been evaluated by Knecht [5] as part of a web survey. In
this evaluation the participants were able to choose be-
tween two mixed-reality scenes in each trial. The task
was to choose the image where the virtual objects fit the
scene subjectively better than in the other image. Over-
all there were 65 trials available to the users. The survey
tested multiple combinations of different rendering modes
(global illumination, color mapping, camera artifacts).

It showed that the ‘color transfer’ overall has a negative
impact on perceived quality. As a possible explanation,
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Figure 5: Comparison of different algorithms with different set-
tings and environments.

Knecht concluded that the color mapping changes the sat-
uration levels of the virtual objects in a way noticeable to
the user. All test images were used with standard camera
settings. Therefore the possible strength of the algorithm
of adapting to highly changed camera settings (e.g. satu-
ration, contrast) was not tested.
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8 Conclusions, Limitations and Fu-
ture Work

Existing methods, known from computational photogra-
phy, for transferring the color distribution from one image
to another have been combined with differential rendering
to a novel approach, usable in the field of mixed-reality
applications. A color mapping technique has been pre-
sented, which dynamically adapts in each rendered frame
to the internal changes of the camera settings. By using
this method, colors of virtual objects are closely related to
the colors of the camera image, which results in a better
immersion of virtual impressions in a real scene.

It has been shown that the presented ‘color transfer’
mapping algorithm is superior to existing approaches. Fur-
thermore by combining this color mapping with the sim-
ulation of camera artifacts [4] (like distortion and blur) a
high quality illusion could be created, resulting in virtual
objects, which may be undistinguishable from real ones.

8.1 Limitations

Because of using differential rendering, the method pre-
sented in this paper needs virtual representations of real
object’s geometry. This is necessary to determine the dif-
ferences between the representation and the real scene cap-
tured by the camera. These differences are then applied by
using the color mapping function onto the virtual objects.
Although the algorithms also work without a virtual rep-
resentation of the environment, the results are less precise
because of the lack of mapping information. Therefore
this approach should only be used in mixed-reality sys-
tems which support the representation of the real scene.

Another obvious limitation is the color mapping func-
tion. This function is working with statistical data of the
whole scene and tries to adapt colors of virtual objects to
the color average of the scene. This doesn’t need to be
correct in every possible scenario. Especially if there are
multiple areas in the scene with huge differences in lumi-
nance or color setting, the average of the scene might not
be the correct mapping target. A possible solution to this
would be to divide the scene into sections and perform a
color mapping for each section.

As with other statistics and histogram matching meth-
ods, the ‘color transfer’ algorithm is good for automatic
mapping. On the other hand it does not provide direct con-
trol over the color mapping process and thus may not be
suited for any situation.

8.2 Future Work

The user study of Knecht [5] showed that the overall im-
pression of color-mapped virtual objects is worse than
without color mapping when using standard camera set-
tings. Knecht also stated that a separate study should be
performed, investigating the impact of changed camera

settings on the perceived quality of color-mapped mixed-
reality scenes. Nonetheless, the survey showed that there
is the need for improvement for the default case, when the
standard camera settings are used.
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Abstract

In this work we present a method for improving the vi-
sual quality of an augmented reality system. By combin-
ing the characteristics of two different sensors, we increase
the spatial resolution of a video stream using sub-pixel ac-
curate image registration. Using the optical flow to solve
the correspondence problem, we can estimate the depth
of the scene, which is further used to compute immersive
augmented reality effects. By decoupling the rendering
process of the augmented information from the displaying
frequency of the system, we can augment the scene using
computationally expensive rendering techniques. We uti-
lize image-based rendering to overcome the resulting tem-
poral artifacts. Finally, we evaluated our methods by com-
paring the achieved quality with conventional augmented
reality methods.

Keywords: augmented reality, interactive superresolu-
tion, image registration, workload distribution

1 Introduction

Increasing the spatial resolution of images is normally
achieved by developing new sensor chips for cameras with
a higher pixel density or larger sensors. Both of these
improvements have drawbacks in terms of image quality
(smaller pixels mean less light, leading to more noise) and
efficiency. Also, capturing images at a high resolution
(HR) means that a lot of data has to be transferred, which
requires a bus with sufficient transfer rate.Alternatively
one can combine information from multiple subsequent
images of the current scene or arbitrary images from a
database to compute a realistic or at least plausible high
resolution version of the input image. We combine data
from two sensors captures at different temporal and spa-
tial resolution to create a true high resolution output. The
hardware setup of our system looks like this: The first sen-
sor provides a video stream in LR, but at a high frame rate
(e.g., 30 Hz). A second sensor, which is placed right next
to the first one, captures still images in HR at a slow frame
rate. The latest high resolution image is registered to the

∗grasmug@icg.tugraz.at
†schmalstieg@icg.tugraz.at

current low resolution video frame to compute the desired
output.

The information visualized in augmented reality (AR)
applications ranges from simple textual information to
computationally expensive visualizations, which can not
be computed in real-time. If a high resolution is required.
By combining images from different sensors or from a
single sensor captured in different spatial resolutions, we
can achieve interactive super-resolution of the input video
stream. To match the high resolution of the input, we
present a strategy for distribution the workload of com-
putationally expensive rendering tasks over several frames
using image-based rendering to suppress temporal arti-
facts. For both tasks we utilize the GPU to speed up the
computation. The image registration needed for our super
resolution approach can be computed highly efficient on
programmable graphics hardware while the use of a GPU
for rendering the augmentations is self-explanatory. Fig-
ure 1 shows a overview of the main parts of our system
which are described in detail in the following sections.
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image registrationHR SENSOR

morphing
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Figure 1: Overview of the main parts of our system.
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2 Previous Work

Improving images in terms of spatial resolution is relevant
in many fields and applications. Super-resolution (SR) is
an algorithmic approach that combines information from
several images or from large image databases into a true
or at least a plausible high resolution version of the low
resolution (LR) source. Different approaches in the spatial
and the frequency domain have been proposed.

Algorithms in the frequncy domain exploit the alias-
ing of LR images to reconstruct a HR image. Huang and
Tsai [10] presented an algorithm that built upon the rela-
tive motion between the LR images. The method utilizes
the aliasing relationship between the continuous Fourier
transformation of the HR image and the discrete Fourier
transformation of the LR images.

Example-based techniques (also called image halluci-
nation) [6, 5, 1] try to model the relationship between LR
and HR images using corresponding patches of LR and
HR images that do not necessarily show the same scene.
The correspondence between those pairs is learned from a
large database and used to synthesize a plausible HR im-
age. Bhat et al. [3] proposed a system similar to ours that
uses static images to enhance a video of the same scene.
The method computes view-dependent depth data for the
images and the video and uses this information to apply a
variety of effects including super resolution as an offline
post-processing step. Known SR algorithms rely on opti-
mization and/or machine learning which makes them slow
and not usable in interactive applications like augmented
reality. Our algorithm in contrast is based on optical flow
computation and allows for interactive use.

Render caching reuses information from previous
frames to speed up the computation of the current one.
When the frame rate is high, the changes from a previous
frame to the current one are small and therefore, the tem-
poral coherence is high. This information can then directly
(e.g., color of a pixel) or indirectly (e.g., intermediate re-
sults) be reused.

The term render cache was introduced by Walter et al.
[17], who used it as a data structure to speed up rendering
of otherwise none interactive methods. Yu et al. [18] pro-
posed a GPU implementation of the forward reprojection
algorithm, which uses a per pixel disparity vector to com-
pute the new position. Implementing this approach is dif-
ficult and can be computationally expensive. Didyk et al.
[4] proposed an efficient method, which fits a coarse, reg-
ular mesh grid to the cached image. The mesh is aligned
to the depth discontinuities of the cache. Each vertex is
warped to its new position using the cached image as tex-
ture. Holes are avoided by stretching of the mesh and vis-
ibility is resolved by fold overs.

The applications for render caching are numerous.
Sitthi-Amorn et al. [16] proposed an algorithm for the ac-
celeration of pixel shader computations by directly reusing
information from the cache whenever available. A rel-

evant work on spatio-temporal upsampling of renderings
was published by Herzog et al. [9]. By combining multiple
low resolution renderings, using a modified joint-bilateral
filter, a high-resolution image can efficiently be computed.
Render caching focuses on reuse of results from previous
frames for rasterization based techniques while our work-
load distribution scheme targets oversampling based meth-
ods and exploits their properties. This allows different ap-
proaches which cannot directly be applied to rasterization.

Image-based rendering The general idea of image
based rendering (IBR) is to derive a novel view from real
or synthetic images. The usual way of rendering an image
of a synthetic scene is by using one of the standard algo-
rithms like, for example, rasterization, ray tracing or path
tracing. Image warping [13, 14] relies on associated per-
pixel depth information. This information together with
the position and orientation of the camera is used to re-
project each pixel into three dimensional space and then
into the view of the new desired virtual camera. For syn-
thetic scenes, this is straight forward, since storing per-
pixel depth values and camera positions can be easily done
during rendering. IBR is utilized in our work to com-
pensate temporal artifacts. We further employ a method,
again closely related to oversampling based rendering ap-
proaches, to address IBR related issues like resampling
and disocclusion artifacts.

3 Upsampling

In this section, we describe our upsamling strategy, which
is inspired by previous work in the field of SR. We present
an approach that combines HR images and an LR video
stream from one ore multiple sensors to compute a SR ver-
sion of the LR input online. At the point in time at which
the still frame is captured, both sensors show a nearly iden-
tical images of the scene (with slight differences due to the
spatial placement). Over time the images begin to diverge
due to the motion of the camera or the scene. To be able
to use the information from the high resolution image, we
have to correct this divergence. We do this by comput-
ing the optical flow between a subsampled version of the
latest high resolution image and the current frame of the
video stream. The resulting sub-pixel accurate displace-
ment map is used to transform the HR image to match the
current video frame. Our algorithm can be outlined by the
following steps, where ILR denotes the current video frame
and IHR the latest HR image.

1. Compute the optical flow from ILR to IHR and vice
versa. The computation is done at the resolution of
ILR.

2. Compute the confidence for every pixel.

3. Upscale the flow field using bilinear interpolation.
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4. For each pixel, lookup the color of IHR using the com-
puted flow field from ILR to IHR.

5. Blend IHR with ILR image according to the confidence
map.

The result of the optical flow computation is crucial for
the quality of the SR and mainly depends on the disparity
between the pair of images, which is influenced by spa-
tial placement of the sensors, camera motion and motion
in the scene. Another associated problem is occlusion and
disocclusion of objects in the scene. Due to the change
in viewpoints over time, areas of the scene get revealed
which are not visible in the latest HR image. This is ob-
viously an issue for the image registration step, especially
if the scene has a high depth complexity since objects are
more likely to occlude each other. Therefore, we have to
expect a certain error in the optical flow computation.

3.1 Confidence Map

Figure 2: Visualization of the confidence map. Red shad-
ing denote regions with low confidence like, for example,
the area around the bottle, which has been disoccluded due
to the movement of the camera.

In order to be able to compute an artifact-free upscaled
version of the video stream, we have to account for the
mentioned problems. In detail, this means that we have to
detect occlusions and regions, where the computation of
the flow field yields erroneous results. Common metrics
like endpoint difference [15] and angular difference [2] are
not suitable for our case, since they are not reference free.
To establish this property, we modeled our metric based
on a simple observation. If we compute the optical flow
from image I1 to I2 and vice versa, the flow vectors should
approximately be the same with inverted sign.

uv f w(p)≈−uvbw(p+uv f w(p)) (1)

Equation 1 formulates this observation, where uv is the
2-component flow vector with respect to the image posi-
tion p= (x,y). Based on this equation, we derived a metric
which tells us whether the flow vector at a certain position
is correct or not.

con f = 1−λ (
|uv f w(p)+uvbw(p+uv f w(p))|

α
) (2)

λ (x) =
{

x if x≤ 1
0 else (3)

We call this metric confidence and compute a map for the
whole flow field (Figure 2) as defined in Equation 2, where
α is a weighting factor that defines how strongly the differ-
ence is penalized. The fiducial marker in the shown image
is later used to augment the scene but not for the SR ap-
proach. The formula is based on the distance between the
two flow vectors interpreted as points and ideally is zero.
The confidence map is recomputed every frame. This also
means that we not only have to compute the flow once,
but twice each frame, to be able to compute this quality
metric.

To finally create the HR output stream we blend the LR
image with the warped HR image weighted by the confi-
dence map. Since the flow field is usually good in high
frequency regions of the image, we can preserve those im-
portant details. Low frequency regions tend to yield worse
results in terms of optical flow computation. Using infor-
mation from the LR frame in those areas means only a
negligible loss of information. In the case of disocclusion,
no information is available for this region, which means
blending with the LR image is the only meaningful solu-
tion.

3.2 Depth Estimation

With the camera extrinsics given from the tracking (fidu-
cial markers in our case) and the intrinsics from the cali-
bration we further need correspondences to be able to re-
construct depth by triangulation. Using the optical flow,
we can compute pixelwise point correspondences. Having
all this information at hand, we now can calculate a depth
estimation of the scene. Using the current video frame and
an older video frame with a certain delay as key frames for
the estimation, we can compute the depth with the algo-
rithm outlined in the following:

1. Compute a ray from the center of projection into the
scene for both views. This ray is given by w = c+
λQ−1m, where m = [u,v,1]T is a point on the image
plane and Q is defined in equation 4. The center of
projection is given by c =−Q−1q̃.

P = A[R|t] =




q1 q14
q2 q24
q3 q34


= [Q|q̃] (4)

P1,P2 as well as c1,c2 are obtained from associated
extrinsics [R|t] and intrinsics A of the chosen key
frames.

2. Intersect the rays. Since rays usually do not intersect
at a point in R3, we need to computed the shortest
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line between the rays. If the length of that line is
below a certain threshold, it is treated as intersection.

3. From the intersection point (or the starting point of
the shortest line between both rays), we can retrieve
the reconstructed depth of the scene in that particular
point.

Figure 3: The top image shows the computed depth map
for the reference image below.

The selection of the pair of input images is essential for
the depth estimation. To obtain good results, the images
must have a appropriate stereo baseline. The result further
depends on the correctness of the found correspondences.
We need to compute the optical flow between the latest HR
image and the current LR image every frame for our super-
resolution algorithm. Therefore, we already have corre-
spondences, which could be used for the depth informa-
tion. Whenever the HR image is refreshed, it is nearly the
same as the current image. In this case, the stereo base-
line vanishes, and we cannot use it for depth estimation.
Therefore, we cache the latest N frames of the LR video
stream and use one out of it for the stereo matching. The
image from the cache is selected either with a fixed frame
distance or using an angular threshold. For both cases this
method fails, if the camera movement stops. To resolve
this issue, a keyframe based approach should be used in
the future. Figure 3 shows the resulting dense depth map.

While our SR approach is applicable to dynamic scenes
too, the depth estimation is limited to static scenes.

4 Workload Distribution

In this section, we describe a workload distribution
scheme that allows to compute expensive effects in real
time by decoupling the rendering process. In contrast
to render caching we focus on oversampling based ap-
proaches like path tracing which allows us to employ a
different strategy.

To decouple the rendering process from the displaying
frequency of the system, we discuss two strategies: First
the computation can be time sliced. Only a subset of all
samples per pixel is computed each frame. The final im-
age is available after a number of frames depending on the
size of the subset. A similar technique is to spatially slice
the image by computing a sub-region of the rendering each
frame with the full number of samples. Since the objects
in the scene are most likely not distributed uniformly, this
method can result in an unsteady frame rate. With both
strategies, the final image is available after a distinct num-
ber of frames depending on the splitting criterion and on
the desired total number of samples. Figure 4 illustrates
both strategies.

spatial slicing

temporal silcing

frame 1 frame 2 frame 3

10% 20% 30%

Figure 4: Spatial versus temporal slicing. In the upper row,
the shaded rectangle denotes the region which is computed
at frame n. In the lower row, the shading denotes the per-
centages of samples per pixel which have been computed
to this point.

For our experiments, we implemented a path tracer to
augment the scene. This algorithm is just an example of
the rendering methods that can be used. Since image-
based rendering, in our case image warping, only relies on
per-pixel color and depth information, essentially any ren-
dering technique can be used. The workload distribution
strategy has to be chosen accordingly.

4.1 Image-based Rendering

To overcome the difference in frame rate, which results
from decoupling the rendering process, we utilize image-
based rendering techniques. Per pixel depth information
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can easily be stored during the rendering process. In com-
bination with the matrices used for rendering and the cur-
rent camera matrix, we can re-project every pixel to derive
a novel view of the scene. Some issues related to this ap-
proach have to be addressed in order to produce satisfying
results. The first issue is one we have already encoun-
tered with super-resolution of the video stream. Since im-
age warping uses a static image from a different viewpoint
than the current, disocclusion is again a topic. A common
way to address this issue is to cache or even render differ-
ent views in a preprocessing step [8]. In addition to the
latest rendered image, an appropriate stored view can be
used to fill disoccluded areas. In contrast, we employ hole
filing strategies to account for this issue.

Not only disocclusion, but also occlusion is a problem,
which needs to be handled. If parts of the rendered object
occlude other parts due to the change in camera position,
different pixels are warped to the same location. This re-
sults in a depth fighting like behavior. Another problem
that comes with this approach is sampling related. If the
camera in the derived view is closer to the scene than in the
original one, the image is sampled at a higher rate, leading
to cracks in the novel view.

The straightforward way for implementing image warp-
ing would be to multiply each pixel and its depth position
by the inverse projection and model matrix used for ren-
dering and then again by the projection and model matrix
of the current view, like given in equation 5, where P is
the projection matrix, Cre f is the camera matrix used for
rendering, Ccurrent is the camera matrix of the desired view
and p is the position of the pixels given in homogeneous
coordinates.

p′ = P ·Ccurrent ·C−1
re f ·P−1 · p (5)

The problem of this approach is that it is likely that dif-
ferent pixel are projected onto the same output position.
Since we use parallel warping on the GPU, this results in
undefined behavior. We implemented the image warping
in the following way to resolve the described problems: In
a first step, only the depth value of every pixel is warped
into the desired view. We resolve the described race con-
dition by using atomic operations to store only the depth
values closest to the camera. This is similar to the z-buffer
algorithm. In the next step, the depth and position of each
pixel is used to look up the color in the original image.
This is done by performing the operation given in equation
5, in the reverse direction. Using this multi-stage warping,
we can efficiently eliminate resampling artefacts and oc-
clusion.

4.2 Hole Filling

In the final step, we aim to fill small holes and cracks
which result from the image warping. The simple ap-
proach is to interpolate holes from neighboring pixels iter-
atively or using push-pull interpolation [12].

Another approach is to re-render the disoccluded areas
to fill the holes an cracks. To detect disoccluded regions,
we first render only the silhouette of the model from the
current viewpoint. Second, we warp the image and sub-
tract the result from the silhouette which gives us the dis-
occluded region. Now, the pathtracer is instructed to re-
compute only the identified area with a small number of
samples in order to keep the computational expense low.
Thus, we can efficiently fill all holes with the disadvan-
tage of discontinuities between the original rendering and
the re-rendered area due to the small sample count. Fig-
ure 5 shows a comparison of the two hole filling methods.
The re-rendering produces good results in any case, while
the computational expense is again related to the size of
the disoccluded area and is higher compared to interpola-
tion. The interpolation works well as long as the holes are
small.

5 Results

Figure 6: Occlusion of a virtual object (Buddha statue) by
the real world using the estimated depth information.

We used three different scenarios to evaluate the SR
method. Two of the data sets show office scenes, while
one shows an outdoor scene. All scenes have different
complexity in terms of depth, depth range and texture. As
metric for similarity, Hdr-vdp-2 is used [11] to show that
the results of our algorithm are similar to the reference
image and free of artifacts. To account for image sharp-
ness, the reference free LPC-SI [7] metric is used. The
input video stream was captured at 640x480 pixels (0,3
megapixels) with 30 frames per second (fps) while the HR
still images had a resolution of 2304x1728 (4 megapixels)
pixels captured with 8 fps. The system was evaluated on
an Intel Core i5 (3.4 GHz) with 8 GBs of memory and
a Geforce GTX 680. For capturing the test data, a Canon
IXUS 240 HS was used. Figure 7 shows average scores for
Hdr-vdp-2 (similarity to the ground truth in percent) and
LPC-SI (higher score means more sharpness) of all three
scenes. It can be seen that the sharpness of our method
is close to the ground truth and way above what bilinear
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Figure 5: Comparison of the two hole filling methods for different warping angles. The first column shows the warped
image without hole filling, the second with color interpolation and the third with re-rendering of disoccluded areas. The
bottom row gives a detail view.

interpolation gives us. The online SR resolution runs at 7
fps (average) on the reference system.

Using the estimated depth, we can now let real objects
in the scene occlude augmented virtual objects to gener-
ate a more immersive AR experience. This is done using
an CUDA kernel, which compares the depth of the virtual
scene with the estimated depth of the real scene and blends
the images accordingly. Figure 6 shows an exemplary re-
sult. The depth estimation runs at 12 fps on average. Since
the optical flow gives good sub-pixel accurate correspon-
dences, the resulting depth map features sharp depth dis-
continuities, which is crucial for artifact-free occlusion.

Limitations The super-resolution part of our work is ap-
plicable on static and dynamic scenes. It has to be kept
in mind that fast motion of both camera and objects in the
scene leads to bad image registration results. Due to our
flow quality measure, the algorithm does not fail but rather
falls back to the LR video stream. In case of fast motion
the fall back might only be hardly noticeable due to motion
blur. In the case of slow motion results show that high fre-
quency details can be preserved nicely by our algorithm.
While image-based rendering in general is a very versatile
technique, a limit is encountered, when it comes to view
dependent effects. Effects like specular lighting, refraction
and parallax depend on the position of the viewer relative
to the scene.With our technique those effects cannot be
simulated, since all information is baked into the render-
ing. Therefore, the quality of the result drops dramatically,
if view dependent effects are simulated.

6 Conclusion

We developed a system capable of improving the overall
quality of an augmented reality setup. Quality in this case
means on the one hand the spatial resolution of the video
stream and on the other hand the visual quality of the aug-
mented information. Still images captured at a slow fre-
quency are used to improve the spatial resolution of the
low resolution video stream. By registering the high reso-
lution still image with sub-pixel accuracy, we can warp it
to fit the current video frame. Furthermore, we designed
a reference-free metric for the quality of the optical flow
that lets us decide whether the image registration was suc-
cessful or not. Based on this metric, we blend the high
resolution image with the video stream. As a result, we
get a method that can upsample videos from 640x480px to
2304x1728ms in under 200ms. The algorithm in the worst
case falls back to the quality of the LR video stream, in-
troducing only small artifacts in extreme cases. The eval-
uation shows that this approach yields good results in a
variety of scenarios. Using the optical flow to solve the
correspondence problem, we can compute a depth map of
the scene, which can further be used to create immersive
AR effects.

The computational complexity of physically correct
rendering algorithms like pathtracing is high, which does
not allow for interactive rendering, especially if the spatial
resolution is also high. We described approaches to decou-
ple the frequency of the rendering process from the dis-
playing frequency by distributing the workload over mul-
tiple frames. The resulting difference in frame rate is then
addressed using image warping. The results show that this
strategy can be applied to move complex rendering algo-
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Figure 7: Average results for Hdr-vdp-2 (similarity) and LPC-SI (sharpness). The upper figure shows that our result is
close to the ground truth in terms of structural similarity. The lower figure displays that the output of our SR method
produces a sharp high resolution version of the input data close to the ground truth and superior to a bilinear interpolated
version.
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rithms towards interactivity without a noticeable loss of
quality.

Future Work The sub-pixel accurate image registration
step is achieved by computing the optical flow between
the still frame and the current video frame. This has to be
done twice each frame, since we need the forward and the
backward flow to be able to compute our quality metric.
This step is the most time consuming part of the algorithm.
Since we know the camera pose from tracking, the flow
computation can be simplified to a one dimensional prob-
lem by using epipolar geometry. This simplification would
not only speed up the computation, but also might give
better results in terms of quality, since the search space is
significantly smaller. Furthermore, we aim to move the
super-resolution algorithm of our work to mobile devices.
Especially for this case, the image registration has to be
simplified to achieve a satisfying performance.
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Abstract

In our work we choose several old and modern features of
OpenGL that applications use to render scenes and com-
pare their impact on the rendering speed. We aim our com-
parison not solely on these features, but also on the type of
hardware used for the measurements. We run our tests on
a professional graphics card QUADRO 6000 and on a con-
sumer graphics card GeForce GTX 580, and evaluate how
actual hardware influences the results.

Keywords: OpenGL, Core profile, QUADRO, GeForce

1 Introduction

Graphics hardware is in constant evolution. New mod-
els come with new methods to solve the same problems
in a more effective way. Developers now stand before a
dilemma of whether to use an old method that had more
time to be optimized in drivers, or a new method that bet-
ter uses new technology but is not well established and
may actually slow down the application when used inap-
propriately.

When analysing a well known graphics library Open-
GL, we found that in its more than twenty years of evolu-
tion it really accumulated multiple solutions for the same
problems. Considering for example rendering commands,
we may use a pair of glBegin and glEnd commands and de-
fine geometry vertex by vertex, use glDrawElements and
draw multiple primitives in a few commands, use func-
tions such as glMultiDrawElements to reduce the number
of rendering commands even further, or use indirect draw
commands to manage rendering entirely from the GPU it-
self. Moreover, in case of static geometries, we still have
an option to pack these commands into display lists and
again reduce the number of commands that need to be pro-
cessed.

To design fast applications, developers must decide
which of these methods to implement. Their decision is
based not only on the type of application, but also on the
properties and the architecture of the hardware they use,
and of course, their own experience.
∗xcejka2@fi.muni.cz
†sochor@fi.muni.cz

We also had to make this decision in our application
VRUT. This application is developed in a cooperation be-
tween a number of universities in the Czech Republic and
the automobile company ŠKODA Auto a.s. The name
stands for Virtual Reality Universal Toolkit and its purpose
is to visualize detailed geometry in real-time. As such, it is
highly demanding on efficiency of rendering. It is used by
students as well as professionals, and therefore, it runs on
various kinds of hardware, which also influences the speed
of rendering.

We extended VRUT with a new rendering module and
implemented several techniques that solve fundamental
problems in rendering. In this paper, we describe them and
compare their impact on the resulting frame rate. As this
frame rate is affected by hardware, we present results of
testing on two different NVIDIA graphics cards, GeForce
GTX 580 and QUADRO 6000.

This paper is structured as follows. The next section
presents several works that analyse modern OpenGL and
its features. The third section describes methods we chose
and tested in our application. Results of these tests are
presented and discussed in the fourth section. The final,
fifth section concludes our work and emphasizes the most
important points.

2 Related work

OpenGL specification [7], located at OpenGL website
www.opengl.org, contains detailed description of all Open-
GL 4.4 functions. This website also lists all avail-
able OpenGL extensions and their description in form
of plain texts. In addition to this, some extensions are
also described on sites of other companies that define
their own extensions; for example, NVIDIA presents at
https://developer.nvidia.com/nvidia-opengl-specs a list of
extensions that are available on many NVIDIA graphics
cards.

Features of new versions of OpenGL are often presented
at the SIGGRAPH conference; Lichtenbelt [3] gives us ad-
ditional information about version 4.4. However, some re-
searches focus just on a part of OpenGL. McDonald and
Everitt [4] describe how techniques introduced in Open-
GL 4.3 can reduce the number of functions that need to
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be called to render the whole scene. Gateau [1] presents
techniques developed by NVIDIA to render complex ob-
jects in only a few (possibly one) draw calls. These works
unfortunately lack thorough testing and do not take differ-
ent hardware into account at all.

Much information about hardware can be found on the
hardware manufactures’ web pages intended for develop-
ers1,2. Additional information is given at conferences;
Kilgard [2] describes features of NVIDIA’s graphics cards
in association with newest versions of OpenGL. A list of
main features in which QUADRO professional graphics
cards and GeForce gamer cards differ can be found in [5].

3 Analysed techniques

In our work, we chose and compared several techniques
that solve problems of rendering scenes. We focused
on drawing commands, the type of pipeline, vertex array
setup and the rendering context used.

3.1 Draw commands

The current version of OpenGL supports two main meth-
ods of drawing primitives. The first method uses functions
glBegin and glEnd and defines vertices separately. The
other method stores all data of these vertices in arrays, and
uses functions like glDrawArrays and glDrawElements to
draw them all at once. OpenGL also improves the latter
method and offers functions like glMultiDrawElements,
allowing the packing of many glDrawElements calls into
one.

We may also use display lists in addition to these meth-
ods. These display lists allow the driver to store all com-
mands in the most effective way and then recall them when
appropriate. This method is used mainly when rendering
with glBegin and glEnd as it saves many function calls, but
it can be used to draw with vertex arrays as well.

3.2 Fixed-function and programmable
pipeline

OpenGL defines a set of operations that are applied to each
processed primitive. These operations include transfor-
mation, lighting, texturing and many more, and form a
pipeline. First versions of OpenGL defined a set of fun-
damental operations; to use them, programmers needed to
set their parameters and activate or deactivate them if nec-
essary. This is called fixed or fixed-function pipeline.

With time, the number of operations in pipeline in-
creased, and so did the number of their combinations. As
such, setting these parameters became impractical. Since
version 2.0, OpenGL allows some parts of its pipeline to
be programmed by small programs called shaders. These
shaders define which operations are performed on vertices

1developer.nvidia.com
2developer.amd.com

Vertex
attribute

Vertex
attribute

Vertex
attribute

Size
Type
Stride
Buffer

Size
Type
Stride
Buffer

Size
Type
Stride
Buffer

changed when
swapping buffer

(a) Before version 4.3

Vertex
attribute

Vertex
attribute

Vertex
attribute

Size
Type

Rel. offset

Size
Type

Rel. offset

Size
Type

Rel. offset

Binding
point

Binding
point

Stride
Buffer

Stride
Buffer

changed when
swapping format

changed when
swapping buffer

(b) Since version 4.3

Figure 1: Setting vertex array parameters before OpenGL
version 4.3 and since version 4.3

and fragments3 and manage their order. This is usually
referred to as a programmable pipeline.

When we render simple scenes with simple geome-
tries, simple lights and simple materials, we do not need
functionality of the programmable pipeline, as the fixed
pipeline fulfills our needs. For this reason, we do not
need to write and optimize complex programs of the pro-
grammable pipeline and thus we save some time and ef-
fort. On the other hand, well written programs may save
some costly state changes done in the fixed pipeline.

It is questionable which of these pipelines leads to a
better performance in given situations. Most of modern
graphics cards are programmable, and OpenGL’s fixed
functionality is programmed in the driver after all. Many
modern programs (especially computer games) utilize
shaders, which may lead driver programmers to dedicate
less effort to optimizing drivers for programmable pipeline
in comparison to fixed pipeline. On the other hand, fixed
pipeline exists since the first version of OpenGL and had

3There are also geometry shaders which operate on primitives and
tessellation shaders which subdivide them, however, our application uses
only vertex and fragment shaders.
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Figure 2: Scene with the Fabia car used when measuring rendering speed

more years to get optimized for applications that uses it.

3.3 Buffer setup

OpenGL 1.1 came with vertex arrays and allowed to pro-
cess multiple primitives with a single call. It provided a
few functions to set parameters of these arrays, that is the
size and the type of vertex attributes, a buffer with these
data and the stride between them, but all of them had to be
set when an attribute or a buffer changed, as illustrated in
Figure 1a.

For many years, this was the only method to set up
buffers. In 2012, OpenGL 4.3 reviewed when vertex array
parameters are set and designed a technique that decreased
the amount of data set each time. It introduced binding
points, which are places where buffers can be bound, and
allowed us to bind buffers and set attribute parameters sep-
arately, as illustrated in Figure 1b.

In addition to this, vertex array objects (VAOs), pre-
sented in OpenGL 3.0, allow to create objects holding all
information about the setup of vertex arrays. They are sim-
ilar to buffer objects or texture objects, which have both
existed in OpenGL for many years. VAOs do not change
the way vertex arrays are set up. They only make switch-
ing between them easier.

We tested and compared both methods of setting vertex
arrays and VAOs. Moreover, we also decided to test an ex-
tension NV_vertex_buffer_unified_memory developed by
NVIDIA, available on their graphics cards. This exten-
sion is described in [6], and its main idea lies in querying
the address of memory allocated by vertex buffer objects.
Using this address in plane of a vertex buffer allows us to
save the driver some work which speeds up the rendering.

3.4 Rendering context

The last issue we focused on is aimed at the OpenGL con-
text. There are many parameters that are set when creating
this context. We tested two of them, the type of profile and
the presence of debug features, and measured their influ-
ence on the speed of rendering.

OpenGL profiles were introduced in version 3.2 as a
form of removing deprecated functions. OpenGL defined
two of them: core and compatibility. The core profile con-
tains only the most modern features, while the compatibil-
ity profile includes all functions since the first version of
OpenGL. As the core profile could be simpler to imple-
ment and optimise by drivers, we decided to test, whether
it leads to an increase in the number of rendered frames
per second.

Like many other libraries, OpenGL comes with new
methods to ease debugging and development of new ap-
plications. In addition to querying OpenGL for simple
errors, some implementations allow us to create a debug
context, giving us an option to set up callbacks that are
called every time an error occurs. Using this debug context
must obviously lead to a decrease in speed of rendering, as
it must handle not only these errors, but also all attached
callbacks. For this reason, we decided to measure its im-
pact on the actual speed of rendering.

4 Measurement

We measured the time our application needed to render a
single frame depending on several settings.

The measured scene contained a static model of the
Fabia car containing 4.6 million triangles, illustrated in
Figure 2. This model was represented by a hierarchy tree
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Configuration GeForce QUADRO
CPU [ms] GPU [ms] CPU [ms] GPU [ms]

1) B/E 262.662 274.890 208.861 337.591
2) VA 199.759 261.961 15.776 77.987
3) VBO 25.876 243.702 6.624 26.397
4) DL + B/E 327.224 333.550 4.154 8.599
5) DL + VA 341.850 343.046 7.368 11.481
6) DL + VBO 340.475 342.296 7.403 11.480
7) VBO + Shaders 27.233 26.416 27.932 27.591
8) DL + VBO + Shaders 487.704 485.719 10.083 22.440
9) 7) + VAO 27.711 27.281 28.644 27.816
10) 7) + MDE 11.568 16.916 11.238 21.172
11) 7) + Bindless 13.499 16.717 13.973 21.260
12) 7) + MDE + Bindless 9.616 16.964 9.828 21.148
13) 7) + VAO + MDE 11.170 16.649 10.488 21.183
14) 7) + VAO + Bindless 14.659 16.764 14.776 21.301
15) 7) + VAO + MDE + Bindless 10.630 16.754 10.584 21.206
16) 7) + MDE + Format43 11.456 16.742 11.210 21.186
17) 7) + VAO + MDE + Format43 10.746 16.723 10.798 21.212
18) Core 27.953 27.445 28.369 28.001
19) 12) + Debug 33.244 31.384 — —

4) + Debug — — 5.043 8.775

Table 1: Rendering times of different configurations on both tested machines

with 1344 geometry nodes, containing 1342 triangle lists
and 145830 triangle strips. The model’s appearance was
described by 86 materials; one of them implemented a car
paint effect and used its own shaders, the rest were simple
enough to be rendered with the fixed pipeline. The scene
was lit by a simple directional light centered at the camera
(headlight).

We ran all tests on two machines. The first machine,
in the rest of the paper labelled as GeForce, contained
Intel i7 2600 processor with 8 GB of main memory and
GeForce GTX 580 with the display driver version 310.70.
It was chosen to represent consumer machines.

The other machine, labelled as QUADRO, contained
two Intel Xeon X5680 processors and 24 GB of main
memory. It had two QUADRO 6000 graphics cards with
the display driver version 310.70. It was chosen to rep-
resent professional workstations. Although this machine
contained two graphics cards, only one of them was active
so that the results could be compared with the results of
the first machine.

We measured a time these machines needed to render
the scene in configurations described below. Since the ac-
tual rendering runs asynchronically on graphics cards, we
separately measured the time needed to call all OpenGL
functions (labelled as CPU) and the time the driver needed
to execute and complete all commands (labelled as GPU).
We measured groups of 50 frames and chose three groups
with the smallest deviation. Since we focused on the maxi-
mum speed of rendering, we took the minima of measured
values (in milliseconds) and presented them in Table 1.

4.1 Configurations and Results

We tested the following configurations. First, we tested the
influence of draw commands used to render the geometry.
We compared rendering with glBegin and glEnd functions
(in the table labelled as B/E), rendering with vertex arrays
stored at the client site (VA), and rendering with vertex
arrays stored at the server site (VBO). Since all these draw
commands can be stored in display lists, we made the same
measurement again, this time using display lists (DL). The
results are shown in Table 1 with configurations numbered
1 – 6.

Next, we tested how shaders influence the speed of ren-
dering (configuration labelled as Shaders). The largest
part of the scene could be rendered using the fixed
pipeline, therefore, we compared the rendering speed
when using the fixed pipeline and the programmable
pipeline with shaders. These shaders simulated operations
of the fixed pipeline, however, we must note that they im-
plement per-pixel lighting. Despite the fact they are more
computationally demanding than the fixed pipeline, we be-
lieve the measured values are still comparable. The results
are numbered as 7 and 8.

We also measured the influence of vertex array
objects (labelled as VAO), glMultiDrawElements
(MDE), NV_vertex_buffer_unified_memory extension
(Bindless), OpenGL 4.3 technique of setting vertex
arrays (Format43) and their combinations. We chose the
configuration 7), that is VBO + Shaders, as a starting
configuration for this group of configurations. In the
Table, these configurations are numbered as 9 – 17.
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Figure 3: Rendering times of configurations achieved on GeForce. Times of configurations 1 – 6 and 8 are too large to
display
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Figure 4: Rendering times of configurations achieved on QUADRO. Times of configurations 1 and 2 are too large to
display

Finally, we tested the influence of the rendering context
parameters. Rendering with the core profile (labelled as
Core) is numbered as 18, and automatically implies VBO
+ Shaders + VAO are active. For the debug context test
(labelled as Debug and numbered as 19), we chose as the
starting configurations the best configuration on each ma-
chines, that is the configuration 12 on GeForce and 4 on
QUADRO.

Figures 3 and 4 shows rendering times as line graphs for
the GeForce machine and the QUADRO machine respec-
tively. Rendering times greater than 50 ms are not shown,
so that the difference in time of other configurations could
be better visible. Also, configuration 19 is not present,
because it differs between both machines, and the figure
could lead to a misinterpretation of results.

4.2 Discussion

The measurement revealed several interesting facts. Mea-
sured rendering times in configurations 1 – 8 show, that
using shaders in cooperation with vertex arrays stored at
the server side in vertex buffer objects is essential for fast
rendering on the GeForce machine. On the other hand,
activating display lists led to a severe performance hit. We
believe this happened due to the fact that GeForce graph-
ics cards (as well as other consumer graphics cards) are
optimized for computer games that usually do not contain
static geometries and use modern features of graphics li-

braries, especially the programmable pipeline.
However, this was not true for the QUADRO machine,

where display lists were the most effective way of render-
ing geometry. This is probably the result of driver op-
timizations, since display lists are a perfect solution for
static geometries present in many professional applica-
tions.

Configurations 9 – 17 give us more information about
the contribution of other modern techniques to the speed of
rendering. Using vertex array objects showed a slight slow
down when compared to configuration 7. This could have
been caused by misunderstanding the role of these objects
leading to an improper implementation in our rendering
module, or by insufficient optimization in the driver.

Using extension NV_vertex_buffer_unified_memory
and glMultiDrawElements led to an increase in speed
of rendering. It is obvious that setting buffers and
calling draw commands were probably the bottlenecks
in our application, and these features effectively reduced
their impact on the final speed of rendering. OpenGL
4.3 technique to set up vertex arrays did not result in
any significant speedup. We should also mention an
interesting fact, that all configurations 10 – 17 show
approximately the same GPU time, but they differ in the
time the application needed to call all functions.

The last two configurations show that using the core
profile does not lead to any significant difference in per-
formance (compare configurations 9 and 18). Obviously,
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debugging with debug context causes a performance loss.
This loss was much smaller on the QUADRO machine.
We, therefore, assume that professional graphics cards are
more optimized and therefore more suitable for debugging
than consumer graphics cards.

5 Conclusion

We measured and compared the speed of rendering of a
static scene in several configurations depending on tech-
niques used and the type of hardware. We found that us-
ing modern features of OpenGL such as shaders and ver-
tex buffer objects led to an increase in the rendering speed
on NVIDIA’s consumer graphics card GeForce. On the
other hand, professional graphics card NVIDIA QUADRO
achieved the best rendering times when we used display
lists and the fixed function pipeline. Given these results,
we believe neither old nor modern features are the absolute
choice for better rendering performance, as this highly de-
pends on the hardware the application runs on.
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Abstract

Shape Diameter Function (SDF) is a scalar function that
expresses a measure of the diameter of the object’s volume
in the neighborhood of each point on the surface on an in-
put mesh. It is fundamental in many applications in com-
puter graphics used for consistent mesh partitioning and
skeletonization. The algorithm sends several rays inside a
cone centered around the point’s inward-normal direction
and measures the distance at the point of intersection. We
have implemented the original algorithm and further ex-
tended it on GPU by parallelizing the ray casting process
using OpenCL. We have also generalized the algorithm to
support non-manifold meshes. The algorithm shows great
speedup in terms of timing when compared with the CPU
based implementation.

Keywords: Shape Diameter Function, OpenCL, Paral-
lelization

1 Introduction

Analysis of 3D models and processing of spatial data is
a fundamental part of computer graphics. However ac-
quired models are often non manifold or lack crucial data
i.e. skeletal representation, UV coordinates, etc. Meth-
ods as mesh processing and shape analysis are commonly
used to fill missing information. Such methods require al-
gorithms that are robust and work fast and effectively.

SDF is a volume-based shape function that can help to
process and manipulate families of objects which contain
similarities using a simple and consistent algorithm. It
can be used for skeleton extraction and mesh partitioning
and contraction. SDF remains largely unaffected by pose
changes of the same object and maintains similar values
in analogue parts of different objects [16]. The diameter
measured also relates to the medial axis transform (MAT)
[4]. However, unlike the expensive computation and han-
dling of medial axis, SDF is much simpler. It is a scalar
field created by sending several rays from every input point

∗kamenicky8@uniba.sk
†madaras@sccg.sk

on the mesh, measuring the distance at the point of inter-
section.

Such ray casting is highly parallel algorithm. If pro-
cessed on the CPU, the task becomes extremely inefficient.
Therefore, in our approach instead of tracing one ray at a
time, we propose a parallel method for computing SDF
that is performed on GPU using OpenCL, exploiting the
independence of rays.

The method was originally meant to be used effectively
only on manifold structures, but the process could be na-
tively expanded to non-manifolds. And so we propose sev-
eral changes that could further improve it’s support for
non-manifold structures. Finally, at the end of this pa-
per, we compare the results of our GPU implementation
against the CPU implementation.

Figure 1: Visualization of Shape Diameter Function with
values normalized to interval 〈0,1〉.
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2 Related Work

MeshLab implementation, implemented by Baldacci [2]
used a different approach for calculating SDF. The method
is based on iteratively peeling two or three successive
depth layers of the mesh from multiple views around the
mesh. This is performed through shaders and uses na-
tive GPU support for mesh projection and rasterization.
Thanks to uniform memory access, this could achieve bet-
ter results on larger meshes, but it loses detail on parts that
are too close to the camera.

In [6], it is pointed out that SDF can be approximated
using only a small subset of data. The remaining data is
interpolated via Poisson interpolation. Even though the
speedup is very significant, a lot of detail is lost on com-
plex surfaces and areas where different body parts connect.
This information can be crucial when connecting parts of
skeletons and could lead to improper skeletonization.

In [15], it is mentioned that the outliers removal tech-
nique proposed in [16] generates counterintuitive results
in some cases. The SDF value calculated by the Shapira
et al. method is given by the weighted average of all the
values thrown inside the point’s cone, which for exam-
ple in the case of a mesh composed of two parallel (in-
finite) planes, underestimates the correct diameter due to
large cone size. In [15] to resolve the dilemma between
a small or large cone, a more conservative estimation of
the SDF is introduced by using an adaptive cone size. In
the case, for example, of the infinite parallel planes this
method converges to a very small cone size giving a cor-
rect SDF value equivalent to the distance between the two
planes. In our GPU implementation we maintain the origi-
nal outliers removal approach proposed in [16], leaving the
one proposed by [15] for future work, because the adaptive
cone size is computationally more expensive than original
method. The ray has to be cast multiple times to find the
correct cone size.

3 Original SDF Algorithm

Let M be an input mesh surface defining a volumetric ob-
ject. SDF is a scalar function fv : M→ R that consists
of creating a cone centered around inward-normal direc-
tion (the opposite direction of its normal) of every point
p ∈M. Inside this cone several rays are sent to the other
side of the mesh, measuring the euclidean distance at the
point of intersection. Outliers are removed and the remain-
ing values are averaged and smoothed. As a result there is
a single value for every point p ∈M. The original algo-
rithm consists of 4 steps.

Step 1 - preprocessing: In order to facilitate the ray
casting, an acceleration structure is needed. Therefore in
preprocessing stage an octree is created.

Step 2 - ray casting: In the ray casting stage rays are
cast through octree and euclidean distance at the point of
intersection is measured. According to Shapira et al. [16],
the ideal number of rays is 30 inside a cone with angle of
120◦. The rays are chosen randomly.

Step 3 - outliers removal: After the measured distances
are obtained, the rays that are in the same direction as
the inverse normal of the mesh they hit (the same direc-
tion is defined as an angle difference less than 90◦) are
ignored. This is performed to remove false intersections
with the outside of the mesh. The SDF at a point is de-
fined as the weighted average of all rays lengths which
fall within one standard deviation from the median of all
lengths. The weights used are the inverse of the angle be-
tween the ray to the center of the cone. This is because
rays with larger angles are more frequent, and therefore
have smaller weights.

Step 4 - smoothing: In order to increase robustness and
fill in the values for points that could have ended up with
0 valid rays a smoothing stage is necessary. Anisotropic
smoothing is chosen to smooth the values of the points on
the mesh.

4 Our Implementation

We have based our implementation upon the original al-
gorithm extending it on GPU by parallelizing the ray cast-
ing process using OpenCL. We have inherited all the steps
from original algorithm and further extended them on
GPU.

4.1 Preprocessing

In the preprocessing stage we have to create an accelera-
tion structure around the mesh that will improve the ray
tracing routine. The acceleration structure is one of the
most important parts of ray tracing. As noted by [5], the
fastest acceleration structure for static scenes is kd-tree,
followed by bounding volume hierarchies (BVH). How-
ever for the purpose of comparison with the original arti-
cle, we have chosen to use an octree to be able to compare
results, leaving the other ones for future work. We com-
puted the octree on CPU because the preprocessing time
was not a concern. It is built in a top-down manner. Trian-
gles that were in the middle of several nodes were detected
through Mollers AABB-triangle intersection algorithm [1]
and split into multiple nodes. On our test models optimal
octree depth ranged from 6 to 12 depending on the number
of triangles. We have chosen a maximum depth of 10 for
consistent results.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
42



4.2 Ray Casting

There are several ways to perform ray casting on GPU.
Carr et al. [3] proposed to generate rays and perform
traversal of acceleration structures on CPU, then store
the results and perform ray-triangle intersections on GPU.
Purcell et al. [14] proposed to store scene geometry and
acceleration structure on GPU and perform both traver-
sal and intersection on GPU. Recent efforts in optimiz-
ing the algorithms for GPUs have demonstrated to obtain
better results on traversal of acceleration structures than a
single-core execution on CPU. Therefore in our approach
we send data containing triangle indices and acceleration
structure to GPU, then we perform a per-ray computa-
tion of SDF. Our code is based upon the original imple-
mentation of the algorithm extending it to GPU with the
help of OpenCL [12]. OpenCL was chosen because it is
an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors,
making it an universal solution for multiple platforms.

The computation of SDF is a three step process that con-
sists of generating and casting rays, traversing the chosen
acceleration structure and measuring the distance at the
point of intersection with the geometry.

Ray Generation: In the first step, we have to generate
N rays in a cone centered around inward-normal direction
of a given point p. The generation of rays on CPU and then
transferring the data to GPU creates unnecessary over-
head because we have to store every ray and it’s associated
weight (inverse of the angle between the ray and the center
of the cone). Therefore the rays have to be generated on
GPU, but original algorithm generates the rays randomly,
which would require defining a pseudo-random generator
in OpenCL and store weight per every ray. Rolland [15]
has tackled this problem by defining a cone sampling strat-
egy consisting of random rays that are uniformly generated
inside the cone. However, we wanted a fast determinis-
tic algorithm that would be uniform for both smaller and
larger number of rays and for any given cone. This is to
prevent storing weights and to avoid unnecessary bias in
the values on the mesh, which can be seen in Figure 2.
Therefore, we have decided to evenly distribute rays in a
cone with the help of Spherical Fibonacci [10].

Figure 2: (a) random ray generation, (b) uniform ray gen-
eration using Spherical Fibonacci.

The algorithm generates the rays in a sphere from top

to bottom. The generation was restricted to a given
sphere cap and once a ray is generated, it is transformed
into world coordinates by multiplication it with tangent-
binormal-normal matrix specified by the point’s inward-
normal and two orthogonal unit vectors spanning the tan-
gent plane of the point p. It is important to note that only
valid points are used to generate the rays from (valid point
is defined as having a non-zero normal, tangent and binor-
mal vectors). Using triangle centers can have advantages
over vertices in non-manifold models, where the normal of
some points can not be properly determined. And it helps
to reduce necessary data transfer thanks to the fact normal,
tangent and binormal can be calculated.

Figure 3: Generating rays uniformly with Spherical Fi-
bonacci, image from [10].

Octree Traversal: In the second step we traverse our
acceleration structure. Every ray is computed separately,
one ray per work item. This is faster on modern cards
that have thousands of cores. Unfortunately, we could not
avoid random memory access that slows down the entire
process. The octree structure and triangles are sent to GPU
and each ray is cast separately. Several octree traversal
methods are mentioned by Kristof et al. [7], notably neigh-
bor pointer, kd-restart and short-stack approaches. Our
implementation is based on Laine et al. [8] stack-based
approach, but unlike [8] the tree is traversed in a top-down
fashion all the way to the leaves. The nodes are traversed
until we find a valid intersection in the third step.

Triangle Intersection: In the third step we compute
ray-triangle intersection between the cast ray and trian-
gles that belongs to a given node. As mentioned by
Philippe et al. [13], one of the best algorithms for ray-
triangle intersection is Moller and Trumbore [11] because
it uses mainly dot and cross product that is fast on cur-
rent graphical hardware. To improve the algorithm on
non-manifolds, we have to skip intersections that are too
close to the ray origin, like in the case of self intersect-
ing mesh. We define minimum closeness using the max
dimension of model (max size) as mininum closeness =
max size ∗ 2.0 ∗ 0.00001; Once the intersection is found,
we check if the ray is valid by comparing normal at the
point of intersection and the ray direction as mentioned
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in original algorithm [16]. In a case when no intersection
is found, the distance is set to −1 and the ray is ignored.
Afterwards the measured distance is stored in memory.

Data Management: Mesh triangles are stored in a
32bit RGBA texture. Coordinates (X, Y, Z, W) of each ver-
tex of a given triangle are stored in a single texel. Normals
and other necessary information is calculated on GPU. We
encode the topology of the octree using 2 arrays. First one
contains 32-bit child descriptors, each corresponding to a
single node. The child descriptor contains a 24-bit child
pointer and a 8-bit bit-mask that tells whether each of the
child slots actually contains a node. In a case when the
node is a leaf the child pointer points to the second array
containing data for leaf nodes. Each leaf has to store the
number of triangles it contains and their pointers to the tri-
angle texture. This is all stored in the second array which
can be seen in Figure 4.

Figure 4: (a) 32bit child descriptor, (b) leaf data.

In a case when we are using triangle centers as the
points from which we are casting the rays and measur-
ing the distance, no additional information is necessary.
Otherwise, we have to store the point’s origin, normal and
tangent or other information like triangle / vertex neigh-
bors from which we can fill in the data. At last we have to
store our results. They are stored in a single array with size
= number of points ∗ number of rays. Figure 5 shows an
example of how the octree topology is stored in memory.

4.3 Outliers Removal

Once we collected all values for our points and their rays,
another program is executed on GPU. We do not have to
send the data to GPU because they are already there from
previous step. For output we create 1 array containing
value for every point. The work is split in a way that 1
work item processes data of one point. Rays with lengths
which do not fall within one standard deviation from the
median of all lengths are removed and the rest is averaged
using weights that can be calculated again thanks to our
uniform sampling. After we get our final value, we send
the data to CPU memory. While we are saving the data,
we normalize them, this is very fast and does not needs
to run on GPU because we would need another array for
second output.

Figure 5: Octree topology on an example. (a) octree struc-
ture, (b) 1st array with octree nodes, (c) 2nd array with leaf
data.

4.4 Smoothing

As mentioned in the original paper [16], to overcome er-
rors in the measure caused by pose changes or complex
surface geometry, a smoothing operation is necessary. The
method chosen is directly related to the result we are trying
to obtain because various methods can lead to significantly
different values. Therefore we propose 3 approaches that
can be used to smooth the SDF values in various ways.

Smoothing on Mesh: In first approach we smooth val-
ues in mesh, by defining k-ring neighborhood Gaussian
smoothing. The k specifies the blur radius given by our
connectivity in mesh, which can be seen in Figure 6. We
start with a chosen vertex, for which the k = 0; In first
iteration, we create a list of vertices that share an edge
with our first vertex. These vertices have k = 1; In every
next iteration we create a new list of vertices that share at
least one edge with vertices from previous iteration, but
only those that we have not yet chosen. This is repeated
until we reach our desired k. We then create a 1D Gaus-
sian matrix for our k and perform weighted averaging of
all the values from vertices using data from our matrix as
weights. This is repeated for every vertex in mesh. To
ensure consistency and continuity during smoothing, du-
plicated vertices have to be merged into one. This ensures
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that the k-ring neighborhood Gaussian smoothing will not
fail to find neighboring vertices. This method of smooth-
ing does not preserve values at corners. In a case when the
values should be preserved, smoothing can be performed
on triangles and the dihedral angle between the connected
triangles from 2 consecutive iterations can be used as ad-
ditional weight. This method can be parallelized, but it
is not suited for GPU because it requires large dynamic
arrays for the vertices and is mostly based on accessing
memory than doing mathematical calculations.

Figure 6: Smoothing by defining a k-ring neighborhood on
the mesh.

Smoothing on Projected Points: Our next approach
is based on projecting the points in their inward normal
direction to a distance which is half of their SDF value.
This creates a cloud like structure inside the mesh that re-
sembles medial axis. Then for every point we perform
nearest neighborhood search within the radius of the given
point’s SDF value, acquire the SDF value of every detected
point and average the result. But due to the fact that many
meshes have round, spheroidal parts where thousands of
points can occupy small space, this would lead to a time
complexity of O(n2) in worst case where n is the number
of points. Therefore, for efficiency we have to join the
points whose distance from each other is too small. This
can be done by creating an octree structure, that will store
the average value of projected points and their count in
it’s nodes. And instead of searching nearest points within
the radius of the given point’s SDF, we search nearest oc-
tree nodes, which can be seen in Figure 7. We perform
this by traversing the tree from top to bottom, checking if
nodes are within the radius of our SDF value. If a node
is fully inside our radius, we do not traverse this node fur-
ther. At the end, we average values from the nodes using
weighted averaging. As weight we use the multiplication
of number of points in each collected node and an approx-
imate percentage of how much of the cube lies inside the
radius. This method can be parallelized on GPU. Besides
the standard octree structure that must be send to GPU,
we have to include number of points and SDF value for
every node. Leaves do not need to contain any additional
pointers. Other information as the projected points and

their SDF values can be obtained from data that remained
from ray casting steps. Octree node positions and dimen-
sions can be interpolated from the position and dimension
of root node.

Figure 7: (a) mesh with SDF values, (b) projected points
resembling medial axis, (c) octree nodes containing the
average SDF values.

Smoothing in Texture: In our third approach we have
chosen a more traditional method by smoothing the SDF
values in texture. This requires that the mesh has a proper
UV coordinates. In a case when the parametrization is
missing, but we have a manifold model, it is possible to
use Skeleton Texture Mapping [9] to create necessary UV
coordinates. If performed on GPU, the fastest way is to
use shaders. We bind our texture to a Frame Buffer Ob-
ject (FBO), then we create a 2D orthogonal projection that
has in the bottom-left corner coordinate (0,0) and in the
top-right corner coordinate (1,1). Then we use OpenGL
to draw the triangles into this texture using their UV co-
ordinates and their SDF values as color. Afterwards we
run our shader program that performs the smoothing oper-
ations. There are various methods that can be used, from
Gaussian to bilateral, median or anisotropic filtering. After
the smoothing is performed, we retrieve our results from
texture. In a case when we end up with a vertex that has
multiple UV coordinates, we can average the result. Result
of Gaussian filtering can be seen in Figure 8.

Discussion: Smoothing on mesh: The parameter k is set
manually depending on the number of triangles / vertices
the mesh contains. We have tested the effect of various
parameter settings on the consistency of the SDF on many
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Figure 8: (a) before smoothing, (b) after smoothing.

meshes. In practice smaller meshes up to 20k triangles re-
quired radius of 2, while larger meshes like point cloud
scans with 500k+ triangles radius of 5+. This smoothing
approach gave best results when compared to others, how-
ever it was the slowest. It fails when the connectivity in
mesh is not well defined or when the triangles does not
have approximately the same sizes, in this case a lot of
detail can be lost.

Smoothing on projected points: When creating an oc-
tree additional restrictions can be applied to further reduce
the depth, while keeping the detail. In practice, the pro-
jected points are much closer to each other than the trian-
gles in mesh and so we can use a smaller maximum depth,
8 was satisfying in most cases. Also minimum number of
points for a node to branch can be increased to about 0.2%
of all points. We can also compare the average value of
the points against the octree dimensions and if it is big-
ger, then we do not branch. This method is faster than
the first one, but the parallelization on GPU leads only to
a slightly better results due to a lot of memory access. It
also has an advantage that we do not have to set any radius
value, because it is automatically acquired from the SDF
values. Stronger smoothing can be obtained by iteratively
running the method, which can even yield better results. It
fails when the mesh surface is too irregular and the points
are projected randomly, not forming a cloud like structure.
Also it keeps the values at corners, which can be unwanted
in some cases.

Smoothing in texture: This method is by far the fastest
one, done in terms of ms even on large textures like 2048×
2048. The need to have UV coordinates can be contra-
productive because the automatic methods to create them
are very slow. It can fail in multiple cases. First one is
when the texture parametrization does not divide the mesh
into logical parts. Second one is the texels of different
parts are within the smoothing radius. Third one is when
the projected triangles have different sizes. In practice we
set the radius to 2 for a 256×256 texture and multiply as
necessary, but it can vary depending on the model.

In Figure 9 the effect of all the methods on single model
can be seen. Smoothing in texture performed similarly to
smoothing on mesh, while smoothing on projected points
kept more detail in corners.

Figure 9: (a) no smoothing, (b) smoothing in texture, (c)
smoothing on mesh, (d) smoothing on projected points.

5 Results

The testing was done on Intel Core i5, 2,67GHz with 4GB
RAM and AMD Radeon R9 290, using 30 rays for each
point. The algorithms were implemented in C++ in Visual
Studio 2012 using standard OpenCL API.

Table 1 show basic performance of ray casting routine,
outliers removal and smoothing. As for the smoothing
chosen in the Table 1, we decided smoothing on projected
points was the most suitable because it did not require
any additional parameters. Table 2 shows octree creation.
The time was measured on CPU. Table 3 shows smooth-
ing on mesh using various k-ring area settings. The time
was measured on CPU because we did not had a GPU im-
plementation. Table 4 shows smoothing in a 2048×2048
texture using Gaussian Filter with various radius settings.
Figure 10 shows percentage difference between GPU and
CPU implementation when used on the same model with
varying level of detail.

Figure 10: Benefits of GPU implementation with varying
level of detail. Comparison was performed on model of
Stanford Dragon.
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Model Faces SDF Computation Outliers Removal Smoothing Total
Lizard 1 000 000 555,9 18,049 3,3 0.078 7,098 1,166 566,298 19,293
Stanford Dragon 500 000 234,1 8,721 1,32 0.047 3,385 0,576 238,805 9,344
Davy Jones’ head 260 000 143,0 2,449 0,843 0,032 1,139 0,334 144,982 2,815
Skeleton 100 000 41,209 0,967 0,521 0,024 0,437 0,155 42,167 1,146
Buzz Lightyear 40 000 11,122 0,499 0,141 0,016 0,312 0,047 11,575 0,562
S-shape 20 000 4,274 0,219 0,063 0,015 0,171 0,016 4,508 0,250
Rabbit 15 000 3,026 0,156 0,047 0,008 0,109 0,015 3,182 0,179
Bottle 2 500 0,316 0,031 0,016 0,006 0,015 0,012 0,347 0,049

CPU GPU CPU GPU CPU GPU CPU GPU

Table 1: Results for both CPU and GPU computation of SDF. Listed times are in seconds. Total time does not include
preprocessing.

Maximum Depth Octree Creation
14 13,931
12 8,923
10 3,525

8 0,998
6 0,421
4 0,218
2 0,063

Table 2: Octree creation in preprocessing stage with vary-
ing maximum depth. Listed times are in seconds. We used
model of Stanford Dragon with 500 000 triangles.

k-ring Smoothing
8 26,567
7 20,015
6 14,882
5 10,764
4 7,566
3 5,024
2 3,120
1 1,762

Table 3: Smoothing on mesh using various k-ring areas.
Listed times are in seconds. We used model of Stanford
Dragon with 500 000 triangles.

6 Conclusion

In Section 3, we described the present state of methods
used in the in the original paper [16]. In Section 4, we pro-
posed our OpenCL implementation of the algorithm. We
described all the steps necessary to perform the ray cast-
ing, outliers removal and smoothing on GPU. The various
smoothing techniques which we subsequently developed
(see Figure 9) can be used to increase robustness and over-
come unwanted variations on mesh. Finally, in Section 5
we compared our GPU implementation against the CPU
implementation and shown great speedup in terms of tim-
ing.

Radius CPU smoothing GPU smoothing
64 15,756 0,160
32 10,842 0,117
16 8,361 0,106

8 7,192 0,101
4 6,599 0,093
2 6,318 0,083

Table 4: Smoothing in a 2048× 2048 texture using vari-
ous radius settings. Listed times are in seconds. We used
model of Stanford Dragon with 500 000 triangles.

Overall, in this paper we have proposed a parallel
method for computing ray casting, outliers removal and
smoothing steps of Shape Diameter Function that is per-
formed on GPU using OpenCL. We have maintained the
accuracy of the results while noticeably increasing it’s
speed.

References
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Abstract

Due to growing demand for computer generated graphi-
cal content, procedural modeling has become an important
topic in the gaming and movie industry. Creating vast
amounts of content by hand requires excessive amounts of
manual labor. Using a procedural rule set, entire worlds can
be generated by a computer. However, the traditional CPU-
based derivation of a large city can take multiple hours,
making rapid design iterations impossible. In this paper,
we investigate different strategies to execute procedural
modeling on graphics processors using CUDA. We com-
pare a persistent threads megakernel approach to simple
kernel calls and different rule queuing strategies. Along
these lines, we explore the trade-off between precompiling
an entire rule set and interpreting a rule set online.

Keywords: GPGPU, megakernel, procedural modeling,
rule derivaton, shape grammar

1 Introduction

Generating graphical content in an automated fashion has
become increasingly important during the last decade.
Many recent computer games offer vast open virtual worlds,
where the player can freely explore the environment. In
the latest version of Grand Theft Auto for example, the
area is not confined to a single city, but also includes its
suburbs, where one can walk, drive or fly. Movies like Lord
of the Rings show huge battlefield scenery with thousands
of warriors fighting on wide open plains.

Those are examples of extensive use of digitally cre-
ated content, which requires vast amounts of manual labor
to produce. By automating content creation as much as
possible, artists can spend more of their time on elements
relevant to narrative and gameplay, rather than on creating
peripheral scenery.

The task of creating reoccurring, parameterizable objects
like houses or trees is well suited to procedural modeling.
Rules for model production can be defined in a shape gram-
mar. Starting from an initial set of shapes, these rules
iteratively add detail to the scene. After fully evaluating
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such a rule set, the geometry which describes the entire
scene is ready for rendering. However, grammar derivation
for thousands of buildings can take many hours on a con-
ventional CPU, even with several cores and a high clock
rate.

One way to increase performance is parallelization. Par-
allelizing tasks and algorithms has gained much popularity
with the introduction of general purpose GPU computing.
With many cores on a single chip, the performance of a
GPU is unmatched by any CPU, assuming a suitable par-
allelizable task. Procedural geometry generation is such
a task, which can be, if done carefully, parallelized and
computed efficiently on a GPU.

As will be discussed in the section on related work, vari-
ous attempts of mapping this challenging task to a graphics
processor have already been made. This work focuses on
exploring the benefits and drawbacks of deriving precom-
piled rule sets versus interpreting them at runtime. Fur-
thermore, various methods of controlling the GPU rule
evaluation process will be subject to testing. This includes
launching several successive kernels as well as deriving the
entire scene using a single kernel launch, using a persistent
threads megakernel approach.

2 Related Work

Currently, the most widely used grammar for procedural ar-
chitecture modeling is CGA [12]. CGA is based on Stiny’s
work on shape-grammars [16] and set-grammars [18]. Fur-
thermore, it uses split operations for facade modeling as
proposed by Wonka et al. [19] and transformation opera-
tions similar to L-systems [13]. Approaches augmenting
the functionality and usefulness of shape grammars exist
on more general non-terminal symbols [3] and mesh refine-
ment [2]. Apart from grammar based approaches to the
procedural generation of geometry, other methods can be
used to obtain high quality models [6, 7, 11].

Parallel grammar derivation has been investigated in
various approaches which differ greatly in their strategy.
Deriving L-systems on CPU clusters has been done by [20].
Considering the inherent parallelism of the algorithm, CPU
clusters seem to be a good idea. However, when using a
GPU, the results are already in the memory of the graphics
card which is obviously more convenient for rendering.
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A recent L-system generator for the GPU has been pro-
posed by Lipp et al. [8]. In their work, they used mul-
tiple kernel launches to implement iterative rewriting of
L-systems. Using a single thread per symbol without sort-
ing the symbol stream has some drawbacks. First, memory
accesses can become problematic if symbol sizes are not
coherent. Second, thread divergence, which is the effect
of threads taking distinct execution paths, results in dif-
ferent times the threads need to finish their work. On a
GPU, where it is desirable to have as many threads occu-
pied as possible at any point during run time, this effect
causes some threads to wait on others which might take
longer. This drastically impacts performance. And third,
the management overhead for keeping track of where to
store symbols quickly becomes a dominant factor. Thus,
for context sensitive grammars, the derivation process was
even slower on a GPU than on a CPU.

Shader based derivation of split grammars has been pro-
posed and investigated by Lacz and Hart [4], Magdics
et al. [9] and Marvie et al. [10]. The method by Lacz
and Hart uses a render-to-texture loop and imposes the
main workload of the algorithm on sorting intermediate
symbols—similar to the overhead found in L-system gener-
ator by Lipp et al. The method Magdics et al. also requires
several rendering passes. It tries to prevent divergence by
using a different shader for each output symbol. In our
evaluation, we incorporate an approach inspired by their
work, efficiently grouping output symbols and launching
individual kernels for each symbol type.

The approach by Magdics et al. avoids multi-pass ren-
dering by using a fixed size stack. Using a fixed size stack
has multiple drawbacks. First, recursion depth is limited.
Second, stack elements might be spilled to slow global
GPU memory. Third, parallelism is limited to the number
of axioms. And fourth, divergence can play a crucial role,
if objects do not have identical structure.

An approach focusing on parallelizing grammar deriva-
tion for procedural modeling of architecture has been pub-
lished by Steinberger et al. [15]. The PGA grammar is
based on CGA[12] and uses a software scheduling GPU
framework [14]. To avoid divergence, their approach
groups shapes, which are to be processed by the same
rule. Additionally, they draw parallelism from the rule
itself. PGA compiles the entire rule set to achieve high per-
formance rule derivation. The work reported in this paper
is a direct extension of PGA.

3 GPU Split Grammars

Split grammars, introduced by Wonka et al. [19], are spe-
cialized set grammars, which impose restrictions on the
allowed shapes and operations to make the grammar simple
enough for automated derivation, but sufficiently expressive
to allow the modeling of many different objects.

A split grammar builds on the notion of shapes and set
grammars. A shape can be defined as follows [17]:

Definition 3.1 A shape is a limited arrangement of straight
lines in three-dimensional Euclidean space.

Split grammars operate on a set of basic shapes, which can
have attributes, can be parameterized and labeled. These
basic shapes form the core buildings blocks of split gram-
mars. Examples for the geometry represented with basic
shapes are boxes, spheres, cylinders, rectangles, etc. The
parameters of these basic shapes define their extent, their
position, etc. The label associated with the shape is often
called symbol. This symbol can either be a terminal symbol
∈ T or a non-terminal symbol ∈ N.

A grammar can be defined as a set of production rules
R on a set of symbols U , using the following definition
similar to the one given by Wonka et al. [19]:

Definition 3.2 A grammar G = (N,T,R, I) consists of the
non-terminal symbols N ⊆U, the terminal symbols T ⊆U,
a set of initial symbols (axioms) I⊆N and a set of rewriting
rules (productions) R⊆U×U∗.

A rule a−→ B in a grammar is applicable to a non-terminal
symbol a ∈ N, replacing it with B, whereas B can be any
combination of non-terminals ∈ N and terminals ∈ T .

In a set grammar, the production process works on an
active set of symbols. Initially, the active set consists of
all axioms. During production, any non-terminal symbol
from the active set of symbols is chosen and a fitting rule
is executed on this symbol. The symbols generated by
that rule are put back into the active set of symbols. This
process continues, until there are only terminal symbols
left in the active set.

In the case of split grammars, the production process
works on shapes. Rules thus describe geometry operations
on the input shape, generating any number of new shapes.
For a grammar to be a split grammar, only two kinds of
rules are allowed [19]:

• Split rules: A split rules splits a shape into multiple
shapes, covering the exactly same volume as the input
shape.

• Conversion rules: A conversion rules replaces a shape
by zero to multiple shapes, where the generated shapes
must be contained in the volume of the input shape.

These restrictions allow for a simple grammar derivation,
as rules can only influence a constrained volume, as shown
in Figure 1. Furthermore, every shape can be treated inde-
pendently of the other shapes in the active set. This allows
for a fully parallel production process. CGA, and conse-
quently our grammar as well, do not have these restrictions
and shapes can also increase in size, be moved or extruded.
Furthermore, to simplify things, our implementation does
not support control grammars lie CGA does.

To ease the process of writing rules, rules are usually
composed of operators. Operators can be seen as basic
geometric transformations executed in sequence to form a
rule. Our grammar supports the transform-only operators
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(a) A Simple Split Grammar
(b) Result of the rule
set (a)

Figure 1: A split grammar works a set of shapes, each
associated with a symbol. Rules (a) replace one shape
by a group of other shapes. Using split grammars, more
complex objects can be generated from very simple rules.

Translate, Rotate, and Scale and generative transforma-
tions that produce more shapes than existed before the
transformation. Those operators are Repeat and Subdivide.
Furthermore, we support two operations that change the
dimension of a shape: the Extrude operator, applied to a
quad, generates a box the ComponentSplit operator, ap-
plied to a box, generates quads, representing the six faces
of the box. Finally, we support the GenerateTerminal and
the DiscardTerminal operator. The former calculates the
geometry or simply copies the scaled model matrix (details
in the implementation section 4). For instance, the third
rule in Figure 1(a) splitting shape T into five shapes can be
modeled as a combination of two Subdivide operators.

We use C++ template code to write define operators in
the rule sets. Three example operators are described below
with listings 1, 2 and 3 to illustrate the syntax:

• Repeat takes two parameters, a successive symbol
and a shape and produces as many new shapes with
the width specified by the second parameter as fit into
the original shape. The operator can work on either of
the other two dimensions.

Listing 1: Repeat Operator
1 repeat<X, 2, CallRule<Successor>>

applied to a box with width 8 will output four new
boxes with a width of two (and the remaining extents
according to the input shape), which all have the sym-
bol ”Successor” as its successive symbol.

• Subdivide takes a varying amount of parameters and
successive symbols plus the input shape. The first
parameter is again the axis, the operation is applied
to. The remaining parameters specify the relative
width/height/depth for the newly generated shapes
and their successive symbol, which can be different
for each shape. The symbol can also be the same for

every output shape, but has to be specified as many
times as there are output shapes.

Listing 2: Subdivide Operator
1 subdivide<Y,
2 SubdivParam<500, CallRule<Successor1>,
3 SubdivParam<500, CallRule<Successor2>>>

Applied to a box with the height of four, Subdivide
will produce two boxes with the height of two (and the
remaining extents according to the input shape). The
successive symbols of the two resulting boxes will be
”Successor1” and ”Successor2”, respectively.

• ComponentSplit takes an input shape and generates
as many new shapes of lower dimension as are needed
to represent the faces of the original shapes. Our
implementation supports only the splitting of a box
into six quads. The operator needs to be provided only
with the six successive symbols (which may be all the
same symbol, but in this case have to be specified six
times).

Listing 3: Component Split Operator
1 Compsplit<CSP<CallRule<Bottom>,
2 CSP<CallRule<Top>,
3 CSP<CallRule<Right>,
4 CSP<CallRule<Left>,
5 CSP<CallRule<Back>,
6 CSP<CallRule<Front>>>>>>>>

Using CUDA, a single thread can be launched for every
shape in the active set, applying the rule associated with the
shape’s symbol. Despite the great potential for parallel exe-
cution in split grammars, traditional GPU stream process-
ing approaches are not well suited to fulfill the derivation
process efficiently because work loads are highly irregu-
lar in split grammars, leading to thread divergence. Since
our grammar descends from split grammars, this problem
needs to be considered.

To avoid thread divergence, a scheduling system based
on rule queuing can be set up to keep up the occupancy of a
GPU [15]. The results of this rule scheduling paradigm are
promising, as this system allows to generate whole cities
in real time. However, this work only focuses on a single
strategy to schedule rules: The entire GPU is occupied with
a persistent threads approach [1]. Symbols of equal type
are collected in queues, while workers draw elements from
these queues. All rules have to be available at compile
time, requiring a full recompile when altering the rule set.
In this work, we investigate the alternative methods to
schedule shape grammars on the GPU. On the one hand, we
investigate the benefits and downsides of scheduling whole
rules versus scheduling work for each operator individually.
On the other hand, we investigate the trade-off between
compiling entire rule sets and interpreting the provided rule
set during runtime.
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Figure 2: Using an individual queue for each rule, we
provide an iterative shape rewriting algorithm, which does
not suffer from divergence. At first all axioms are being
placed in the queues. Then, we read the queue fill rate back
to the CPU before launching just enough threads to process
all queued shapes. We continue this process until there are
only terminal shapes left.

3.1 Iterative Production

The most straight forward way to tackle shape grammar
evaluation is starting a single thread for each symbol in
the current active set. This is similar to the approach by
Lipp et al. [8]. As mentioned before, this method has
the drawback of extensive thread divergence. Inspired by
the approach by Laine et al. [5], we avoid thread diver-
gence, providing individual queues for each rule. Before
running the rule evaluation, we allocate a queue for each
rule on the GPU. We then insert the axioms into the per-
rule queues. After querying the queue fill rates, we start an
individual kernel for each queue, launching just as many
threads as there are elements in each queue. Each thread
then fetches one element from the queue and executes the
rule associated with it. During rule evaluation, new shapes
are generated, which are again inserted into the respective
queues. Terminal shapes are placed into a separate set of
arrays, for which no rule evaluation is taking place. These
arrays are later used for rendering. After all kernel launches
are completed, we read the queue fill rates from the GPU
and again launch kernels to evaluate rules for all shapes
currently being held by all queues. We continue this pro-
cess until all non-terminal shapes have been processed, i. e.,
all queues reach an empty state. Shapes currently being
queued represent the current active set. This process is
visualized in Figure 2.

Using this approach, all threads within one kernel eval-
uate the same rule, executing the same set of instructions.
Thus, no thread divergence occurs and execution is efficient
on the GPU hardware. While this approach is set up easily,
deriving a whole rule set requires many kernel launches.
Additionally, the queue fill rates need to be read back from
the GPU before a new set of kernels can be launched. This
step cannot be avoided, as the number of threads to be
launched needs to be known.

Figure 3: As alternative rule derivation algorithm, we use
a persistent megakernel setup. Worker blocks are running
in an endless loop. At the beginning of each loop iteration,
they draw a new setup of shapes from one of the queues and
evaluate the associated rules, before inserting the generated
shapes back into the queues. The kernel is kept alive until
all non-terminal shapes have been processed.

3.2 Persistent Megakernel Production

As alternative way to tackle shape grammar evaluation on
the GPU, we use a persistent threads approach [1]. We
again use a single queue per rule. But instead of launching
a new kernel for every rule production, we run threads in
an endless loop. In every loop iteration, each thread draws
a shape from one of the queues and executes its associated
rule. If new shapes are being generated, we add them back
into the respective queues. As shapes are being drawn from
the queues and inserted into the queues concurrently, we
use a flag per queue element to avoid errors due to read-
before-write dependencies [14]. All threads continue in
their loop, until all queues are empty and no thread is still
evaluating a rule. To avoid thread divergence, we force all
threads within a block to draw shapes from the same queue
in every iteration. This setup is outlined in Figure 3.

A persistent megakernel setup avoids synchronization
with the CPU and does not have any kernel launch over-
head. On the downside, all rules must be compiled into the
same kernel. As kernels are optimized as a whole, the char-
acteristics of the most resource-hungry rule determines the
efficiency of all others. Furthermore, the persistent setup
requires a more complex queuing strategy to avoid errors
due to read-before-write dependencies. As our grammar
does not introduce any priority among rules, shapes can be
drawn from any queue at the beginning of each iteration.
To avoid idle threads, we circle through all queues in a
round robin fashion and only draw shapes from a queue if
there are enough shapes in the queue to provide all threads
in the block with work.

3.3 Precompiled Rules

The goal of the precompiled rule set approach is to leave
as many decisions as possible to the compiler. For this
approach, we require the complete rule set to be specified
beforehand. This includes all rules, their parameters, and
outputs. The only information not required in advance are
the axioms. All computations and branch decisions that are
not input dependent need only be done once, so we perform
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them at compile time. Thus, during runtime, all operators
can be executed without any additional information. No
lookups to rule tables or symbol translations are needed.

The anticipated result is that this method achieves the
best possible performance when compared to approaches
that can adjust their behavior to different rule sets during
runtime. Precompiled rules lose the flexibility of chang-
ing the rule set at run time and need significantly longer
compile time. Usually, the performance gain from precom-
piling a rule set would be leveraged in production systems,
such as games, once the design phase is finished and no
interactivity is needed anymore.

Precompiled rule sets are evaluated in a ”one rule at a
time” fashion by our software. This means that several
operators can be chained together in a rule which forms
the procedure to be called by the scheduler. While this
approach has low scheduling overhead, it may not exploit
all options for parallelism. The same operators are likely to
be used in different rules and could be executed efficiently
in parallel. However, the scheduler only knows about rules,
thus it treats all rules as different. Moreover, the complexity
of such a precompiled rule set can increase quickly. This
circumstance not only imposes high requirements on the
quality of the compiler, but also, if not implemented care-
fully, results in very high compile times, which may only
be tolerable for production use.

3.4 Interpreted Rules

Interpreting rules at runtime gives flexibility when design-
ing new objects at the cost of performance. With this ap-
proach, rule sets can be imported from file or created inter-
actively, possibly with a rule editing tool—ideally with a
graphical user interface.

In the interpreted mode, our solution evaluates rule sets
in a ”one operator at a time” fashion. This means that every
rule is broken apart into its operators and intermediate
shapes are generated. These shapes are handed over to the
scheduler. To determine how operators are strung together
to rules for the currently used rule sets, we generate a
dispatch table. This table holds for each (intermediate)
symbol the operator to be executed, the parameters for each
operator and all generated output symbols. During runtime,
whenever a thread starts the evaluation for a certain shape, it
fetches all parameters from the dispatch table and executes
the requested operations. To avoid divergence, we keep
one queue per operator. When a new shape is generated,
we look up which operator should be called for it next and
insert it into the respective queue.

The major advantage of interpreted rule sets is the ability
to alter the rule set during run time, allowing for efficient
prototyping and immediate feedback. Another advantage
of interpreted rules is that the scheduler is now exposed
to all available parallelism: shapes to be executed by the
same operator can be grouped, even if they are used in
completely unrelated rules.

4 Implementation

Our implementation is written in CUDA and C++ and
makes heavy use of templates. Rendering is done in two dif-
ferent ways using OpenGL. The two variants are instanced
and non-instanced rendering. In the non-instanced method,
vertex, normal and instance data is generated by the termi-
nal operator. The instanced method renders basic shapes
(boxes, quads, etc) and only needs to apply the calculated
model matrix to put the shape into its place in the final
rendering.

Using instanced rendering has three advantages: First,
during terminal evaluation, less data has to be written to
slow global GPU memory, as only the matrices need to be
copied. Second, less storage is required between genera-
tion and rendering. And third, during rendering, less data
needs to be read, saving memory bandwidth. However, the
number of vertices of the basic shapes is too low for an
efficient usage of instanced rendering. Thus, rendering is
actually slower using instancing.

To implement a shape, we store its type, size and the
model matrix (and the symbol ID in the interpreted method).
All operators, except the GenerateTerminal operator, only
alter these attributes, which is all the information needed
to produce the geometry data. Using the non-instanced
rendering method, GenerateTerminal calculates, according
to the type of the shape, the vertex attributes and stores
them in an OpenGL buffer, which is mapped to CUDA
before the generation process starts. If we use instanced
rendering, all that is left to do for the GenerateTerminal
operator, is to store the model matrix in the OpenGL buffer.

The precompiled method is implemented using the tem-
plate meta-programming paradigm. All rule sequence de-
cisions are made by the compiler according to the rule
definitions, which creates instances of rules and operator
chains at compile time. The rule definitions are written
in C++ template code as shown in listing 4. We use the
template code not only to generate the operator chains for
the precompiled method, but also to fill the dispatch tables
for the interpreted case. However, the compile process in
the interpreted case does not involve the generation of GPU
code, only the CPU code generating the dispatch table.
Thus, a full runtime adjustment of the rule set could easily
be achieved using a custom parser.

Listing 4: Sample Rule Set
1 struct RuleB : RuleT<Box, IfSizeLess<X, 200,
2 DiscardTerminal, GenerateTerminal> > {};
3
4 struct RuleA : RuleT<Box,
5 translate<0, 567, 0, GenerateTerminal > > {};
6
7 struct StartRule : RuleT<Box,
8 rotate<45000, 45000, 0, subdivide<X,
9 SubdivParam<270, CallRule<RuleA>,
10 SubdivParam<160, CallRule<RuleB>,
11 SubdivParam<300, CallRule<RuleA>,
12 SubdivParam<270, CallRule<RuleB>
13 > > > > > > > {};
14
15 typedef RuleSet<RS<StartRule, RS<RuleA,
16 RS<RuleB> > > > TheRules;
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Houses S. Sierpinski M. Sierpinski

Rules 9 5 15
Operators 11 4 4
Terminals 332.8k 3.20M 1.35M

Vertices 7.99M 75.8M 32.5M
Indices 11.99M 115.2M 48.7M

Table 1: Test scene statistics

Figure 4: The Houses testcase shows a scene of 32× 32
simple house models.

5 Results

As this paper focuses on the rule derivation process, only
rudimentary shaders have been applied to visualize the
produced geometry. The absence of visually appealing
rendering, as well as other features not relevant for this
paper, like optimizing the number of objects that need
to be generated or ignoring geometry that need not be
regenerated for every frame is the topic of future work. The
results of the tests presented in this section were carried out
on a system with an Intel Core i7-3770 CPU at 3.4 GHz, 16
GB of main memory and a NVIDIA Geforce GTX TITAN
with 6 GB VRAM.

We compare eight different configurations, which are
variations of interpretation and precompilation, instanced
and non-instanced rendering, as well as iterative production
and persistent megakernel production. We applied these
variation to three different rule sets: Houses, Single Sier-
pinski, and Multi Sierpinski. The statistics for these three
rule sets are summarized in Table 1. Example views for all
scenes are shown in Figure 4-6.

The evaluation results are shown in Table 2-4. In all
examples, the generation time in the instanced variant was
between three to five times lower than the non-instanced
variant. The highest difference was achieved in the Multi
Sierpinski test case, which generates a vast amount of ge-
ometry with relatively few rule evaluations per terminal.
This fact is clearly visible when looking at the number of

Figure 5: Multi Sierpinski consists of 13× 13 Sierpinski
Cubes at recursion depth 3.

Figure 6: Single Sierpinski shows one deep Sierpinski Cube
at recursion depth 5.

tg tr load store

int
n-inst IP 16.6 2.4 1.55 28.51

PMK 15.3 2.3 1.50 26.46

inst IP 4.5 5.7 1.33 7.72
PMK 6.6 5.7 1.30 8.97

pre
n-inst IP 21.4 2.4 1.11 32.93

PMK 11.9 2.4 0.75 22.56

inst IP 2.8 5.7 0.75 4.72
PMK 2.5 5.8 0.64 5.40

Table 2: Evaluation results for Houses, including inter-
preted (int) and precompiled (pre) rule sets; non-instanced
(n-inst) and instanced (inst) rendering, as well as itera-
tive production (IP) and persistent megakernel production
(PMK). Generation time (tg in ms) corresponds to the time
needed for rule evaluation, tr is the time spent in OpenGL
rendering (ms), and load/store correspond to DRAM load
and store requests to global GPU memory during grammar
derivation.

tg tr load store

int
n-inst IP 144.5 22.3 14.9 239.4

PMK 103.3 22.1 11.7 188.1

inst IP 33.4 55.3 13.1 51.9
PMK 32.3 56.0 11.6 52.0

pre
n-inst IP 196.4 22.5 9.0 306.3

PMK 105.7 22.0 5.8 190.4

inst IP 17.9 55.0 6.2 33.3
PMK 21.8 55.3 5.8 34.7

Table 3: Evaluation results for Single Sierpinski
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tg tr load store

int
n-inst IP 57.6 9.2 4.6 98.2

PMK 45.8 9.1 3.9 84.6

inst IP 10.7 23.2 3.8 18.6
PMK 9.4 23.5 3.7 17.7

pre
n-inst IP 84.5 9.3 2.3 131.1

PMK 52.0 9.2 2.7 95.5

inst IP 5.5 23.3 1.1 11.3
PMK 6.6 23.2 1.2 13.5

Table 4: Evaluation results for Multi Sierpinski

DRAM stores. The rendering time itself was hardly in-
fluenced by instancing, confirming that rendering really
simple shapes using instancing is not more efficient than
rendering the uncompressed geometry.

Surprisingly, in the non-instanced variant, interpreted
rule evaluation was faster than precompiled in half of the
cases, achieving an overall faster average rule evaluation by
12%. In the instanced variant the relationships are reversed,
with precompiled outperforming interpreted by 84% on
average. In all instanced tests, percompiled could generate
the geometry faster. These are very interesting results, as
precompiled is only significantly faster, when there is less
memory traffic involved, due to the use of instancing. We
can only assume that the interpreted evaluation can catch
up in the non-instanced variant because all terminal oper-
ators are collected in the same queue. Thus, the terminal
generation itself is highly efficient in comparison to the
precompiled rule derivation, where the terminal generation
is mixed with other operations. Thus, the interpreted ver-
sion generates more homogeneous memory access patterns
and overall runs faster. This is also reflected by the lower
number of DRAM stores in the interpreted non-instanced
versions when comparing interpreted to percompiled. In
the instances variants, these numbers are reversed. Most of
the memory access of the interpreted evaluation is due to
dispatch table lookups and intermediate symbol generation,
thus slowing down the generation process.

When comparing our iterative production implementa-
tion against the persistent megakernel approach, one can
observe that the persistent megakernel implementation is
on average 20% faster than the iterative production. In
nine of the twelve cases, persistent megakernels were faster.
Interestingly, there is no generalizable pattern visible, as
to when iterative production works better. In the Houses
test case, iterative production gives the best results for
interpreted+instanced, for Single and Multi Sierpinski it
achieves the best performance for precompiled+instanced.

Overall, we can observe that persistent megakernel pro-
duction seems to work faster on average than iterative
production. Instancing always increases performance. If
instancing is used, precompiled rule sets are better than
interpreted rule sets. If instancing is not used, terminal gen-

eration dominates performance, for which the interpreted
rule sets are slightly faster, as they are able to merge the
terminal operators.

When looking at the raw generation times, we can ob-
serve that the fastest method can generate 135 million ter-
minals per second (MTPS) in the Houses test case, 178
MTPS in the Single Sierpinski test case and 247 MTPS for
the multi Sierpinski rule set.

6 Future Work

Since the focus of this paper is the evaluation of differ-
ent rule scheduling strategies, we omitted the implemen-
tation of features which only affect appearance and not
performance. These features include textured rendering,
auxiliary scenery like roads, water, vegetation and varying
elevation of the ground. Also the support of imported off-
line generated models would make the scene more lively.
Furthermore, a randomization of input parameters, so the
generated shapes do not all look alike, would be essential
for producing realistic scenes. For the testing setup of our
implementation, the use of boxes and quads was sufficient.
To build more realistic housing procedurally, many more
shapes could be implemented, like cylinders, cones and
wedges. We plan to add these features in the future.

A rule editor to specify interpreted rules at run time
would be beneficial to the usability of our solution, as
writing rules off-line is not very intuitive, especially for
generating complex models. Such an editor would ideally
support writing rules in an already established shape gram-
mar and could even support using a rule database, so users
can import and export model descriptions like it is already
done for conventional 3D models.

An interesting feature to implement is proper use of
instanced rendering. While in our case it was enough to
render instances of basic shapes to prove that instanced
rendering is desirable when constantly generating geometry
every frame, to save bandwidth, the vertex data for basic
shapes is far to low to justify the instancing overhead for
the rendering alone. Rendering instances of fully generated
objects with a reasonable amount of vertex data would use
the full potential of instanced rendering.

Last but not least, an important aspect of CGA is context
sensitivity. In our implementation this was deliberately left
for future investigation, since the complex matter of rule
interdependency is out of scope of this work.

7 Conclusion

We have shown in this work that scheduling of rule deriva-
tion work load on a GPU in the context of grammar based
procedural modeling has several aspects influencing perfor-
mance that have to be considered carefully. First, decision
making can be offloaded to the compilation stage in order
to avoid expensive branching at run time.
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Second, the proper utilization of GPU programming
paradigms, while being partly platform dependent, as we
focus primarily on NVIDIA CUDA technology, is essential
in order to avoid wasting precious resources, slow memory
accesses and thread divergence.

Third, the amount of data being moved when generat-
ing geometry on the fly ought not to be underestimated,
which is why the use of instanced rendering is the pre-
ferred method to render massive amounts of procedurally
generated models.

Furthermore, when applying excessive template pro-
gramming, the quality of a decent compiler is not to be
underestimated, as is the consideration how code genera-
tion (especially its memory consumption) will respond to
chaining templates together recursively.

References
[1] Timo Aila and Samuli Laine. Understanding the Efficiency

of Ray Traversal on GPUs. In Proc. High Performance
Graphics, pages 145–149. ACM, 2009.

[2] Sven Havemann. Generative Mesh Modeling. PhD thesis,
TU Braunschweig, 2005.

[3] Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized
Use of Non-Terminal Symbols for Procedural Modeling.
Comp. Graph. Forum, 29:2291–2303, 2011.

[4] Patrick Lacz and John C. Hart. Procedural Geometry Syn-
thesis on the GPU. In Workshop on General Purpose Com-
puting on Graphics Processors, pages 23–23, 2004.

[5] Samuli Laine, Tero Karras, and Timo Aila. Megakernels
considered harmful: Wavefront path tracing on gpus. In
Proceedings of the 5th High-Performance Graphics Confer-
ence, HPG ’13, pages 137–143, New York, NY, USA, 2013.
ACM.

[6] Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. By-
example synthesis of architectural textures. ACM Trans.
Graph., 29:A84, 2010.

[7] Jinjie Lin, Daniel Cohen-Or, Hao Zhang, Cheng Liang,
Andrei Sharf, Oliver Deussen, and Baoquan Chen. Structure-
preserving retargeting of irregular 3D architecture. ACM
Trans. Graph., 30(6):A183, December 2011.

[8] Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel
Generation of Multiple L-systems. Computer and Graphics,
34(5), 2010.

[9] Milán Magdics. Real-time generation of l-system scene
models for rendering and interaction. In Proceedings of the
25th Spring Conference on Computer Graphics, SCCG ’09,
pages 67–74, New York, NY, USA, 2009. ACM.

[10] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice
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Abstract

This paper presents a fully automated system for traffic
surveillance which is able to count passing cars, deter-
mine their direction, and the lane which they are taking.
The system works without any manual input whatsoever
and it is able to automatically calibrate the camera by de-
tecting vanishing points in the video sequence. The pro-
posed system is able to work in real time and therefore it
is ready for deployment in real traffic surveillance applica-
tions. The system uses motion detection and tracking with
the Kalman filter. The lane detection is based on clustering
of trajectories of vehicles. The main contribution is a set
of filters which a track has to pass in order to be treated as
a vehicle and the full automation of the system.

Keywords: motion detection, tracking, vehicles, traffic
surveillance camera, direction detection, lanes detection,
real-time

1 Introduction

This paper presents a fully automated system for traffic
analysis. These types of analysis systems have a wide
spectrum of usage. For example, it is possible to moni-
tor the traffic or try to predict characteristics of the future
traffic flow. The presented system is able to count pass-
ing cars, determine their direction and lane which they are
taking. The goal is to run the system without any manual
calibration or input whatsoever. The full automatism of
the system is required if the system should be usable with
already mounted uncalibrated cameras which are spread
over highways. Therefore, the camera is automatically
calibrated prior to running the traffic surveillance system.
Real time processing is another requirement which needs
to be satisfied for usage in real traffic surveillance applica-
tions.

Some methods for calibration of the camera require user
input [29, 3] and therefore they can not be used in fully au-
tomated systems. Approaches for the calibration are usu-

∗xsocho06@stud.fit.vutbr.cz
†herout@fit.vutbr.cz

Figure 1: Example of video scene processed by the pro-
posed traffic analysis system. Information about passing
cars and their directions are displayed in output video.

ally focused on detection of vanishing point of the direc-
tion parallel to moving vehicles [6, 10, 23, 25]. There are
several ways how to detect the vanishing point. Detected
lines [25, 6] or lanes [25, 10] can be used for obtaining this
vanishing point. On the other hand, Schoepflin and Dai-
ley [23] use motion of vehicles and assume that they have
straight parallel trajectories. Kanhere et al. [16] detect ve-
hicles by a boosted detector and observe their movement,
and Zhang et al. [30] analyze edges present on the vehi-
cles.

A popular approach to detection and tracking of vehi-
cles is to use some form of background subtraction and
Kalman filter [15] to track the vehicles [12, 21, 14, 28,
1, 4, 7, 20, 17, 22]. Other approaches are based mainly
on detection of corner features, their tracking and group-
ing [2, 13, 5]. Also, Cheng and Hsu [4] use pairing of
headlights for the detection of vehicles at night.

Two main approaches are used for the detection of
lanes. The first one is based on detection of the lane di-
viding lines [13, 18]. The other approach is based on mo-
tion of vehicles and their trajectories. Tseng et al. [28]
use a virtual line perpendicular to vehicles’ motion and
compute intersections of the line with trajectories of ve-
hicles. Hsieh et al. [12] use a two-dimensional histogram
of accumulated centers of vehicles and Melo et al. [20]
approximate the trajectories with low-degree polynomials
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Figure 2: Pipeline of processing of the input video stream. Parts of the pipeline which will be implemented in the future,
namely Classification and Speed measurement, are shown in dashed boxes.

and cluster these approximations.
The system proposed in this paper uses detection of ve-

hicles by background subtraction [26, 31] and Kalman fil-
ter [15] for tracking. Prior to running the algorithm, the
camera is calibrated by the detected vanishing points and
the vanishing point of direction parallel to the motion of
vehicles is used for higher accuracy of tracking. The detec-
tion of lanes is based on trajectories of vehicles and their
approximation by a line.

2 Proposed Method for Traffic
Surveillance

This section of the paper presents methods used in the sys-
tem for detection and tracking of cars. The direction and
lane detection is also discussed in detail. The overall pro-
cessing pipeline is shown in Figure 2.

The main goal of the system is to create statistics of
traffic on a road which is monitored by a camera. These
statistics include the number of passed cars, their direction
and lane.

2.1 Initialization

It is required to initialize the system prior to processing
a video stream. The main purpose of the initialization is
to find vanishing points of the scene and use the vanishing
points to calibrate the camera. This is performed in a fully
automated way and no user input is used. Arrows directed
to the vanishing points are used for visualisation of the

vanishing points. An example of the visualisation of the
vanishing points is in Figure 3.

The vanishing point of the direction parallel to the vehi-
cle movement is denoted as the first vanishing point. The
second vanishing point has perpendicular direction to the
movement of vehicles and the third vanishing point is per-
pendicular to the ground plane. However, only the first
vanishing point is required for the tasks described in this
paper; therefore, only detection of this vanishing point will
be described. The detection of the other vanishing points is
described in a paper written by Dubská et al. [8], currently
submitted to IEEE Transactions on Intelligent Transporta-
tion Systems.

First Vanishing Point Detection

Corner feature tracking is used for the detection of the first
vanishing point. Hence, Good Features to Track [24] are
detected in the video stream and KLT tracker [27] is used
for the tracking of the corner features. Detected motion
of the tracked features is extended into a line which is de-
fined by image points (xt ,yt) and (xt+1,yt+1) which are
positions of the feature in frame t and t +1.

All these lines are accumulated into the diamond
space [9] until the initialization is terminated. The ini-
tialization is terminated when the global maximum of the
diamond space is bigger then a predefined threshold and
therefore a sufficient number of lines was accumulated.
Afterwards, the coordinates of the global maximum in
the diamond space are transformed into coordinates of the
vanishing point in the image plane.

The diamond space is based on Cascaded Hough trans-
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Figure 3: Detected vanishing points. Red arrows are point-
ing to the first vanishing point, green to the second one,
and the third vanishing point is defined by the blue arrows.
Yellow horizon line connects the first and second vanish-
ing point.

form and parallel coordinates. Each line which is accu-
mulated into the diamond space has to be transformed into
coordinates in this space. The transformation divides the
line into three line segments which are accumulated into
the diamond space. Examples of the diamond space are
in Figure 4.

It should be noted that the system uses a video down-
sampled to a framerate close to 10 FPS, so that the move-
ment of corner features is detectable and measurable.

2.2 Vehicle Detection and Tracking

The vehicle detection is based on motion detection in
the video scene. Mixture of Gaussians background sub-
traction [26, 31] is used for the motion detection. Also,
shadow removal [11] is used for higher accuracy of the
motion detection. Noise in the detected motion is re-
moved by morphological opening followed by morpholog-
ical closing. Detected connected components are consid-
ered to be a potential vehicle. The motion detection ap-
proach was selected mainly for its speed.

Kalman filter [15] is used for prediction of the new posi-
tion of a car and for associating cars in consequent frames.
The state variable of the Kalman filter (x,y,vx,vy)

T con-
tains the current position of the car and its velocity in im-
age coordinates.

Several conditions are used for matching an object in the

Figure 4: Examples of diamond spaces for detection of the
first vanishing point with located global maximum

Figure 5: Examples of matching rectangles (red) for pre-
dicted object location (blue). The actual center of the de-
tected connected component is drawn by green color. The
figure shows that the longer side of the rectangle is di-
rected to the first vanishing point.

consequent frame to its predicted location. The first con-
dition states that the matched object must have similar col-
ors. This condition is enforced by correlating histograms
of objects in HSV color space. The second and last con-
dition is that the center of matched object must be inside
of so called matching rectangle. The predicted location of
a car is the center of this matching rectangle and the longer
side of the rectangle is directed towards the first vanishing
point, as it is shown in Figure 5, and the matching rectan-
gle has size 30× 15 pixels. This condition is built on the
assumption that the vehicle is going either in the direction
towards the vanishing point or from the vanishing point,
and therefore it is expected that in this direction can be
higher displacement from the predicted location. Lastly,
the closest connected component which meets the condi-
tions presented above is found for each object and its pre-
dicted location in the consequent frame.

When a match is not found in several consequent
frames, the tracked object is removed from the pool of
tracked objects. Several filters are used for determining
if the object should be accounted in the statistics of passed
cars. The trajectory of the object is approximated by a line
using least squares approximation. After that, the distance
of the first vanishing point from the line is measured. Let
us denote this distance as dvp. Also, the ratio r, Eq. (1),
between passed distance and maximal possible distance
which an object can pass in the given trajectory is mea-
sured, Figure 6 shows the positions of Pe, Ps, Le and Ls.
The object is accounted in the statistics as a vehicle if the
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acc variable is equal to 1, Equation (2), where tvp and tr
are predefined thresholds.

r =
||Pe−Ps||
||Le−Ls||

(1)

acc =

{
1 dvp ≤ tvp and r ≥ tr
0 otherwise (2)

2.3 Direction Estimation and Lane Detection

For a new vehicle which is about to be added to the statis-
tics, the direction of the vehicle and its lane is calculated.
Rule (3), which compares the relative positions of the first
vanishing point and the last and first position of the vehi-
cle, is used for computing the direction.

dir =
{

To VP ||V P1−Pe||< ||V P1−Ps||
From VP otherwise (3)

The detection of lanes is based on clustering of the
trajectories of cars. Therefore, the trajectory is also ap-
proximated by a line with least squares approximation,
see green line in Figure 6. Each cluster of the lines cor-
responds to a lane in the monitored traffic surveillance
scene and the clustering is performed in a one-dimensional
space, where the values of the trajectory lines are their
angles with axis x in the image. The clusters itself are
searched as local maxima in the histogram of the angles.
Hence, the clusters have to be a local maximum in the his-
togram in a predefined surroundings and also the maxi-
mum has to have at least a predefined amount of accumu-
lated lines. The closest lane is assigned to a new passing
vehicle as the lane which the vehicle is using. The closest
lane computation is also based on the angles of the trajec-
tory line and the lane with axis x.

This clustering is always performed after every 200 tra-
jectory lines are accumulated and a unique identification
number is assigned to each cluster. Let us denote the set
of clusters as CN = {(c1,a1), . . . ,(cn,an)} where N is the
number of accumulated lines, and pair (ci,ai) denotes one
cluster, where ci is its identification number and ai the
angle corresponding to the found local maximum. Cor-
respondences for clusters CN and CN−200 are searched in
order to obtain the temporal consistency of detected lanes
in the scene. The clusters’ identification numbers would
change after every 200 accumulated lines if the correspon-
dences were not found; and therefore, it would be impos-
sible to create long-term statistics for cars passing in the
detected lanes.

The identification number of the found correspondence
is assigned to a cluster if the correspondence is found.
A new unique identification number is assigned to the clus-
ter otherwise. The correspondence for a cluster (ci,ai) ∈
CN is a cluster (c j,a j) ∈ CN−200 for which (4) and (5)
hold. The distance function is computed according to
Equation (6) which compensates that the angles 0 and 2π
have distance from each other 0.

a j =CN−200

(
argmin

c
|dist(CN−200 (c) ,ai)|

)
(4)

Figure 6: Measured distances for a passed object. The
distance between approximated line (green) and the first
vanishing point (yellow) is measured. Also, the distance
between the first and last (Ps, Pe) point of the track of a ve-
hicle is measured. The maximal distance which is possible
to pass with a given trajectory is also measured (distance
of Ls and Le).

dist(a j,ai)≤ td (5)

dist(x,y) = min(2π−|x− y|, |x− y|) (6)

The dominant direction is also computed for each clus-
ter c of the trajectory lines. The dominant direction dirc is
computed according to (7), where lV P is the amount of the
trajectories in the cluster which have direction towards the
first vanishing point and l is the number of all trajectories
in the cluster. Reasonable value for threshold tdom is 0.1.

dirc =





To VP lV P
l ≥ 1− tdom

From VP lV P
l ≤ tdom

Mixed otherwise
(7)

When the dominant direction for a lane is known, it is
possible to detect vehicles which are traveling in wrong
way. The detection is based on the detected direction dir
of the vehicle and the dominant direction dirc of the lane
which the vehicle belongs to. The wrong way variable ww
is determined by (8).

ww =





True dir = To VP∧dirc = From VP
True dir = From VP∧dirc = To VP
False otherwise

(8)

3 Results

This section presents the achieved results and methods of
evaluation of the algorithms, which were presented above.
The speed of video processing is also discussed.

The presented traffic analysis system was evaluated on
several video streams. The processed video streams have
resolution 854× 480 and the video camera was located
several meters above the road. The angle of the video cam-
era varies as Figure 8 shows.
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Figure 7: ROC and Precision-Recall curves for detection and tracking of vehicles in video. Configuration providing the
best results has F-Measure equal to 0.915 and is marked by red color.

Figure 8: Examples of videos for detection and tracking
evaluation. Virtual line which was used for manual ground
truth annotation is drawn by red color.

3.1 Detection and Tracking

A manually annotated dataset was created for the evalua-
tion of accuracy of the detection and tracking of vehicles.
Imaginary line, see Figure 8, which is crossing the center
of image and dividing frames into two equal parts was dis-
played and for each car, the location and time of crossing
the line was annotated. Almost 30 minutes of video was
annotated in this way resulting in almost 800 vehicles in
the dataset.

The comparison with the ground truth annotation was
performed in the following way. For each vehicle which
was detected by the traffic analysis system, the trajectory
is approximated by a line and the intersection of the ap-
proximation with the imaginary line is computed. A match
with the ground truth is a vehicle which has trajectory with
close intersection to the ground truth intersection and pro-
jected time of passing this intersection does not differ too
much. If there are more vehicles which satisfy this con-
dition, the vehicle with the smallest time and intersection

difference is selected as the match with the ground truth.
This way of evaluation was selected because the system
targets mainly on overall statistics of passed vehicles.

Nine various configurations which have different max-
imal distance to the first vanishing point and minimal
passed distance of a vehicle were created and evalu-
ated. The ROC and Precision-Recall curves are in Fig-
ure 7. Configuration providing the best results has F-
Measure [19] equal to 0.915 (Precision is 0.905 and Re-
call 0.925). The False Negative cases are caused mainly
by vehicle occlusions. The occlusions are caused either
by a shadow which connects vehicles into one connected
component or by a situation when a vehicle partially cov-
ers some other vehicle. The False Positives are caused pri-
marily by the motion detection incorrectly dividing a vehi-
cle into two objects and both these objects are tracked and
treated as vehicles.

3.2 Direction Estimation and Lane Detection

Several video sequences with a sufficient number of cars
were obtained and stability of detected lanes was evalu-
ated for these videos. The results of the evaluation are in
Figure 9 and as the graphs show, the detected lanes are al-
most totally stable and do not change with passing cars.
It should be noted that the detected lanes are recomputed
always after next 200 cars were observed. Also the di-
rections of the lanes were correctly detected as shown in
Figures 9 and 10.

3.3 Evaluation of Speed

Processing speed of the system was also evaluated and the
results are in Table 1. The measured framerates include
also reading and decoding the video. The system was eval-
uated on a machine with Intel Dual-Core i5 1.8 GHz and
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resolution traffic intensity FPS

854×480 high 57.97
low 82.43

1920×1080 high 28.59
low 47.88

Table 1: Processing speed evaluation. Approximately 110
minutes of video were used for the evaluation. The videos
were divided into groups with respect to the traffic inten-
sity. It should be also noted that the system uses video
stream downsampled to ∼ 10 FPS, so that the movement
is detectable and measurable.

8GB DDR3 RAM. As the table shows, the system can be
used for real-time analysis of Full-HD traffic surveillance
video. The framerates are higher in videos with lower traf-
fic intensity. The video sequences with higher traffic in-
tensity contain more motion and vehicles which need to
be tracked; therefore, more computational resources are
used.

4 Conclusions

This paper presents a system for fully automated traffic
analysis from a single uncalibrated camera. The camera
is automatically calibrated, vehicles are detected, tracked
and their direction is computed. Also, the lanes are de-
tected and therefore cars travelling in the wrong way can
be detected. The system works in real time and in a fully
automated way and therefore it can be used for online traf-
fic analysis with any camera which is monitoring a high-
way or a street. The system is ready for deployment and it
is currently used for online traffic analysis.

The system is able to work under bad lightning and
weather conditions. However, for example at night or
during rainy weather, the accuracy of detection and track-
ing decreases slightly because of light reflections from the
road. On the other hand, the initialization process can be
performed at night without any problem, it will just take
longer time because there is a lower amount of vehicles on
streets at night.

The main contribution and advantage of the proposed
traffic analysis system is that the system works without any
manual input whatsoever and the set of conditions which
a trajectory of a moving object in video is considered to be
a vehicle. Future development of the system will focus
mainly on complex crossroads and shadow elimination.
Also, elimination of pedestrians from statistics should be
addressed.
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Figure 9: Stability of lanes detection for long video sequences. The top line of images presents the detected lanes. Only
lanes which were valid for the last frame of video are drawn. The middle images show changes in detected lanes over time
as new cars were observed in video. Finally, the bottom line shows the statistics of observed cars in the detected lanes.

[12] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, and
Wen-Fong Hu. Automatic traffic surveillance sys-
tem for vehicle tracking and classification. Intelli-
gent Transportation Systems, IEEE Transactions on,
7(2):175–187, 2006.

[13] Lili Huang. Real-time multi-vehicle detection and
sub-feature based tracking for traffic surveillance
systems. In Informatics in Control, Automation and
Robotics (CAR), 2010 2nd International Asia Con-
ference on, volume 2, pages 324–328, March 2010.

[14] Young-Kee Jung and Yo-Sung Ho. Traffic parameter
extraction using video-based vehicle tracking. In In-
telligent Transportation Systems, 1999. Proceedings.
1999 IEEE/IEEJ/JSAI International Conference on,
pages 764–769, 1999.

[15] R. E. Kalman. A new approach to linear filtering
and prediction problems. Transactions of the ASME
– Journal of Basic Engineering, (82 (Series D)):35–
45, 1960.

[16] Neeraj K Kanhere, Stanley T Birchfield, and
Wayne A Sarasua. Automatic camera calibration

using pattern detection for vision-based speed sens-
ing. Journal of the Transportation Research Board,
2086(1):30–39, 2008.

[17] Dieter Koller, Joseph Weber, and Jitendra Malik. Ro-
bust multiple car tracking with occlusion reasoning.
pages 189–196. Springer-Verlag, 1993.

[18] A. H S Lai and N. H C Yung. Lane detection by
orientation and length discrimination. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on, 30(4):539–548, Aug 2000.

[19] Christopher D MANNING, Prabhakar RAGHAVAN,
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Abstract

Consumer electronics have become considerably power-
ful in terms of hardware features, which can be expanded
beyond their original design with custom software.

This paper serves as a summary of a student’s experi-
ence of acquiring suitable aerial images for terrain recon-
struction. The paper covers the utilization of consumer
components like a cell phone with on-board sensors, point-
and-shoot cameras and a prefabricated model airplane,
combined with easily accessible electronics. This was to
create an inexpensive platform for high definition aerial
photography, as needed for terrain reconstruction. It de-
scribes the challenges of building such a platform and
presents an overview of the results.

Keywords: unmanned aerial vehicle, aerial photography,
terrain reconstruction

1 Introduction

Today consumer devices are more powerful and flexible
than ever. By considering the increased popularity of eas-
ily accessible hobby-grade remote-operated models, we
decided to combine these within a customized unmanned
aerial vehicle, adapted for carrying a customized stereo
camera rig for aerial photography. Our focus on consumer
devices was driven primarily by their prices and availabil-
ity. By utilizing our skills we turned them into a platform
capable of performing features normally found within pro-
fessional kits.

The current iteration is based on a scaled foam model
of a Cessna airplane, which offers a lot of space for neces-
sary modifications and payload. The proposed control unit
is split into an Android phone, which is used for sensors,
computing and communications, and a control module
from custom electronics for controlling the servo-motors
used in the model. Two Canon point-and-shoot budget

∗jernej.kranjec@gmail.com
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cameras were used for stereo camera mounting. The cam-
eras were chosen due to their support of customized third-
party firmware.

This enabled the acquiring of high-resolution aerial im-
ages of a desired area with high overlap, which were then
used for terrain reconstruction.

2 Model setup

A scaled-down model of a Cessna 182 airplane was cho-
sen made of durable Elapor foam, with a wingspan of
1400mm. This provided a lightweight durable base that
could be easily modified, with enough room for additional
gear. The model was equipped with a KORA 10-15 brush-
less electrical engine with a HobbyWing 40A speed reg-
ulator driving an APC 11x5.5in propeller, powered by a
2200mAh LiPo battery. The model was controlled by
a FrSky 8 channel X8R Remote Control receiver with
telemetry feedback, which operates in the 2.4GHz fre-
quency band, allowing over 1km line of sight operational
range. 6 standard 9g servo motors were used to operate the
control surfaces of the model. A structural diagram of the
modified model can be seen in Figure 1.

Figure 1: Aircraft model structural diagram

The model was set up in the following configuration:
channel 1 servo operates the vertical stabilizer, channel 2
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servo operates the horizontal stabilizer, channel 3 controls
the engine output, channels 4 and 5 servos operates the
ailerons, channels 6 and 7 servos supervise the flaps and
channel 8 the spare servo-channel used to signal who is in
control.

Modifications performed on the model include mount-
ing the stereo camera rig (see Figure 3) through the fuse-
lage to preserve the model’s center of gravity, securing it
onto the wings with custom 3D printed holders (see Figure
2) in order to prevent the camera rig from being damaged
during takeoffs and landings.

Figure 2: Customized holder, designed in Blender and
printed on RepRap 3D printer

Figure 3: Camera rig mounted onto the wings

The battery bay was extended to accommodate a bigger
battery pack and fine tune the model’s center of gravity
by shifting its position as necessary. Stock landing gear
was replaced with one made out of carbon fiber mounted
on flexible FR-4 fiber glass strip (see Figure 4), in order
to better absorb and withstand the increased weight of the
model.

Figure 4: Carbon fiber landing gear with extended battery
bay

Lastly, attaching a customized cell phone case and
holder carved into the wing on the top of the fuselage with
a modified Kogeto DOT 360◦ panoramic lens attachment,
for capturing video of the model in flight for later review
and visualization.

The complete setup (see Figure 5), including the cam-
eras weights 1.9kg, provides 5 minutes of flying time, out
of which 2-3 minutes are at the minimum desired altitude
difference of 200m for taking aerial photographs. The
total traveled distance of the model using that configura-
tion is about 4.5km at an average ground speed of around
50km/h.

Figure 5: Photo of the model ready for take-off

3 Electronics

First part of the control unit was based around the Sam-
sung Galaxy S2 cell phone. The device was chosen be-
cause of the available on-board sensors containing a triple-
axis accelerometer, triple-axis gyroscope and a triple-axis
compass, which were used as an Inertial Measurement
Unit in the autopilot implementation in order to deter-
mine the relative orientation of the model. A GPS re-
ceiver for locational logging and navigation and a GPRS
modem for communication with the ground computer and
real-time visualization of the flight. It also contained an
8MP camera with video capabilities used for recording in-
flight video of the model, as well as providing a 1GHz dual
core computer with 1GB of RAM within a programmable-
friendly environment.

For the second part a control module was constructed
from custom electronics, which took the control inputs
from either the phone or the RC-receiver and performed
the actual control of the servos on the model. This allowed
for controlling of the servos from the phone as well as the
remote control.

The customized electronics consisted of an Atmega128
microcontroller from Atmel, an FT230x USB-serial bridge
from FTDI, and some passive components. The At-
mega128 was chosen because of its hardware support for
driving a large number of servo-motors using its timer
modules. It also provided pin change interrupts, which
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were used to read the outputs from the RC-receiver. The
signals generated and read by the microcontroller are stan-
dard servo control signals with a 50Hz period and a duty
cycle of 1-2ms, where 1ms represents -45 servo rotation
from center and 2ms corresponds to 45 rotation. The On-
The-Go USB capabilities of the phone were used to con-
nect the control module to the phone, which allows con-
nection of the device to the phone. We utilized the serial
interface of the microcontroller to connect the phone to the
control module using a USB-serial bridge. We used the se-
rial connection simplified programming of the module as
it negated the need for any high-level abstraction requested
by the USB protocol. The electronics block diagram can
be seen in Figure 6.

Figure 6: Control module block diagram

4 Camera setup

Two Canon A2200 cameras were chosen for this setup as
they were inexpensive, light, and allowed us to extend their
functionalities using third party firmware. Our first step
was porting the open-source firmware CHDK on to the
camera. This allowed the usage of the camera’s parame-
ters and settings, which are usually hidden within the con-
sumer firmware, like manual focus and exposure control.
We also acquired new features, among others the ability to
save raw 12bit images, run custom scripts, and synchro-
nize the shutter release across multiple cameras.

The following method is employed to test the camera’s
ability to capture synchronized stereo images. A rotat-
ing platform was used, constructed of a small electric mo-
tor and a CD-ROM holder, which held a CD-ROM, onto
which an LED with a battery was glued and balanced.
We took the first picture with a known exposure time of
20ms. Using the light trail left on the image, it was pos-
sible to calculate the rotational speed of the setup, which
was 10.36Hz. Knowing this, pictures of the rotating plat-
form with both cameras shutters synchronized were taken
and the light trails on both pictures took into account the
start and end-points, and its length was then compared.
Using multiple measurements the deduction was made that
the synchronization between cameras were less than 0.1ms
apart. Assuming a speed of 50km/h for the model, the
cameras would trigger in less than 1.4mm of travel be-
tween each other, making the perspective distortion mini-
mal. Testing the cameras can be seen in Figure 7.

Figure 7: Camera synchronization testing rig

In order to construct the stereo camera rig, 1m long pre-
fabricated 1cm diameter hollow carbon fiber tubes were
used. The carbon fiber tubes were perfectly aligned par-
allel to each other, placed 40mm apart and glued onto a
supporting plastic platform, which operated as a camera
stand mount. In order to attach and align the cameras, a
cradle (see Figure 8) was made out of larger tubes, which
held a standard 3/4in camera mount screw.

Figure 8: Camera cradle for the stereo rig

5 Software

Our autopilot with ground communications and sensor
logging was implemented as an Android application. This
allowed usage of the underlying Android APIs, making the
development easier.

Using Android’s Motion Sensors API, which performed
sensor fusion on the on-board sensors, the orientation of
the device was obtained according to the device’s coor-
dinate system. By strategically placing the phone on the
model, the relative orientation and direction of the model
was made in the form of angles around the device’s axis.

The GPS data, location, altitude, and speed of the device
were collated using the Android’s Location API. The API
also allowed navigation tasks to be performed like calcu-
lating the distance or heading to a specified point, which
the autopilot had to reach.
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The implementation of the autopilot was designed
around a Proportional Integral Derivative feedback loop
or a PID controller, which takes the device’s current orien-
tation and desired orientation as input, and provides servo
rotation as output. A separate PID controller for each of
the models control axes was used, thus translating the de-
vice’s coordinate system to yaw, pitch and roll as well as
throttle.

The autopilot was developed and tested using a Flight-
Gear flight simulator, which can simulate the sensors
found in the phone. In order to simulate the flight, Flight-
Gear’s two-way network capabilities for sensor input and
servo output was used, as required and produced by the au-
topilot application. Simulated flights were conducted us-
ing the FlightGear’s Rascal 110 RC model. This provided
a crash-proof environment for testing and tuning. A test-
ing session with live visualization over the network from
the autopilot application can be seen in Figure 9.

Figure 9: Autopilot testing with live visualization

The visualization was done using custom software made
in Python. When using it, the logged GPS data from the
autopilot is aggregated. The output is a Google Earth com-
patible Keyhole Markup Language structured file, contain-
ing a flight path, ground speed, altitude, GPS resolution
and way points used by the autopilot for navigation. All of
the sensor data was rendered into separate videos, which
were later combined and synchronized with the panoramic
video from the phone’s camera and visualization playback
from Google Earth (see Figure 10).

Figure 10: Visualization of flight data

Ground communication was done through the Inter-
net using the built-in GPRS modem of the phone. GPS
data from the autopilot was processed by the software and
piped in KML format into Google Earth where it was ren-
dered in real time.

Unrolling of the 360◦ panoramic images and video
taken with the Kogeto DOT attachment was done using
Log-Polar to Cartesian conversion with an added scaling
factor to offset the distortion of the lens. The final image
was further improved with B-spline interpolation [3]. The
final results can be seen in Figure 11.

Figure 11: Raw and unrolled 360◦ panoramic image

6 Terrain reconstruction

From the camera rig we obtained 14MP stereo images,
taken 5 seconds apart. In order to ensure adequate over-
lap between images, only those taken at a minimum alti-
tude difference of 200m or more were used. The selected
images were then processed to remove lens distortion de-
tected by taking photos of calibration checkered board
with each of the used cameras.

To test whether the aerial images are suitable for terrain
reconstruction, the following tool chain was employed.
First we used VisualSFM [1, 6] which implemented Sift-
GPU [5] for feature matching between images, calculated
the camera positions within the world coordinate system
and performed the sparse terrain reconstruction using the
Structure from Motion method. That information was then
used for two more applications; CMPMVS [2] and SURE
[4]. In order to perform dense reconstruction, the CMP-
MVS application uses the augmented Labatut CGF 2009
method, while the SURE application applied an improved
Semi-Global Matching (SGM) algorithm.

7 Results

A test flight covering around 170,000m2 was performed,
which generated 38 useful images (see Figure 12). After
processing the images the result were obtained for the area
seen in Figure 13.
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Figure 12: Pictures used in reconstruction

Figure 13: Ortho-photo of the reconstructed terrain

VisualSFM produced a point cloud consisting of 1 mil-
lion points, resulting in a resolution of approximately 5.9
points per square meter. A section of the generated point
cloud can be seen in Figure 14.

CMPMVS produced a point cloud of 2.3 million points,
resulting in a resolution of approximately 13.7 points per
square meter. A section of the generated point cloud can
be seen in Figure 15.

SURE produced a point cloud for every image pair,
which when combined form a point cloud with 43.7 mil-
lion points, resulting in a resolution of approximately
257.3 points per square meter. A section of the generated
point cloud can be seen in Figure 16.

8 Conclusions

The constructed unmanned aerial vehicle platform per-
formed well enough to successfully perform initial testing,
but there are of course some drawbacks. Namely, this con-
figuration of the model requires a decent landing strip for

takeoffs and landings. Battery life is an issue due to weight
constraints. The current version of the autopilot would be
good enough for simple flyovers and return-to-home, but
not stable enough for precise maneuvers to acquire clear
images.

Future work on this platform will concentrate on up-
grading the used airplane with a bigger model wthin a
pusher configuration where the propeller is mounted be-
hind the engine, and the engine itself will be mounted on
top of the fuselage. This will remove the need for a landing
gear and landing strip, since it will be possible to launch
the model by hand and land it anywhere without damage.
Also an update of the customized electronics with a pass-
through from receiver to the phone would allow a fly-by-
wire type autopilot, whereby the autopilot would adjust the
control surfaces of the airplane to maintain the position in-
put by the ground controller.
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Figure 14: Point cloud generated by VisualSFM

Figure 15: Point cloud generated by CMPMVS

Figure 16: Point cloud generated by SURE
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Abstract

Monitoring changes in landscapes is important for several
environmental and geographical studies. This paper con-
siders a coastline change detection approach using multi-
temporal data captured by Light Detection And Ranging
(LiDAR) technology. The proposed method consists of
four steps. In the first step a heightmap is generated from
LiDAR data. The second step represents the core of the
proposed method. In this step dense optical flow of the
multi-temporal heightmaps is computed, yielding motion
vectors for each point. In the third step, points with sim-
ilar motion vectors are clustered. In the last step a dis-
placement for each cluster is estimated, representing the
movement of soil. An evaluation of the approach shows
a 91.897% accuracy when estimating displacements and a
93.710% accuracy when detecting displaced areas.

Keywords: change detection, optical flow, LiDAR

1 Introduction

Monitoring coastal changes is an important task for sev-
eral studies. It is interesting from a geographical per-
spective to study the trends of local landscape changes.
Such studies are also important for the economy. Var-
ious area utilisations can be efficiently planned by hav-
ing priori knowledge about certain landscapes and their
changing tendencies. Coastal areas represent a very dy-
namic case regarding landscapes. Constant tidal activity
washes up and washes away soil from the surface. Such
behaviour results in an ever-changing shape of coastline,
especially in respect to salt pans. Frequent evaporation
and flooding of such areas cause an accelerated process
of the previously-mentioned surface changes. Such areas
have many changes in the short term and are, therefore,
excellent test sets for the change detection approaches of
coastal data.

This paper presents an approach for the detection and
estimation of coastal surface changes over a certain time-
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span. Surface data were obtained by LiDAR technology.
The result of the presented approach are displacement esti-
mations of certain parts of the coastline, where each point
belonging to the displaced area is labelled. The paper is
organised into 6 sections. Section 2 gives a short overview
of related work. Section 3 provides a short summary on
data acquisition and the test area. Section 4 describes the
procedure for estimating surface change detection. Sec-
tion 5 presents the results of testing. A summary of the
paper is given in Section 6.

2 Related work

Many studies are engaged in coastal monitoring. Most of
them focus on extracting the coastline and not comput-
ing the actual changes. Xu-kai, Xia, Qiong-qiong and Ali
Baig [20] proposed an approach for automated coastline
extraction using the Otsu algorithm and Canny edge detec-
tion [5]. Bouchama and Yan [4] proposed an approach for
detecting changes between two datasets using a window-
to-window comparison and SURF features for alignment.
Bo, Dellepiane and De Laurentiis [3] extracted the coast-
line using an approach based on the local contextual infor-
mation of remotely sensed data. Niedermeier, Romaneen
and Lehner [16] detected the coastline using an approach
based on wavelet methods. Alesheikh, Ghorbanali and
Nouri [1] present an approach for coastal change detec-
tion based on a combination of histogram thresholding and
band ratio techniques. A semi-automatic approach based
on fuzzy connectivity concepts for the coastline extraction
from SAR images was proposed by Dellepiane, De Lau-
rentiis and Giordano [7]. Ali [2] proposed an approach
that represents coastlines as curves that are divided into
segments of the same length in a multi-temporal dataset.
At each such corresponding segment, between the prelim-
inary and postliminary acquired data, an Euclidean dis-
tance is computed that represents the amount of coastal
displacement.
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3 Data acquisition

The data used in this paper were obtained by the laser
remote sensing technology called airborne LiDAR. It is
considered to be the most advanced remote sensing tech-
nology at the moment. Conceptionally it is similar to a
RADAR or SONAR, with the main difference being the
wavelength of the signal. LiDAR emits a series of laser
pulses towards the surface where they reflect and travel
back to the device. As the speed of light is constant, the
distance can be determined by the time it takes the pulse
to travel from and back to the device. Such a procedure
is repeated under different scan angles so that it forms a
line, as seen in Figure 1. Having a capture frequency of
over 200.000 pulses per second and density of more than
40 points per square metre [18], a very detailed represen-
tation of the world can be obtained. LiDAR technology is
also capable of penetrating through vegetation and record-
ing the terrain beneath. The data are georeferenced using
a GPS system for positioning and an inertial measurement
unit (IMU) for angle determination of the emitted pulses
[14, 12]. Data are stored as a three-dimensional point-
cloud without a topology. Water areas, on the other hand,
are troublesome, as low reflectance of light on water re-
sults in a low number of acquired points [19].

Figure 1: Data acquisition with LiDAR technology.

The data for testing the proposed approach were ob-
tained at the Seovlje salt pans located near Portoro, Slove-
nia. Data were obtained in the years 2008 and 2010 and is
already classified.

4 Surface change detection

Surface movement in geography is considered as a visible
sliding of soil from its original position [21]. Changes on
the coast can be considered as movement of the surface to-
wards or away from the current coastline. An example is
shown in Figure 2. In such a case, a rigid translation can

be considered. The proposed approach is based on this as-
sumption. A rigid translation is considered as a gradual
changing of the coastline’s shape. This assumption does
not suffice for coasts that have suddenly changed the cur-
vature of the coastline such as man-made embankments or
excavations of an area. The approach consists of four main
steps, as described in the next four subsections.

Figure 2: Displacement of the coastline.

4.1 Heightmap

In the first step a heightmap is generated from the input
point-cloud. The resolution of the heightmap is depen-
dent on the density of the obtained LiDAR data. The
mapping requires an interpolation method, as points from
the point-cloud do not coincide with the points on the
heightmap. The inverse distance weighting (IDW) method
[6] is used in the proposed approach. Using this interpola-
tion method a height value is estimated using information
from neighbouring points. The weight of each point within
the neighbourhood is inversely-proportional to the power
of the distance. A greater number of neighbours results in
a smoother heightmap. The neighbourhood of the nearest
5 points is used for the proposed approach. The result of a
heightmap is shown in Figure 3.

4.2 Optical flow

The calculation of optical flow is the key step of the pro-
posed approach. It represents a motion estimation of ob-
jects within a scene and is defined as an apparent motion of
intensity patterns on the scene [17]. Sparse and dense op-
tical flows exist. A well known method for sparse optical
flow was proposed by Lucas and Kanade [11]. It estimates
motion vectors at feature points. Dense optical flow, on
the other hand, provides a motion field consisting of mo-
tion vectors for each heightmap point. Such methods were
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Figure 3: The representation of point cloud mapping to a
height grid. The lower image represents a heightmap of
the upper point cloud.

presented by Horn and Schmuck [9] and by Farneb [8].
The latter is used in the proposed approach as it yields
more robust results.

The main idea of the optical flow computation proce-
dure proposed by Farneb is to find a best fit between
the point neighbourhoods of two heightmaps. Each
neighbourhood is represented by a quadratic polynomial.
Such a polynomial is obtained from polynomial expan-
sion [8], based on normalised convolution, as proposed by
Knutsson and Westin [10]. By assuming that the motion
is gradual, a certain area of the corresponding point in the
postliminary acquired heightmap is examined for the best
fitting polynomial. In the case of the motion being sudden,
meaning that is does not progress slowly over time, may
lead to less accurate motion estimation. The distance be-
tween the polynomial on the first heightmap and the best
fitted polynomial on the second represents the size of the
motion vector. The angle of the vector is computed using
the following equation:

θ = arctan
(

p2y − p1y

p2x − p1x

)
. (1)

Figure 4: A motion vector field.

A field of such vectors represent those motions that have
occurred between two heightmaps over a certain time
span, as shown in Figure 4. At this point the motion vec-
tors are mapped from the heightmap to the point-cloud.

4.3 Point clustering

The result of the procedure described in 4.2 is a field of
vectors, each representing motion at a point in the point-
cloud. A clustering procedure is proposed for uniting
points with similar motion vectors. The proposed clus-
tering uses two criteria for determining whether a point
is a part of the cluster or not. The first is the angle of
the motion vector. Points with similar motion vector an-
gles are clustered together. As noise within the data dis-
torts motion vector estimation, an angle threshold of 15◦

is taken into account. The second criteria is the distance
between points. A threshold is used for the maximum al-
lowed distance between points. The next step is to find
candidate points to cluster. A kd-tree nearest-neighbour
search is used to find points within a certain radius [15].
Each newly inspected point that meets the criteria is added
to the cluster and triggers a recursive method for finding
new nearest-points. The procedure is finished when all
the points have been inspected. In order to prevent false
detections caused by noise, a threshold is introduced for
a minimal number of points in a cluster. An example of
clustering on test data is shown in Figure 5.

The goal of the proposed approach in this paper is to
find changes of coastal surface. The computed clusters
represent parts of land that had moved from their original
positions.

4.4 Displacement of clusters

After clustering is finished, the positions must be deter-
mined as to where the clusters have moved on the postlim-
inary acquired point-cloud. As each point has its own mo-
tion vector, an end position can be computed straightfor-
wardly by adding the motion vector to the point coordi-
nate. It is unnecessary for the calculated displaced points
to represent the actual state of the second point-cloud. A
kd-tree nearest-neighbour search is performed for deter-
mining the actual displaced points on the second-point
cloud. Points within the same cluster have similar motion
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(a) B190201 (b) B190204 (c) B204216

Figure 5: Dataset for testing with marked clusters.

vectors. Based on that fact, a global displacement vec-
tor for the cluster can be obtained as an average of all the
contained vectors. The resulting vector represents the di-
rection and amount of displacement the coastline has un-
dergone.

5 Results

The proposed approach was implemented in C++ using the
Qt 5 framework. Tests were performed as a single threaded
process on a desktop workstation using the following hard-
ware: Intel i5-3570K and 16GB of DDR3 RAM. The
dataset used for testing were point clouds from binary LAS
files. The average size of the test-set point-clouds was
100.000 points, and a grid with 0.5m resolution was used.
The testing data represent those parts of the Seovlje salt
pans that underwent the most change. Only those points
recognised as ground were considered, because buildings
and vegetation were not the studied subjects and would
have unnecessarily slowed down the computation.

Two evaluation metrics were used for the proposed ap-
proach. The first evaluated the accuracy of the estimated
displacements, while the second evaluated the accuracy of
the correctly detected displaced areas. Reference data of
surface movements had to be obtained for the purpose of
evaluating displacement estimation. This was done by an
expert in the field of geography. The tool used for measur-
ing the reference data was LIDARLiVE [13]. As shown in
Figure 6, this allowed a clear estimation of displacements

by simultaneously displaying both point-clouds within a
cross-section view.

The datasets and detected movements are shown in Fig-
ure 5. Test results for displacement estimation accuracy
on 3 datasets are shown in Table 1. Verification of the
obtained results show an average error of 8.103%. A
slightly higher error value in dataset B204216 was the con-
sequence of missing larger parts of data in some areas. The
same datasets were used for evaluating the detection ac-
curacy. The results are shown in Table 2. The proposed
approach achieved an average of 93.710%.

Figure 6: Cross-section view of two point clouds.

The results of the proposed approach were compared
to the results of the coastline curvature approach intro-
duced by Ali [2]. The same test-set was used for this pur-
pose, however, the measuring of coastline displacements
was limited to the areas of clusters that were detected by
the proposed approach, due to consistency of result com-
parison. The values of the displacements and error are
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Table 1: Results and comparison of the testing of displacement computation on 3 datasets with detected multiple displaced
clusters.

Dataset Cluster
number

Actual displace-
ment (m)

Proposed ap-
proach displace-
ment (m)

Proposed ap-
proach error
(%)

Coastline cur-
vature displace-
ment (m)

Coastline curva-
ture error (%)

B190201
1 5.421 5.391 0.557 5.284 2.536
2 4.966 5.220 5.125 4.662 6.108
3 4.282 4.719 10.221 3.403 20.539
4 5.142 5.550 7.938 5.292 2.922
5 5.238 4.961 5.286 5.080 3.015

B190204
1 2.978 2.766 7.120 3.260 9.460
2 2.390 2.548 6.605 1.916 19.820
3 1.807 1.634 9.593 1.798 0.520
4 1.390 1.584 13.964 1.400 0.720
5 1.623 1.610 0.810 1.569 3.350

B204216
1 1.825 1.639 10.178 1.794 1.672
2 2.035 2.120 4.185 2.148 5.538
3 2.196 1.820 17.119 2.048 6.757
4 1.821 1.552 14.749 1.704 6.405

shown in Table 1 under the coastline curvature approach
columns. The average error of 6.383% shows that that the
approach, proposed in this paper, is 1.720% less accurate
than the coastline curvature approach. The reason for this
is in the way of representing a shoreline. The proposed ap-
proach takes in account a wider area of the coastline, while
the coastal curvature uses only the curve of the coastline
which results in the coastal curvature approach being more
sensitive to noise than the proposed approach.

The results of the proposed approach would be satisfac-
tory for use within undemanding fields but would be inap-
propriate for tasks needing maximum precision. The main
reason for the resulting error is the optical flow procedure,
as it is difficult to find global parameter settings.

Table 2: Results of testing the accuracy of displaced areas.

Dataset Coastline Detected Error (%)
length (m) coastline length (m)

B190201 354.999 406.612 14.539
B190204 62.245 61,409 1.340
B204216 127.145 123.341 2.992

6 Conclusions

This paper proposed an approach for change detection of
coastal surfaces using multi-temporal LiDAR data. The
results show the displacement estimations of coastline ar-
eas. The part of the approach that is the main bottleneck is
optical flow computation, as it is noise sensitive and highly
dependent on the parameter settings. Future work should
mainly be focused on optimising this part.
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Abstract

This paper focuses on an existing as-rigid-as-possible de-
formation model that is particularly suitable for manipu-
lating images that capture articulated objects, for example
hand-drawn figures. The model can be used for interactive
image deformation as well as automatic image registra-
tion. We have implemented both applications as tools for
free/open-source image editor GIMP. We describe some
details of the implementation and demonstrate functional-
ity of these new tools on a variety of images. For image
registration we compare the results of the method with re-
sults produced by two existing deformable image registra-
tion tools NiftyReg and Drop.

Keywords: image deformation, image registration, as-
rigid-as-possible, GIMP

1 Introduction

Image deformation tools implemented in various image
editing software allows us to deform image in several
ways. Common deformation options include translation,
rotation, scaling, shearing and perspective deformation.
Recently, various methods have been published which al-
low user to deform image in a less constrained manner.

In this paper we focus on methods that respect as-rigid-
as-possible (ARAP) principle [1]. Its aim is to minimize
the amount of local shearing and scaling involved in the
deformation. These methods allow user to deform image
in a way that during the deformation it behaves like a real
world object which is made of rubber.

Some of these ARAP methods are incorporated in re-
cent versions of image editing software. For example,
since CS5 version Adobe Photoshop offers Puppet Warp
deformation tool based on a method by Igarashi et al. [4],
Fiji, a package of tools for image processing, includes In-
teractive Moving Least Squares deformation plug-in based
on Moving Least Squares (MLS) deformation by Schaefer

�dvoromar@fel.cvut.cz
†sykorad@fel.cvut.cz

(a) Original image

(b) GIMP (c) Adobe Photoshop

(d) Krita

Figure 1: Example of 2-point deformation of a rope using
(b) our new ARAP deformation tool for GIMP, (c) Puppet
Warp in Adobe Photoshop and (d) Warp tool in Krita.

et al. [10] and since 2.7 version graphics editor Krita has
Warp tool which employs MLS as well.

Free/open-source graphics editor GIMP contains Cage
Tool that employs Green Coordinates [5]. The tool allows
user to deform image using a cage. The Cage Tool does
not preserve as-rigid-as-possible model and thus it is more
difficult to obtain realistic deformations of images captur-
ing real world objects. Furthermore, from user point of
view, the process of deformation using Cage Tool is rela-
tively cumbersome since at first user has to manually cre-
ate a cage surrounding the deformed object and only after
that he can start deforming the cage using points it is com-
posed of.

As GIMP did not offer an option to deform images in
ARAP manner we implemented a tool for ARAP defor-
mation based on a method presented in Wang et al. [13]
which allows better deformation results then the aformen-
tioned tools – see Figure 1 for example.

One of the applications of ARAP deformation is ARAP
image registration. We extended the ARAP deformation
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(a) (b) (c) (d) (e)

Figure 2: Multipoint deformation of image: (a) user specifies initial positions of control points (red) and then moves them
onto new positions (blue), (b) result of a single affine deformation, (c) result of affine MLS deformation, (d) result of
rigid MLS deformation, (e) result of large-scale MLS deformation. The image comes from short computer animated film
Sintel.

tool and implemented a tool allowing ARAP registration
into GIMP. The implementation is based on an image reg-
istration method by Sýkora et al. [12].

The paper is organized as follows. First we focus on
some of the methods standing behind ARAP deforma-
tion tools and also the ARAP image registration method.
Then we describe some details of implementation of the
deformation and registration tools into GIMP. Finally we
demonstrate functionality of these tools on images of vari-
ous kinds and compare our image registration results with
results produced by two existing deformable image regis-
tration tools NiftyReg and Drop.

2 Related Work

As-rigid-as-possible (ARAP) deformation principle was
introduced by Alexa et al. [1]. Igarashi et al. [4] later em-
ployed this principle in deformation of images capturing
articulated objects. They use a triangular mesh respect-
ing boundaries of image. User can fix some mesh ver-
tices and move them onto new locations. Then the fol-
lowing operations are performed: (1) similarity transfor-
mation is computed for every triangle and (2) the scaling
is removed. According to size of triangles, the deforma-
tion need not to be smooth. Schaefer et al. [10] employed
Moving Least Squares optimization to produce smooth de-
formations. They solve an optimization problem for every
pixel of image using a closed-form formula which they
formulated. However, their method cannot handle large-
scale deformations. Sorkine and Alexa [11] formulated
ARAP deformation as a non-linear optimization problem
and presented how to solve it effectively in iterative man-
ner. Wang et al. [13] used square lattice to compute ap-
proximation of the non-linear problem for image deforma-
tion. They compute rotations for each square on this lat-
tice using shape matching algorithm proposed by Müller et
al. [9] by facilitating the closed-form formula for rotation
introduced by Schaefer et al. [10].

In image registration, the goal is to find a deformation
(and its parameters) of source image (S) that well aligns
it with target image (T ). Image registration methods of-
ten somehow include deformation model, image similarity
measure and optimization method.

There are two basic kinds of image registration methods
– feature-based and intensity-based [14]. Feature-based
methods use features in source and target image. These
features have to be detected and the most correct match
of features from one image to the other has to be found.
For that purpose SIFT keys [6] are frequently employed.
Once we have the features and their correspondences, pa-
rameters of a mapping function of a selected deformation
model can be found employing the Least Squares method
or some other method of parameter estimation [3].

Intensity-based methods work directly with intensities
of pixels in image. When source and target image differ
only in translation (or also slight rotation), it is possible
to determine globally optimal shift vector by employing
simple block-matching method. However, the method has
a high time complexity. Another option is to construct
an energetic function E(t) = d

�
S (p+ t) ; T (p)

�
, where

d (S;T ) is a dissimilarity function representing dissimilar-
ity measure of images S and T . To obtain a locally opti-
mal shift vector t, we can for example employ the gradient
descent optimization method [7]. In the same way it is
possible to find parameters of mapping function of more
complex deformation models. Two of recent representa-
tives of intensity-based methods yielding good results in
medical imaging are a method by Glocker et al. [2] and a
method by Modat et al. [8]. To solve a problem of regis-
tration of hand-drawn images, Sýkora et al. [12] proposed
an intensity-based ARAP image registration method that
utilizes the deformation method by Wang et al. [13].

3 Image Deformation

In this section we focus on point-based image deforma-
tion methods employing ARAP principle. In Figure 2a
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(a) (b) (c) (d)

Figure 3: Phases of ARAP deformation of a lattice. Figures (a) and (b) depict moving one point of the lattice and thus
deforming the lattice. Figure (c) depicts lattice regularization and (d) lattice deformed in as-rigid-as-possible manner.
Note that this is just one iteration of the algorithm.

there is an image of a character with control points on it.
User first specifies initial positions of these points (indi-
cated by red points) and then he moves these points onto
new positions (indicated by blue points) and thus expects
to deform the image. Our ultimate goal is to deform the
image so that these user specified constraints are satisfied
and the amount of local shearing and scaling involved in
the deformation is minimized.

3.1 Moving Least Squares Deformation

Our task is to find such affine transformation of coordi-
nates (i.e. transformation matrix A and translation vector
t) which moves red points pi so that they are located as
close as possible to blue points qi. Schaefer et al. [10]
employed the (Moving) Least Squares method and alge-
braically formulated the problem as

argmin
A;t ∑

i
wi (Api+ t�qi)

2
: (1)

The weight wi is defined as

wi =
1

(pi�v)2α : (2)

We can see that it is a function which yields very high
values near points pi. The nearer the pixel v to some point
p j, the higher is the influence of an affine transformation
that maps point p j to point q j; α is a selected parameter.

To simplify the solution of the minimization problem,
we first solve for t and obtain optimal vector of translation
tmin = qc �Apc, where qc and pc are weighted centroids
of positions of control points, i.e. pc =

∑i wipi
∑i wi

, qc =
∑i wiqi
∑i wi

.
After that we can remove the translation from the equa-
tion which yields argminA;t ∑i wi (Ap̂i� q̂i)

2, where p̂i =
pi � pc, q̂i = qi � qc. Then we can solve for A and ob-
tain optimal transformation matrix Amin = ∑i

�
wiq̂ip̂T

i
�
��

∑i wip̂ip̂T
i
��1.

Figure 2b depicts a result of applying this method on our
image with wi = 1. That corresponds to a deformation pro-
duced by a single affine transformation. Figure 2c shows
a result of the deformation with weights defined as in (2).
The result contains an undesirable shearing visible in it.

To obtain a better looking result, it is necessary to extract
a rigid transformation out of the affine transformation. For
that purpose, matrix decomposition methods such as sin-
gular value decomposition or polar decomposition can be
employed.

In 2D, closed-form formula that can be used to obtain
the rigid transformation directly was presented by Schae-
fer et al. [10]. Transformation matrix of the rigid transfor-
mation is formulated as

Rmin =
1
µ ∑

i
wi

�
p̂i
�p̂?i

��
q̂T

i �q̂?T
i

�
(3)

where

µ =

vuut ∑
i

wiqip̂T
i

!2

+

 
∑

i
wiqip̂?T

i

!2

(4)

and operator ? represents a perpendicular vector, i.e.
(x;y)? = (y;�x).

Figure 2d depicts a result of deformation after process-
ing the image using this as-rigid-as-possible MLS defor-
mation. The result looks more natural.

However, with this approach we only obtain plausible
results for suitable positions of points pi and qi. Figure 1d
depicts a case where MLS deformation cannot yield de-
sired result because of non-linearity of the problem [11].

Another problem that appears here is caused by the
measure (Euclidean distance) that is employed in the
weighting function (2). This measure does not respect a
topology of image. The consequence of this is that when
we e.g. deform an image of a character and we move a
point located on a hand towards the body, not only the
hand is deformed but also hips and the body (see Fig-
ure 2e). This can be solved by a measure that respects
image topology.

3.2 Rigid Square Matching

A method that does not suffer from the aforementioned
problems was presented by Wang et al. [13]. Examples of

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
81



iteration

0. 1. 2. 3.

initial pose push regularize push regularize push regularize

Figure 4: Several first iterations of ARAP image registration algorithm. The goal is to deform the image of a rope to well
align it with the image of bent rectangle.

image deformations produced by this method are depicted
in Figure 5.

In this method a square lattice (mesh) copying shape of
image is firstly constructed above image. Some points of
the lattice are moved by user to desired locations and the
lattice is then iteratively deformed in as-rigid-as-possible
manner. Deformed image is obtained by using any of suit-
able 4-point image deformation methods on each square
of the lattice.

The mesh composed of squares is used despite the fact
that with it we are not able to precisely copy the image
(as with triangular mesh). An advantage of square mesh is
simplicity of its construction (in comparison to e.g. trian-
gulation) and a lower number of lattice elements in com-
parison to triangular mesh. A shape-aware mesh split-
ting algorithm [13] can be employed to achieve similar
behaviour as with triangular mesh.

A lattice is actually a group of points. Similarly to sec-
tion 3.1 we have initial positions pi of points of the lattice
(or alternatively source lattice) and target positions qi of
the lattice (or target lattice). User sets new positions of
some of the points qi of the target lattice (Figure 3a) and
thus deforms the lattice – some of the lattice squares be-
come quadrilaterals (see Figure 3b).

The core of the method is in a regularization phase
where we try to respect user specified constraints in a form
of the placed points qi as well as deform the lattice in a
way that every single square (quadrilateral) is deformed
the most rigidly. We perform a specified number of regu-
larizing iterations of which every one performs the follow-
ing operations:

1. Rigid transformation of every lattice square (see Fig-
ure 3c) using the formula (3) and wi = 1. This trans-
forms every quadrilateral to square again.

2. Centering every originally overlapping points of the
lattice (see Figure 3d). This ensures that points in ev-
ery cluster of originally overlapping points of the lat-
tice will overlap again – and squares become quadri-
laterals again.

Hundreds of these iterations are usually performed. Con-
vergence of the method is slower than with ARAP de-
formation methods that solve linear system [11] instead

of computing centroids. However, the advantage of the
method is that it does not require us to specify fixed points.
This fact is utilized in image registration [12].

4 ARAP Image Registration

In this section we will focus on an application of ARAP
image deformation. We will describe an intensity-based
registration method presented by Sýkora et al. [12]. The
method was invented for usage in cartoon industry and is
especially suitable for registration of hand-drawn articu-
lated images.

When registering such images, it is not possible to use
methods based on features since every drawing is unique
to some extent and hence it is not possible to find cor-
responding features. In such a case methods based on
optimization of energetic function may lead to a suc-
cess. However, if source and target image differ in large
non-linear deformation, these methods usually get stuck in
a local extrema and hence the result of these methods will
often not be plausible – see Figure 7f.

The method by Sýkora et al. employs the rigid square
matching deformation algorithm described in section 3.2,
sum of absolute differences (SAD) dissimilarity measure
and block-matching optimization method. The method
takes advantage of the fact that the deformation algorithm
allows us to arbitrarily move points qi without having to
consider their mutual connection. The actual registration
is divided into “push” and “regularize” phases. These two
phases are continuously performed until fulfillment of a
stop condition.

In Figure 4 there are two overlapping objects depicted –
image of a rope (source image) and image of a bent rect-
angle (target image). The aim of this registration problem
is to deform the image of a rope so that it well aligns with
the image of a bent rectangle.

In the push phase of ARAP registration, we move lat-
tice points qi to locations where the area of the source im-
age around these points differs as little as possible from
the area of the target image (around these points). To
find such a translation vector t the method employs the
block-matching method that finds the optimal translation

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
82



Figure 5: Examples of image deformation created using
our N-Point Deformation tool in GIMP. Red points indi-
cate initial positions of points that are fixed, blue points
indicate desired positions of these points.

vector in defined search area. For SAD dissimilarity mea-
sure the optimal translation vector topt can be formulated
as

topt = argmin
t2M ∑

p2N
jS(p+ t)�T (p)j , (5)

where M is a search area where we search for optimal
shift, N is SAD “neighborhood”, S is source and T is tar-
get image. In regularization phase the lattice is put into
a consistent state by the rigid square matching algorithm.
Figure 4 shows several first iterations of ARAP image reg-
istration algorithm together with results of push and regu-
larize phases for each iteration.

By the number regularizing iterations in the rigid square
matching algorithm, we can adjust rigidity (or flexibility)
of deformation. That is utilized in this image registration
method to refine the result – see Figure 7, 8, 9, 10.

5 Implementation

Our goal was to implement the rigid square matching al-
gorithm and the ARAP image registration algorithm into
GIMP. For implementation C programming language was
selected since GIMP is written in this language.

We implemented (1) the rigid square matching algo-
rithm into a new library named libnpd, (2) an operation
that allows ARAP image deformation into GEGL library
which is employed in GIMP; the operation utilizes libnpd

library, (3) ARAP image deformation tool into GIMP; the
tool utilizies the aforementioned operation, (4) ARAP im-
age registration tool into GIMP; the tool extends the de-
formation tool.

In this paper, we use the term “n-point deformation” for
image deformation employing the rigid square matching
algorithm and the term “n-point registration” for image
registration employing the ARAP image registration algo-
rithm.

5.1 N-Point Deformation Library (libnpd)

The library contains data types and functions allowing to
perform n-point image deformation and registration. The
library is designed in a way so that it can be used with vari-
ous graphics libraries and thus requires to implement some
graphics functions (e.g. get_pixel_color, set_pixel_color)
and data types (image, display).

One of the most important data types in the library is
NPDModel type which holds source lattice, target lattice
(i.e. “source” and “target” group of points), source image
and display.

5.2 GIMP and GEGL Library

As already stated, GIMP is written in C (C89 standard).
The C language itself is not object-oriented. GIMP uses
the C language enriched with object-oriented approach us-
ing GObject object system, which is part of GLib library.

GIMP currently uses GEGL and BABL libraries which
should allow it to work with high depth color images
and use some non-destructive image editing techniques.
GEGL is a graphics library which uses specified oriented
acyclic graph to process images. This graph is made up of
individual nodes that can represent graphics operations as
well as another graph. Edges that connect individual nodes
determine the order in which the graph will be processed.
Nodes usually expect image on their inputs and produce
(filtered) image on their output.

Figure 6: Our ARAP image deformation and registration
tools integrated into the environment of GIMP
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(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 7: Registration of a hand-drawn images. The task is to deform the source image to well align it with the target
image. Resolution of images: 420� 541. NPR1 is a result of NPR tool with rigidity set to 600, for NPR2 the rigidity is
30. Courtesy of Universal Production Partners.

(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 8: Registration of a hand-drawn images. Resolution of images: 560� 400. NPR1 is a result of NPR tool with
rigidity set to 200, for NPR2 the rigidity is 30. Courtesy of AniFilm.

Functionality of GIMP can be extended using plug-ins.
They can be written in various programming languages
– namely Scheme, Python, Perl and C. GIMP incorpo-
rates a large amount of plug-ins, most of them function
as graphic filters. The current development trend is not to
create graphic filters in form of GIMP plug-ins but instead
to create GEGL operations within GEGL library.

N-point deformation algorithm was implemented into
the GEGL library as a new operation. This operation em-
ploys libnpd library. There can be two scenarios of its
usage depending on whether we have or we do not have
NPDModel.

When we do not have NPDModel, the operation expects
image on its input. After the first processing of a graph the
operation is contained in, the operation creates NPDModel
and returns it through operation’s parameters. User can
then deform the target lattice contained in NPDModel by
manipulating with lattice’s points. Second and another
processing produces ARAP deformed image that is result
of a specified number of deformation iterations. This im-
age is available on operation’s output.

When we have NPDModel, we can supply it to the op-
eration through operation’s parameter and perform the de-
formation in the same way as described in previous para-
graph.

5.3 N-Point Deformation Tool

N-point deformation was implemented as internal tool (in-
stead of a plug-in). That allows the tool’s GUI to be seam-
lessly integrated in GIMP. Individual control points can
be placed directly on the canvas. During the deformation
process, user can use GIMP’s GUI e.g. to easily zoom to a

certain part of image that is being deformed and focus on
details or he can arbitrarily rotate the canvas.

Every tool in GIMP is implemented as a class extend-
ing a parent class named GimpTool. This parent class pro-
vides the basic functionality common to all tools in GIMP.
This class is extended by a class named GimpDrawTool
that allows its descendant classes to add GUI elements on
canvas and that is able to draw these elements. These ele-
ments include control points (handles), basic plane shapes,
guide lines, paths, text cursor and also a live preview of a
result of operation that is performed by a tool. This class is
extended by various classes representing tools, let us men-
tion for example a group of painting tools, selection tools,
transformation tools and also a tool for writing text.

The class GimpDrawTool is also extended by our class
named GimpNPointDeformationTool that implements the
N-Point Deformation tool. This class employs libnpd li-
brary. Using a deformation thread, it performs a deforma-
tion of image, using a preview thread, it draws at regular
intervals a preview of current state of the deformation. The
preview thread calls the methods of GimpDrawTool in or-
der to redraw GIMP’s GUI.

Every GIMP tool can define its own set of settings and
their graphic representation within GIMP tool’s GUI. For
these purposes, a class named GimpToolOptions is em-
ployed. This class is inherited by classes describing indi-
vidual tools options. N-Point Deformation tool employs
its own class named GimpNPointDeformationOptions.

5.4 N-Point Registration Tool

As the n-point deformation, the n-point registration was
implemented into GIMP as an internal tool. The main rea-
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(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 9: Registration of images of a person. Resolution of images: 489�656. NPR1 is a result of NPR tool with rigidity
set to 200, for NPR2 the rigidity is 30.

(a) source image (b) target image (c) initial overlap (d) NPR1 (e) NPR2 (f) Drop (g) NiftyReg

Figure 10: Registration of images of a brain. Resolution of images: 421�436. NPR1 is a result of NPR tool with rigidity
set to 50, for NPR2 the rigidity is 5. Difference images have been used to show the resulting overlap. Images come from
the RIRE dataset.

sons for this decision included the possibility to use exist-
ing implementation of N-Point Deformation tool and the
possibility to allow user to easily help the registration (by
moving one or several points to correct locations) in situa-
tion when the registration get stuck in undesirable state.

A class named GimpNPointRegistrationTool which ex-
tends GimpNPointDeformationTool class was created.
The N-Point Deformation tool class was modified to allow
its employment for registration purposes. As previously
mentioned, the N-Point Deformation tool uses a thread to
perform the deformation. Within this thread a method per-
forming the deformation is being called. This method is
overridden in GimpNPointRegistrationTool by a method
performing the ARAP image registration algorithm.

A class GimpNPointRegistrationOptions defining a set
of settings of the tool was created. This class extends
GimpNPointDeformationOptions class which was modi-
fied to allow its subclasses to use a set of generic settings
of the deformation.

6 Results

We used our N-Point Deformation tool to deform several
images – see Figure 1 and 5. Let us look at Figure 1 de-
picting a deformation of a rope using various deformation
tools. Krita (and Fiji) produced undesirable result. With
Adobe Photoshop we can obtain a result similar to ours,
however, the process is cumbersome. With Puppet Warp
tool user must rotate control points (pins) to achieve de-
sired deformation. There is an automatic pin rotating func-
tion available, however, as in our example it might not
work correctly. There is no need to rotate control points

in N-Point Deformation tool. Thanks to the method em-
ployed in our tool, the deformation is predictable and the
deformation process is easier than with Puppet Warp in
Adobe Photoshop.

We compared our N-Point Registration (NPR) tool
with deformable image registration tools Drop [2] and
NiftyReg [8]. Figure 7 shows a plausible result of NPR
tool. Even we tried to set the best parameters in Drop and
NiftyReg tools we obtained unsatisfactory results. Here,
the deformation model preserving rigidity is a great ad-
vantage. Figure 8 shows an example where all three tools
gave satisfactory result. There we can see that Drop and
NiftyReg produced results that look more similar to the
target image. However, the details are more distorted. Fig-
ure 9 shows registration of images of a person. In this
problem we obtained plausible results with NPR and Drop.
The latter produced really good result, however, there is
again problem with details (left hand). With NiftyReg we
could not obtain satisfactory result again. In a registration
problem involving registration of articulated images, good
approach is to first perform ARAP registration and then
refine with a non-linear registration method as in Drop or
NiftyReg. Sýkora et al. use that approach in [12].

Figure 10 shows results of a common registration prob-
lem – aligning two medical images. Drop and NiftyReg
were designed exactly for this kind of a problem and gave
very good results. We can see that NPR can also handle
this kind of registration problem because the rigid square
matching algorithm allows some amount of shrinking or
stretching (depending on a number of deformation itera-
tions). However, the result is not as good as with the two
other tools.
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7 Conclusions and Future Work

We implemented as-rigid-as-possible image deformation
and registration tools into a development version of popu-
lar free/open-source image editor GIMP and demonstrated
their functionality on images of various kinds.

For image registration it is evident from the results
that some modern non-linear image registration methods,
when properly set, are able to cope even with a large defor-
mation of images entering the registration. In contrast to
these methods in some situations a great advantage of the
ARAP image registration method can be the fact that in al-
most all circumstances it produces results that are not un-
naturally deformed. This is particularly useful when reg-
istering real or cartoon figures and their poses.

Although the tools are functional they still have some
weaknesses. Further work is thus to eliminate them. The
tools have currently problems regarding speed when work-
ing with large images, mainly due to redrawing the pre-
view of the deformation. The preview has to be rendered
several times per second, which is what causes the prob-
lems. In the registration tool the problem is also caused
by block-matching method that is employed during regis-
tration. For large images, it is necessary to set a higher
value of the search parameters (“search area” and “neigh-
borhood”). Currently, user does not have an option to set a
depth of individual control points and thus he cannot spec-
ify which part of the overlapping lattice (image) will be
visible. The tools currently do not use multiple CPU/GPU
cores to speed up their computations.
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Abstract

This paper presents a highly parallel algorithm for the styl-
ized, real-time display of fluids and smoke. We use meta-
balls to define a fluid surface from a particle-based fluid
representation, but instead of the costly complete recon-
struction of this surface, we only trace the motion of ran-
dom seed points on it. Hatching strokes are extruded along
the lines of curvature. We propose methods for hidden
stroke removal and density control that maintain anima-
tion consistency.

Keywords: Hatching, NPR, Metaball

1 Introduction

Hatching is an artistic technique that is often emulated
in stylistic animation. Implicit surfaces are becoming in-
creasingly important in real-time applications for visual-
izing fluids simulated by particle-based methods. Thus,
we aim to extend real-time hatching to deforming implicit
surfaces, and specifically to metaballs. In addition to en-
abling fluid rendering in hatching-style NPR, we also con-
sider this approach a more feasible alternative to expen-
sive polygonization [12, 18], ray casting [15, 3], or screen-
space filtering [20], when visualizing scientific isosurface
or fluid simulation data.

2 Previous work

In pencil drawings artists convey the shape and illumi-
nation of objects with the density and orientation of thin
hatch lines [23, 7]. To mimic this, we should define aden-
sity and adirection fieldin the image plane that is as close
as possible to what an artist would use. Density is influ-
enced by illumination, while the direction field is deter-
mined either by theprincipal curvature directions[6], the
tone gradient [10], or in case of animation, the direction of
motion.

Hatch strokes should appear hand-drawn, with roughly
similar image-space width, dictated by brush size, but they
should also stick to surfaces to provide proper object space

∗szecsi.laszlo@gmail.com

shape and motion cues. Hatches can be generated into
textures and mapped onto animated objects, with level-
of-detail mechanisms to approximate image space behav-
ior [17]. In absence of surface parametrization, this ap-
proach is not applicable to implicit surfaces.

Hatch strokes can be generated directly in image
space [9, 11], but if they are fixed in their position and
cling to the view plane instead of the animated objects,
movement will appear as if seen through textured glass.
This is known as theshower door effect. In order to avoid
this disturbing phenomenon, lines can be moved along
with an optical flow or image space velocity field, but plac-
ing new strokes on emerging, previously non-visible sur-
faces still poses problems. Especially if strokes are long,
following curvature or feature curves of object surfaces,
they should appear consistent even when only tiny frac-
tions have become visible. This cannot be assured when
only using image space information. For implicit surfaces,
it is often prohibitively expensive to render a full image, or
even to find isosurfaces in some pixels.

Several works [13, 19] proposed the application ofpar-
ticlesor seedsattached to objects, extruding them to hatch
strokes in image space. The key challenge in these meth-
ods is the generation of the world-space seed distribution
corresponding to the desired image-space hatching den-
sity. This approach is well-suited to implicit surfaces.

Much effort was directed at rendering implicit surfaces,
esp. metaballs photorealistically in real time, based on
ray casting [8]. This is computationally demanding as it
requires a high number of field function evaluations to
find the visible isosurface in every pixel. The styliza-
tion of the result is straightforward only with image-space
techniques, as no surface parametrization or visibility-
independent object-space shape information is extracted.

Several aspects of stylized rendering of implicit surfaces
have been studied. Brazil et al. [22] useseed pointsto gen-
eraterender pointson isosurfaces. They require the user
to edit seed point distribution manually, excluding appli-
cation for deforming surfaces. Elber [5] proposed the ap-
proach of first obtaining a Euclidean-space on-surface uni-
form point distribution, then extruding strokes along sym-
bolically computed principal curvature directions [26, 16].
For the generation of uniformly distributed points on im-
plicit surfaces, they refer the reader to Witkin [24], who
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proposes an adaptive resampling of deformed implicit sur-
faces, for purposes of sculpting, by the means ofrepul-
sion forces, fissioningand killing operating on a set of
floater particles. Kooten et al. [21] employ a similar con-
cept more specifically for isosurface rendering of metaball
models. Both solutions require a fullself-spatial joinon
surface particles to compute repulsion forces, and allow
particles to float on surfaces. We consider this detrimen-
tal for our purpose of hatching stylization, as hatch lines
not moving with the surface could provide inappropriate
motion cues. A rejection-based density control approach
from [19] does not require repulsion forces to achieve de-
sired distribution.

3 Implicit surfaces and metaballs

An implicit surface is defined as an isosurface at valueL
of field function f (x) with the implicit equationf (x) = L.
Its gradientg(x) is ∇ f (x).

Metaballs [14, 2] constitute a special case where the
fluid is represented by a number of balls oratomsas

f (x) =
M−1

∑
j=0

f j (x) =
M−1

∑
j=0

ρ j
(∥∥x − a j

∥∥) , (1)

with M as the number of atoms,ρ j the generator ofradial
basis function fj (x) for an atomcentered ata j . If ρ j(r)
has finite support, i.e.∃Rj ∈ R : ∀r > Rj : ρ j(r) = 0, then
we callRj theeffective radiusof atom j.

The gradientg(x) and HessianH(x) can be computed as
sums of atom gradientsg j(x) and atom HessiansH j(x).

Gaussian and mean curvaturesK andH, the principal
curvaturesκ1 andκ2, principal curvature directionst1, t2

can be computed [1] using the HessianH(x). Where the
determinantD = H2−K is close to zero, the principal cur-
vatures are not well defined, and we regard the surface
point as umbilical.

The approach we employ extrudes textured triangle
strips along a metaball surface, in the principal curvature
directions. The method we use to move seeds along a
metaball surface is similar to [21]. First we cover formula
derivations for popular radial basis functions to get the
above-mentioned, necessary quantities then we describe
the details of curvature computation.

3.1 Gradients and Hessians

In order to be able to evaluate the curvature formulae,
we need to compute the field function, its gradient,
and Hessian. Those are all obtained as the sum of
respective functions for metaball atoms. Here we give
the formulae for the infinite supportBlinn [2] and finite
supportWywill [25] functions. We give all base functions,
gradients and Hessians as functions ofd = x − a, wherea
is the atom position. This is to avoid having to subtracta
at every instance ofx.

Before the derivations let us introduce the vectors of
pure and mixed second-order partial derivatives as

p =
[

∂ 2f
∂x2

∂ 2f
∂y2

∂ 2f
∂z2

]T

and

m =
[

∂ 2f
∂x∂y

∂ 2f
∂y∂z

∂ 2f
∂z∂x

]T
.

With these Hessian is

H =




px mx mz

mx py my

mz my pz


 .

The Blinn base function is:

f Blinn(d) =
1

‖d‖2 .

The gradient is:

gBlinn(d) = −d
2

‖d‖4 .

Let us introduce the notation for aswizzleof a vectory

yyxz=




yy

yx

yz


 ,

and similarly for any order of elements. With this the vec-
tor of pure second derivativesp(d), usinge = d◦d, where
◦ is the Hadamard product operator, is:

pBlinn(d) =
6e −2(eyzx+ ezxy)

‖d‖6 .

The vector of mixed second derivativesm(d) is

mBlinn(d) =
8d◦ dyzx

‖d‖6 .

The Wywill base function has finite support. LetR be
the effective atom radius, and introduce the shorthandδ =
‖d‖/R. With these, the Wywill base function is:

f Wywill (d) =

{
0 if δ > 1,

1+ −4δ 6+17δ 4−22δ 2

9 if δ ≤ 1.
(2)

With

G =
4
(
6δ 4 −17δ 2+11

)

9R2 ,

the gradient is:

gWywill (d) =

{
0 if δ > 1,

−dG if δ ≤ 1.

The vector of pure second derivativesp(d), usinge = d◦d
is:

pWywill (d) =





0 if δ > 1,

4e(17−12δ 2)
R4 −




G

G

G


 if δ ≤ 1.
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The vector of mixed second derivativesm(d) is:

mWywill (d) =

{
0 if δ > 1,

dxyz◦ dyzx
4(12δ 2−17)

9R4 if δ ≤ 1.

3.2 Curvature computation

Here we continue using the notations for the vectors of
pure and mixed second order partial derivatives and the
Hessian from Section 3.1.

The following method of curvature computation is
based on [1]. All quantities are functions ofx, which we
will omit in the notation for ease of reading.

The Gaussian curvatureK is

K = − 1

‖g‖4

∣∣∣∣
H g
gT 0

∣∣∣∣ . (3)

With normaln = − g
‖g‖ , and Laplacian∆f = ∂ 2f

∂x2 + ∂ 2f
∂y2 +

∂ 2f
∂z2 the mean curvatureH is

H =
1

‖g‖
[
nTHn− ∆f

]
.

The principal curvatures are:

κ1 = H +
√

(H)2 −K,

κ2 = H −
√

(H)2 −K.
(4)

We need to construct the matrix
(
n ·nT − I

)
H − Iκ1‖g‖ ,

where I is the identity matrix, then take the maximum
length one out of the three possible pairwise cross prod-
ucts of its rows. Normalized, it gives principal direction
t1. Then,t2 = t1 × n.

Using theswizzlenotation from Section 3.1 the deter-
minant of equation 3 can be computed without explicitly
constructing the matrix as

∣∣∣∣
H g
gT 0

∣∣∣∣=

2(p◦ myzx) · (gyzx◦ gzxy)

− (pzxy◦ pyzx) · (g ◦ g)

+ (m◦ m) · (gzxy◦ gzxy)

−2(mxzy◦ myxz) · (gxzy◦ gzyx).

(5)

4 Seeds and their motion explained

Seeds are particles moving along the deforming isosur-
face. The velocity vector used to move a seed is found
by using the formulae described in [21]. There are three
effects that contribute to this motion: fluid motion, field
shift, and correction.

4.1 Complete seed velocity

4.2 Fluid motion

The fluid medium itself is moving. Its motion is defined
for atoms with atom velocitiesq j . How we construct the
flow velocity at a point from these relies on the require-
ment that points on the isosurface should remain on the
isosurface. How much the linear motion of an atom in-
fluences the isosurface depends on the length of the base
function gradient at the isosurface point. Thus, linear atom
velocities should be weighted with this gradient length to
get the flow velocity:

vfl(s) =
∑M−1

j=0

∥∥g j(sk)
∥∥q j

∑M−1
j=0

∥∥g j(sk)
∥∥ .

The seeds need to travel along the isosurface, so the
fluid velocity must be projected on it. The component per-
pendicular to the surface is found as

vperp
k =

g(sk)
(
vfl

k ·g(sk)
)

‖g(sk)‖2 ,

and thus the projected fluid velocity is

vpfl
k = vfl

k − vperp
k = vfl

k − g(sk)(vfl
k ·g(sk))

‖g(sk)‖2 .

4.3 Surface pull

Seeds need to move towards the isosurface either because
they are distant due to initial or accumulated error, or be-
cause the isosurface itself has moved. For both effects, we
will be able to find the desired rate of change in field value
at the seedδ =

∂ f (sk)
∂ t , and need to compute the seed ve-

locity vpull
k = ∂ sk/∂ t from this. We move the seed along

the gradient, sovpull
k = ξ g(sk) with someξ . It must be true

that
δ = (ξ g(sk)) ·g(sk).

Solving this forξ gives

ξ =
δ

‖g(sk)‖2 ,

and then

vpull
k =

g(sk)δ
‖g(sk)‖2 .

Correction

As neither the temporal nor the spatial linearizations ap-
plied are accurate, the seeds positions would accumulate
error and drift away from the isosurface. Also, when ini-
tialized, the seeds are at random positions and need to be
drawn to the isosurface rapidly. Therefore, a correction
term with boldness factorΦ is applied. The boldness fac-
tor Φ is the inverse of the time in which the seed is sup-
posed to reach the isosurface. Thus,δ corr is (L− f (sk))Φ.
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Figure 1: The components of seed velocity: the surface-projected fluid velocity (left), the correction term toward the
surface along the gradient (center), and the term following the isosurface shift due to chagingfield values (right).

However, largeΦ values can lead to instabilities near
strongly non-linear regions of the field function.

vcorr
k =

g(sk)(L− f (sk))Φ
‖g(sk)‖2 .

Field shift

As atoms move, the field value at ask is going to increase
or decrease. This change will make the isosurface ofL
move along the gradient. The rate of change at seedk due
to atom j moving is:

δ shift
j = −g j(sk) ·q j ,

and the total effect of all atoms is:

δ shift = −
M−1

∑
j=0

g j(sk) ·q j .

This makes the shift velocity:

vshift
k = −

g∑M−1
j=0 g j(sk) ·q j

‖g‖2 .

All terms, save for the unprojected fluid velocity, con-
tain the gradient divided by its length squared. Their sum
can therefore be written as:

vk = vfl
k − (6)

g(sk)

‖g(sk)‖2

(
vfl

k ·g(sk)+ ( f (sk)−L)Φ+
M−1

∑
j=0

g j(sk) ·q j

)

A visual representation of this equation can be seen in
Figure 1.

5 The algorithm

Our algorithm moves seeds along a metaball surface simi-
lar to [21], applies a screen-space approximate version of
the density control approach from [19], and extrudes tex-
tured triangle strips along principal curvature directions.

We propose a solution for the seed visibility problem based
on the idea employed byvariance shadow maps[4]. The
algorithm performs the following steps in every frame of
an animation:

1. Initialization of spawned seeds.

2. Seed animation.

3. Seed filtering by visibility testing and rejection.

4. Curve extrusion from seeds.

5. Triangle strip extrusion from curves.

6. Stroke weighting and rendering.

Along the process, various weighting factors are com-
puted for the seeds—wprox for proximity to isosurface,
wage for age ,wvis for visibility, wrej for density control
by rejection. The product of thesewΠ is used in the fi-
nal rendering step for opacity weighting, with the opti-
mization that seeds with zero weight need not be extruded
into hatch strokes. The weight without density control,
wpre = wproxwagewvis is used for estimatingpre-rejection
density.

When seeds are initialized, they are placed randomly on
atom-centered spheres within the effective radius. They
are not guaranteed to be on the compound isosurface, and
the isosurface-projected distribution might not be uniform.
Those requirements are to be achieved by consequent seed
animation and rejection steps, over the course of several
frames. Seed points are re-initialized after a fixed lifetime
to avoid excessive clustering. Seed point ages are evenly
distributed, so that only a small percentage of seeds are re-
initialized in every frame. Weightwprox is computed as a
smooth step function on the difference of the field value at
the seed point and the desired isosurface. This is to elim-
inate seeds not yet converged to the surface. Weightwage

fades to zero at the beginning and the end of the seed life-
time to avoid suddenly appearing and disappearing hatch
lines.

Seed point animation is based on the technique pro-
posed by [21], without using repulsion forces to achieve
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uniform density, thus eliminating the need for a self-spatial
join on seeds. Seed animation according to Section 4.3 re-
quires the field value and the gradient. We compute these,
and also the world spacestroke directionalong the isosur-
face. The computation of the stroke direction involves first
finding the pure and mixed second derivatives forming the
Hessian, the principal curvatures and curvature directions,
the determinantD indicating whether the seed is at an um-
bilical point, the cosine of the view angle cosΘ indicating
whether the seed is near a silhouette, and the local illumi-
nationV at the seed, normalized to a desired tone.

Generally, the stroke direction is the principal curvature
direction of the isosurface, but near umbilical points, we
employ a custom direction, obtained as the cross product
of the surface normal and a per-atom direction vector. The
choice of this per-atom vector might be random, or subject
to artistic consideration. In order to produce simple out-
lines, a different direction scheme is applied to lines near
the silhouette: the stroke direction there is perpendicular to
both the view direction and the surface gradient (see Fig-
ure 2). The three direction schemes are combined based
on D and cosΘ, so that there are no abrupt changes in the
stroke direction. For any directiont, the corresponding
curvatureκ can be found asκ = κ1 (t · t1)

2 + κ2(t · t2)
2 .

Seed points have to pass two filters to see if they should
be extruded into hatch strokes. The first is the visibility
test needed to decide if the seeds are seen from the cam-
era. For this purpose, we render all seeds as isosurface-
oriented billboards into a low-resolution buffer, outputting
fragment depths and their squares. The purpose here is to
approximate the depth of the isosuface itself by using the
depth values of the billboards covering it. Using the idea
of variance shadow maps[4], this low-resolution depth
map is heavily filtered by two-pass separable Gaussian fil-
tering. The resulting approximate variance depth map can
be used for a smooth and lenient rejection of hidden seeds,
producing visibility factorwvis. Using this visibility factor
to modify hatch stroke opacity causes strokes at and be-
hind the boundaries of the surface to fade out smoothly,
enabling partially visible strokes to appear. As we are em-
ulating the hand-drawn style, the error—from approximat-
ing the isosurface with billboards, using a low-resolution
map, aggressive filtering, and testing for visibility only at
seeds—is not only acceptable, but welcome.

The second rejection step is to achieve an illumination-
dictated screen space density of seed points (Figure 3).
The full cover densityϒfull is an artistic parameter that
specifies the seed density corresponding to surfaces devoid
of illumination. This, modulated by seed toneVk gives the
desired on-screen density near a seed. Let us refer to the
local density of all screen-projected seed points (weighted
by wpre) asϒpre. The ratio ofVkϒfull /ϒpre gives the per-
centage of seed points to be kept. If all seed points have
a random normalized priority valuepk, then those with
priorities above the desired percentage should be rejected.
The ϒpre density is approximated by rendering all visi-
ble seeds, extruded into approximate hatch strokes, with

additive blending, weighted bywpre into a low-resolution
buffer, and performing heavy filtering to eliminate raster-
ization artifacts. Note that what we get is not exactly the
density of seeds, but an approximate density of hatching
coverage. Thus, it helps to eliminate not only the clus-
tering of seeds, but also the clustering of aligned strokes.
Weight wrej is computed as a smooth step function of
Vkϒfull /ϒpre− pk. Thus, rejection is performed smoothly,
thus avoiding temporal visual artifacts, i.e. suddenly dis-
appearing, appearing, or flickering hatch lines.

The seeds surviving visibility testing and rejection are
extruded into curves. For short strokes, it is sufficient to
use the local curvature at the seed, but longer lines require
integration along the isosurface. In the latter case, visi-
bility testing has to be performed for all samples. Curves
are extruded into triangle strips to a uniform image space
width. This width, and also the length of strokes, is an
artistic parameter.

In the final rendering step the stroke is textured with an
artist-drawn stroke image, with weights applied as opacity
modifiers. We only discard the seeds if the weight would
indeed be zero.

6 Implementation

The steps of our algorithm are implemented in five passes,
depicted in Figure 4.

seed

data 

seed

animation

atom

data 

isosurface

depth 

depth
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Gaussian

blur
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stroke
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Figure 4: Shader passes of the implementation.

The first pass performs seed animation. All seed data
is stored in textures used as data tables, where rows cor-
respond to atoms, and the elements of the rows are indi-
vidual seed points. Aging and re-initialization of seeds is
performed by a rotating pipeline. In fact, in every texture
row, seed attributes are shifted out to the right and reini-
tialized seeds shift in from the left, at a constant rate. The
textures are also shifted vertically, to account for newborn
and dying atoms, if so dictated by fluid simulation. For
computation of quantities derived from the field function
we used a regular grid space subdivision scheme to access
relevant atoms.

The second pass produces the variance depth map of the
isosurface to be used for a visibility filtering. Billboards
are only extruded for seeds already converged to the sur-
face to avoid unnecessary occlusion by seeds that are still
trying to find their place. The depth values are blurred us-
ing a Gaussian filter, in accordance with the VSM tech-
nique, eliminating jagged edges in the depth map that
could cause flickering hatch strokes in the final image.

The fourth pass is used to produce an image ofϒpre

values. These are needed for rejection of seeds later, to
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Figure 2: Hatching of an LSD molecule discarding seeds near silhouettes (left) and rotating strokes to produce outlines
(right).

achieve uniform screen space density. It extrudes hatch
strokes from all visible seed points, and applies the same
opacity weighting to them—for visibility, age and prox-
imity to the isosurface—, as would be when rendering on-
screen strokes. Rejection for density, however, is not ap-
plied, since the goal is to approximate the hatching den-
sity from all visible seeds. After visibility determination
and curve extrusion, the hatch strokes are rendered, given
color and opacity values that smoothly fall off towards the
edges of the strokes. The output of this pass is rendered
to a texture, using additive blending to generate high den-
sity values for high density areas on the screen.Theϒpre

density values also need to be blurred, to avoid rasteriza-
tion artifacts caused by jagged edges of approximate hatch
strokes.

In the final pass, the process of rejection and opacity
weighting based on visibility and hatch stroke extrusion is
the same as it was during rendering theϒpre density. In ad-
dition, this pass also weights seed points using theϒpre val-
ues, and illumination values calculated on the fly, before
extruding the hatch strokes themselves. If the compound
weight of the seed is positive, the strokes are extruded, tex-
tured, and opacity is modulated by all weighting factors.

7 Results and future work

We ran our tests on a PC with an ATI5850 graphics card.
At a resolution of 1024× 768, with 65K seeds, which we
deemed sufficient for rendering quality, and regardless of
the number of atoms, we measured frame rates around 20
FPS.

Extruding long hatch curves requires several curvature
samples on the isosurface, and as curves travel into zones
of different curvature characteristics they tend to cross

each other. Density estimation at seeds is also less accurate
in this case. Therefore, we wish to investigate the possi-
bility of using several linked seeds points for every hatch
curve. Another limitation of the method is that the seed
density cannot exceed what is provided by rendering all
seeds at unit weight. This is made worse if the distribution
of seed points gets uneven because of seed motion. Thus,
we plan to add seed fissioning and killing to improve per-
formance and provide much wider level-of-detail support
without increasing the seed count.
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Abstract

Mirroring objects play an important role in the rendering
of every-day scenes, as they aid in the recognition of ma-
terials, objects and the distance relations between them.
Due to their complex nature, an accurate solution gener-
ally requires an expensive computation, which is mostly
done using methods based on ray tracing. To reduce the
workload, recent methods try to perform the computation
in screen-space. However, in order to ensure accurate re-
flections, the geometry of the scene needs to be sufficiently
tessellated to reduce the artifacts created by the linear in-
terpolation of the GPU rasterizer. This creates a vast pre-
processing effort and storage-overhead for the tessellated
vertices.

In this paper, we present a method that performs this
tessellation on the fly, reducing the error in the reflective
image by inserting extra vertices where necessary. We
prove the effectiveness of our approach in comparison to
the state of the art and discuss limitations and ideas for
possible future work.

Keywords: computer graphics, rendering, real-time ren-
dering, deferred shading, tessellation, reflections

1 Introduction

In rendering, it is oftentimes the goal to render mirrors and
reflective objects. Materials like metals and glass, make
the scene feel believable to the viewer and contribute to
the realism and beauty of images. Perfectly mirror-like
surfaces can be often found in many man-made environ-
ments, such as in washroom appliances or cars.

In rendering systems, rendering specular reflections can
be viewed as the process of finding reflection points, the
places of reflection visible from the camera, and then re-
flecting the reflected points radiance at the reflection points
toward the camera [10] (Figure 3(a)).

For rendering reflections, several methods and tech-
niques have been developed. Usually, they either aim for
maximizing realism, the physical accuracy, or believabil-
ity, in which case the result will often only be ”correct
enough” for it to look relatively accurate to the viewer, but

∗e0925269@student.tuwien.ac.at

Figure 1: Left: Erroneous reflection of a square. Its sides
are linear interpolations between the corners’ reflections.
Right: Correct reflection after sufficient tessellation of the
square.

gain faster performance, be easier for a designer to work
with, look aesthetically more pleasing, or similar.

The efficient rendering of planar mirrors has been ex-
amined extensively [7]. However, the case of curved sur-
face reflectors requires special consideration since the re-
flections can become exceedingly complex. Light rays are
traced up to the reflectors, the reflected rays computed and
recursively traced until a non-specular surface is reached.
In general scenes, the number of light rays and recursive
computation steps can become very high. Therefore, ef-
fective storage of scene geometry and specialized process-
ing of light rays are needed to guarantee robust perfor-
mance.

CPU solutions usually create and maintain sophisticated
scene data structures and optimized calculations to achieve
good performance, while most GPU based techniques take
advantage of the fast GPU rasterization capabilities [10].
The GPU processor is usually given access to the scene
geometry by storing it in uniform parameters or in textures
[10].

Both approximate [1] and accurate [11] methods have
been developed to tackle this problem, trading perfor-
mance for precision and vice versa. Screen-space methods
for reflection rendering [4] are especially attractive since
they are able to maintain both good accuracy and perfor-
mance. Here, Deferred Shading [3] is used to relay the
computation of a reflected image to a second rendering
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Figure 2: Left: Approximate reflection using Environment
Mapping with errors. Right: Accurate reflection.

pass. First, the camera perspective of each mirror’s sur-
face is rendered into a series of textures. Then, the reflec-
tion of an object is rendered on top of it by mapping all
its vertices onto their reflection points on a mirror’s screen
space projection (the virtual geometry) and exploiting the
graphics hardware to triangulate the full reflected image.

This method is generally fast, but can lead to artifacts.
In the virtual geometry reflected by the mirror, triangles
can become curved patches, and triangle edges can be-
come curves. However, the GPU is built to rasterize only
non-deformed triangles with straight edges. A denser tes-
sellation of one triangle reduces the size of triangles allow-
ing edges to be closer to the curvature of the mirror. For
the reflection to be free of artifacts, the geometry of the
scene needs to be sufficiently tessellated, as shown in Fig-
ure 1. However, pre-tessellating a whole scene is generally
unfeasible, since storing and processing a high number of
vertices can quickly get computationally too expensive.

In this paper, we introduce an extension to this method
to improve the visual quality of the resulting image. Our
approach tessellates the geometry on the fly and only in
the parts where it makes a visible difference. We con-
trol this mechanism by using a simple and flexible error
metric. We show that our approach can efficiently pro-
duce accurate reflection images on curved mirrors without
any pre-tessellation of the scene, while maintaining a good
rendering performance.

2 Related Work

Accurate reflections are commonly computed using Ray
Tracing [11]. In this approach, for every pixel, a number
of viewing rays are cast into the scene and their interac-
tions calculated. The main disadvantage of Ray Tracing
is its high computational cost, since it generally requires a
very high number of viewing rays and the interactions may
be complex. Online rendering usually implies heavy per-
formance constraints in order to retain interactivity. While
improvements have been proposed to make the algorithm
work effectively on graphics hardware [9], Ray Tracing is
still not always suitable to provide interactive frame rates
in many cases and mostly relies on building and maintain-
ing spatial data structures [12]. This is especially prob-

(a) (b)

Figure 3: (a) Reflections are found by tracing light paths.
(b) The relation between the viewpoint O, the world vertex
V and a point P on the reflector surface ρ . The reflection
point R is such that their bisector vector BR and the surface
normal NR coincide.

lematic in dynamic scenes, in which these data structures
have to be rebuilt or updated when objects move.

Environment Mapping [2] allows an approximation of
the reflection to be found very rapidly. In this approach,
the environment around the reflector is rendered into a tex-
ture, such as a cube map. When shading a pixel belongig
to a reflective surface, the reflected surface point in the
environment is looked up in the cube map. However, this
approach is not always physically accurate. Since environ-
ment mapping assumes that the environment is infinitely
distant from the object, the reflection is approximately cor-
rect if the scene is sufficiently far away from the reflector
surface [6, Chapter 7]. Figure 2 shows an example com-
parison between approximate and accurate reflections.

Reflections in planar mirrors are usually rendered by
drawing the scene twice - once from the common view-
point and once from the viewpoint reflected on the mirror-
ing plane. The mirror image is then drawn on top of the
mirror in the original image. Non-Planar mirrors however
require a more sophisticated treatment, as their reflections
cannot be modelled by linear projection as in the planar
case above. The rendering technique proposed by Estalella
et al. [4] addresses this circumstance. It follows the same
idea of rendering virtual geometry inside a mirror, but ex-
tends it to curved mirrors. In the first rendering pass, the
mirror’s surface positions and normals are rendered into a
series of textures. In the second pass, for each vertex in the
scene, a pixel-by-pixel search across these textures is used
to find the point that comes closest to its actual reflection
on the mirror. To find this point, the following principle is
used:

Consider a vertex V of world geometry that is to be re-
flected and the virtual camera’s viewpoint O. For every
point P on the surface of a curved reflector ρ the bisector
vector BP of the angle between O and V in P can be de-
fined, as well as the curved reflector’s surface normal NP,
see Figure 3(b). The point of reflection R on ρ is such that
its bisector vector BR and its surface normal NR coincide.
This point of reflection is unique across closed convex re-
flectors [5]. We use this principle later in Section 4.2 to
determine adaptively the required degree of tessellation.
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Figure 4: Overview of the rendering passes.

The result is a set of virtual ”mirrored” vertices, which
are triangulated and rasterized on top of the original image.
Although the mirror image is accurate for each of the ver-
tices, their triangulation only represent a linear approxima-
tion to the correct non-linear curved mapping. Therefore,
geometry must be tessellated fine enough for a sufficient
piecewise linear approximation in screen space.

3 Overview

Reflections are rendered in a multi-pass approach. An
overview is given in Figure 4. In the first pass, the mir-
ror’s surface positions and normals are rendered into the
gBuffer. In the second pass, the gBuffer is used to cal-
culate the reflection points of all vertices in the scene in
the vertex shader stage (Section 4.1). The vertices are
stored as vertex-triples forming triangles. The triangles are
passed on to the geometry shader stage where based on a
reflection error metric we check for each triangle whether
whether it is sufficiently tesselated. If so, they are finalized
for rasterizing. If not, the triangles are subdivided into four
equal triangles and fed back to the vertex shader stage us-
ing transform feedback. The evaluation and subdivision of
triangles is described in Section 4.2. The iterative subdivi-
sion of triangles continues until all triangles are finalized
or an iteration limit has been reached. Finally, the triangles
are rasterized to render the reflection.

4 Implementation

4.1 Screen Space Reflection

The system assumes the scene to consist of triangle prim-
itives, which are marked to be mirrors or non-mirrors.
Each scene object’s vertices have a world-space position
and a surface normal vector of the surface they belong to.
The procedure of rendering accurate screen-space reflec-
tions for the mirroring scene is outlined by Algorithm 1.

Each reflector is rasterized from the camera’s point of
view, and its world-space position and surface normals
stored in two 2D textures (Position Map and Normal Map).

foreach NonMirror n do
Draw(n);

end

foreach Mirror m do
gBuffer← RenderGbuffer(m) ;

foreach NonMirror n do
DrawReflection(gBuffer,n);

end
end

Algorithm 1: Functional outline of how a frame is ren-
dered.

function FindReflectionPoint(gBuffer,
vertex)

CurrentPixel← MirrorCenter();
repeat

PreviousPixel← CurrentPixel;
CurrentPixel← BestNeighbour();

until PreviousPixel == CurrentPixel;
return GetPosition(gBuffer ,CurrentPixel);

function GetPixelError(gBuffer, Pixel)

S← GetPosition(gBuffer,Pixel) ;
N← GetNormal(gBuffer,Pixel) ;
po← normalize(CameraWorldPosition - S);
pv← normalize( VertexWorldPosition - S) ;
bisector← normalize( po +pv) ;
return dot( bisector, N);

Algorithm 2: The method for calculating the reflection
error of one pixel.
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These two maps together are referred to as gBuffer [8,
Chapter 9] in the following.

The next processing step is executed inside a vertex
shader. The input of the vertex shader are individual ver-
tices. The resulting vertices are passed on to the geometry
shader. There triples of vertices are interpreted as triangles
to be either drawn directly or subdivided, the resulting ver-
tices being fed back into this stage.

Given a mirror’s gBuffer and a vertex, Algorithm 2
shows how to find the vertex’ reflection point on the mir-
ror surface. The function starts its search at the the center
of the reflector in screen space, and then iteratively steps
towards the pixel position of the reflection point. At each
currently considered pixel, its four directly neighbouring
texels are examined and their reflection error calculated.
This error is computed in the GetPixelError func-
tion.S and N are the position and the normal of the mirror
surface point stored in this pixel, and po and pv are the di-
rection vectors from the surface point S to the camera and
the vertex position, respectively (see Figure 3(b)).

The deviation of the current pixel location to the sought
reflection point (i.e., the reflection error) is measured by
the dot product between the bisector vector between these
two direction vectors and the reflector surface normal.
This error is calculated for all four neighbours and the
current pixel and then simply considers the neighbouring
pixel with the lowest reflection error (highest dot product).
This process is repeated until no neighbouring pixel with
a lower reflection error current one can be found, at which
point the final reflection point is found.

To ensure correct visibility when rendering a vertex, the
z-buffer needs to be updated according to the reflected
depth, i.e., the distance between the vertex and its reflec-
tion.

Some vertices do not have their reflection point on the
visible surface of the reflector. For a reflector with closed
uniformly convex geometry, such as a sphere, these are
the vertices hidden behind the projection of the reflector
in screen space. Taking such hidden reflection points into
account for triangulation would result in incorrect trian-
gles, and therefore have to be discarded. We identify such
hidden vertices using the condition [4]:

pv ·N < 0

Vertices for which this condition is true are marked and
their corresponding triangles are discarded. In addition,
for reflectors which are not closed, such as reflectors that
are partially obscured, the reflection point is found when
the search terminates at the edge of the reflector projection
[4].

4.2 Adaptive Tessellation

To address the problem of reflection artifacts for low-poly
geometry (Figure 1), we perform an adaptive tessellation
at render time.

(a) (b)

Figure 5: (a) The reflection error E. (b) The subdivision
rule used to tessellate a triangle.

This rendering stage is implemented in the geometry
shader. The input are triples of vertices, forming triangles,
resulting from the vertex shader stage (Section 4.1). The
triangles are evaluated for subsequent subdivision. The re-
sulting triangles are written to one of two vertex buffers,
the working buffer and the finished buffer, using transform
feedback. This rendering stage is outlined in Algorithm 3.

function adaptiveTess(A, B, C)

E1← calcError(A,B) ;
E2← calcError(B,C) ;
E3← calcError(A,C) ;
triError← max(E1, E2, E3) ;
if triError < threshold then

streamOut( f inished);
else

subdivide();
streamOut( working);

end

Algorithm 3: Overview of adaptive tessellation function.

An input triangle is defined by its three vertices A, B
and C, whose reflection points were calculated in the ver-
tex shader stage. To decide whether a triangle is to be
tessellated, the reflection error triError of the triangle
is defined. The edge errors E are calculated for each of the
three edges, formed by pairs of vertices, and triError
is the maximum of the three E. For one edge, E is cal-
culated in the function calcError using the following
formula:

E = 1− NRARB ·bvr +1
2

This relation is visualized in Figure 5(a). NRARB is the
normal at the linearly interpolated median point between
RA and RB on the reflector surface, v is the viewing ray
direction from the median point to the camera position, r
is the direction from the median point to the median be-
tween the original world vertices A and B, and bvr is the
normalized bisector between the two. The dot product is
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Figure 6: The tessellation loop iterates until the working
buffer is empty or maximum iterations is reached.

normalized to lie inside (0,1), where 0 means no error. E
describes the difference between the linearly interpolated
reflection of an edge and the one showing accurate curva-
ture.
triError is compared against a user-set threshold.

The threshold describes the highest acceptable deviation
from the accurately curved reflection. If triError is
less than the threshold, the triangle is deemed sufficiently
tessellated and is finalized. Its three vertices are appended
to the finished buffer using transform feedback (function
streamOut).

If triError is greater than the threshold, the trian-
gle is subdivided (function subdivide). The sub-
division rule used is shown in Figure 5(b). The three
halfway points along the edges MAB, MBC and MCA are
used as vertices with the three triangle vertices to form
four equal triangles. The twelve vertices forming the four
new triangles are written into the working buffer (function
streamOut).

The rendering pass is repeated using the working buffer
as input for the vertex shader stage. After their vertices be-
ing reflected, the triangles reach the geometry shader stage
again to be finalized or further subdivided. This tessella-
tion loop iteratively refines the tessellation of triangles un-
til either no vertices are written into the working buffer, or
a maximum number of iterations (the tessellation level) is
reached. A visualization of the loop can be seen in Figure
6. If the iteration limit is reached, remaining vertices in
the working buffer are copied into the finished buffer.

The tessellation level ensures that there is a hard limit
to how often a triangle can be subdivided. The subdivision

limit is usually not reached, unless the error threshold is
set very low (close to 0), in which case subpixel accuracy
is reached and further subdivisions can be limited. In ad-
dition, the limit avoids an infinite loop when the threshold
is equal to 0.

After this rendering pass, the vertices in the finished
buffer are rasterized. The result is a rendering of an ac-
curate mirror image.

5 Results

5.1 Rendering Quality

Adaptive tessellation allows to render scenes as if they
were fully tessellated. Figure 7 shows a scene being re-
flected in a mirroring ball. The scene contains both mod-
els with a very coarse and a very high original degree of
geometry tessellation. Without adaptive tessellation (left),
the result is visibly wrong. The tablecloth and candlestick
are modelled using only a small number of quads. The
corners of those quads are reflected correctly, but the lin-
ear interpolation between them does not suffice for a cor-
rect mirror image. The teapot is modelled with many more
vertices and therefore produces a reflection image of much
better quality. A full tessellation of the entire scene using
four subdivision iterations is shown at the right image. For
the teapot, this adds a lot of superfluous vertices, since the
reflection does not improve. Using adaptive tessellation
(middle) allows us to address both these problems. Coarse
models are tessellated until quality of the rasterized reflec-
tion image is sufficient. On the other hand, geometry with
already sufficient degree of detail, are not further subdi-
vided, when drawing their reflection image.

Adaptive tessellation is very robust regarding different
circumstances. Both simple reflections and complex sur-
faces are handled as accurately as needed. Our proposed
error metric is derived from the screen space accuracy of
the reflection and it relates directly to the errors visible
in the rendered image. The error threshold represents a
tradeoff parameter between quality and performance. It
can be adjusted, even during runtime, to accommodate ei-
ther faster performance or more accurate images. In fact,
one could set the threshold to a sufficiently small value
(subpixel size) to eliminate all visible artifacts.

As shown in Figure 7, our method can produce accu-
rate reflections without the need for any pre-tessellation
of the scene. It follows that content creators need not
worry about specifically adjusting their models, and the
technique can be implemented in a rendering system with-
out big impact on established functionality.

5.2 Performance

The error threshold parameter allows for trading between
accuracy and performance.
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Figure 7: An example scene containing both coarse and fine meshes.

Figure 8: Adaptive tessellation with different error threshold values.

Figure 8 shows the results of using different thresholds.
The rendering has been performed on a PC with an Intel
Core2Duo CPU and a Nvidia GeForce GTX 260 graph-
ics card. If the threshold is higher, larger errors are al-
lowed and fewer subdivisions are performed. A too re-
laxed threshold results in a reduction of quality and intro-
duces artifacts. We found that a value of 0.1 or larger is
too high. A value between 0.1 and 0.01 generally creates
perfectly acceptable results while maintaining goog per-
formance. In particular, high curvature surface parts are
subdivided often enough to provide accurate results. If
the threshold is set even smaller, close to 0, the geometry
is tessellated very finely. In this case, interactive perfor-
mance can not be provided anymore. The value 0 itself
causes full tessellation to be performed, in which case all
triangle subdivision is repeated until the tessellation level
is reached. Conversely, 1 stands for no tessellation.

Figure 9 shows a comparison of resulting vertex num-
bers between full, adaptive and no tessellation in the exam-
ple scene (Figure 7). It can be seen that adaptive tessella-
tion results in fewer vertices compared to full tessellation,
requiring fewer expensive reflection point searches.

Furthermore, the performance of adaptive tessellation
does not depend on any spatial data structures that cause
a maintenance overhead. Therefore, dynamic scenes, in

Figure 9: Number of vertices resulting from different tes-
sellation levels in the scene from Figure 7.

which objects move or are otherwise animated, are han-
dled without negative impact on the performance.

5.3 Limitations

As shown in Figure 10(a), our subdivision pattern can re-
sult in holes appearing in the reflection where triangles of
different tessellations meet. The size of the hole relates to
the difference in error of the two neighbouring triangles.
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(a) (b)

Figure 10: (a) A hole between triangles with few and many
subdivisions. (b) A simple polygonal mirror.

However, the error is only this severe if the camera is at a
steep angle and a close distance to the reflector. In addi-
tion, with our error threshold the extent of the gaps is eas-
ily controllable. If the use of the threshold is restricted, one
could instead imagine an extension in which the threshold
is adjusted dynamically based on the probability of such
holes appearing.

In addition, the base algorithm we use for finding reflec-
tion points assumes that vertices only have one reflection
point [4]. As mentioned above, this holds for all convex
mirror surfaces, and for concave surfaces of sufficiently
large distances to the reflected geometry. Figure 10(b)
shows an example for an arbitrary polyongal mirror.

5.4 Future Work

The problem of holes appearing between triangles could
be solved by using different patterns of triangle subdivi-
sion. We use our subdivision rule because it is computa-
tionally simple and equally suited for any kind of reflector
surface. However, it could be investigated to use irregular
subdivision of triangles to achieve the same level of tes-
sellation along shared edges, which would prevent holes
from appearing between them.

Another improvement to the algorithm would be to ex-
tend it to arbitrarily shaped mirrors. This is a property of
the underlying reflection point search algorithm. It could
be solved by finding a method to split up the mirror into
segments of uniform curvature and finding the reflection
on each of them [4].

6 Conclusion

In this paper a method for rendering an accurate reflec-
tion on the surface of a curved reflector in real-time has
been examined. It is a multi-pass approach in which first
the image space reflection point of each vertex is found.
The triangles formed by the vertices are tessellated adap-
tively according to an error metric, which is based on the
difference in quality resulting from a subdivision iteration.
Subdivision steps are skipped if they do not cause a notice-
able effect in the final image, greatly reducing the number

of vertices needing to be reflected. The subdivision is re-
peated until the triangles are sufficiently tessellated. Fi-
nally, the reflected geometry is rasterized by the graphics
hardware. The method can provide interactive framerates
for dynamic scenes. Discussed results show that the tech-
nique examined in this paper is a robust choice in real-time
rendering and may well serve as an anchor point for future
considerations extending its applicability.
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Abstract

We present a novel technique to minimize the number of
light sources in a virtual 3D scene without introducing
significant perceptible changes to it. The implementation
is done as an extension of LuxRender, a state-of-the-art,
physically based and open-source renderer. The algorithm
adjusts the intensities of the light sources in a way that
a set of light sources can be substituted by a smaller set,
thus enabling to render a similar image with significantly
less number of light sources, introducing a remarkable re-
duction to the execution time of scenes where many light
sources are used.

Keywords: radiosity, global illumination, constant time

1 Introduction

With the advance of technology, the use of computer
graphics has become an everyday routine in motion pic-
ture production. Since the making of “Toy Story”, the first
feature-length film that was entirely computer-animated,
there have been a lot of improvements in technology.
Nowadays, it is possible to create images that are almost
indistinguishable from reality. One of the key elements in
order to make a film look “real” is to simulate physically
correct light transport when computing an image.

One of first attempts for such a simulation was made
by Appel [1], who introduced the ray tracing algorithm.
Although the images rendered with that method were far
from photorealistic, the fundamental concept has become
the basis of state-of-the-art algorithms. A major problem
of photorealistic rendering is the time needed to gain
high-quality images, because rigorous mathematical and
statistical methods are used to simulate realistic effects.
Depending on the desired effects and used hardware,
render times can be prohibitively long - it can take up to
hours or days to obtain images with satisfying quality [10].

Speeding up the rendering process has thus been a
hot topic in science and industry for years, and was
usually involving the creation of more efficient sampling

∗spodaras@cg.tuwien.ac.at
†zsolnai@cg.tuwien.ac.at

strategies or better rendering algorithms. The problem can
also be addressed from a different angle to speed up this
process by means of reducing the number of light sources
used in a scene. This idea came up when considering the
way how industry giants like PIXAR use physically based
ray-tracing systems in their daily work [4]. In order to
achieve not only a physically plausible image, but also
adhere to a certain look and feel desired by the artist,
many light sources are placed in a scene - even up to
hundreds of them [2]. Such vast number of light sources
directly affects render time, because more of them have to
be sampled in order to get a smooth and converged output.
When having so many light sources in a scene, would it
be possible to render an (almost) identical image with
fewer light sources? For a large number of sources, the
answer to this question can hardly be given in a reasonable
amount of time when letting a user try out all different
settings. Instead, the idea came up to let an algorithm
perform the adjustment of the light intensities in order to
find a similar result image which uses less lights than the
initial setup. The overall concept how such an algorithm
could be designed is explained in more detail in Section 3.

This work is founded on the assumption that using
less light sources results in faster execution times. In
order to show the validity of this assumption, an empirical
evaluation on several scenes was done. Those measure-
ments were made by means of testing on five carefully
chosen scenes with a varying number of light sources,
light sampling strategies and a comparison to the ground
truth image. The results are presented in Section 5.

2 Related work

Although various efforts were made to speed up the ren-
dering process, little research has been made to reduce the
number of lights used in a scene. The most noticeable
work is ’Lightcuts’ by Walter et al. [13]. In this approach,
lights in a scene are first clustered by spatial proximity
and similar orientation. Those clusters get hierarchically
organized in form of a binary tree. Every cluster is repre-
sented by one of the lights it consists of, and can be further
refined to smaller clusters, which also use one light as rep-
resentative, and so on. To reduce light sources, a “cut”
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through the tree is made and only the representative lights
of the clusters in the cut are used to illuminate the scene.
The representative light in a cluster gets modified in order
to approximate the resulting illumination if all the lights
in the cluster would be used. If the error of such an ap-
proximation is so small that it is not perceivable, only the
representative light is used when rendering the scene, else
the cluster is refined and more lights are used.

Apart from that approach, little prior work has been
done to automatically reduce the number of light sources
in a scene. Instead, the more general field of automated
lighting design has been a popular topic. This field focuses
on computationally adjusting parameters like for example
light intensities and emission colors, instead of letting the
user handle the fine-tuning.

The majority of methods let the user define a “desired”
image as input, and the computer tries to calculate the ac-
cording parameters to achieve this effect. Schoeneman et
al. [11] for example assume that the designers of a vir-
tual scene know where to place light sources, but fail in
choosing the right intensities or colors. After having the
designer “paint” effects such as shadows and spots of light
on a target image, an optimization process is started to
determine the settings that match the painted image best.
Similar work has been done by Costa et al. [3] and Kawai
et al. [6].

A contrary approach is “interactive evolution”, which
lets the user explore a set of possible solutions that the
computer creates. Sims [12] used evolutionary algorithms
in combination with user input to generate different sets of
plant structures, procedural textures and animations. The
quality for each solution is determined by the subjective
judgment of the user, before the next evolution step is
applied. Thus the user can “guide” the results in a spe-
cific direction without having to know about the underly-
ing mechanisms for calculating the parameters.
The design galleries approach of Marks et al. [8] lets the
computer set up many different light settings and present
them to the user, who can choose the setup that seems most
appealing to him.

3 Concept

When rendering a scene which makes use of many lights,
eventually the same result image could be achieved by us-
ing fewer lights when turning some of them off or when
changing their intensities. Trying out all variations manu-
ally is not an option, because the vast amount of possible
settings would make this a time-consuming and cumber-
some task. On the other hand, automatizing this process
is relatively simple. An algorithm for this task would have
to try out different light settings for a scene and compare
the resulting images to an initial image the user wants to
achieve. The more similar a new image is to the desired
one, and the less light sources are used, the better the so-
lution is.

Despite the idea itself is very simple, it is crucial to un-
derstand that the problem space is remarkably high dimen-
sional. When trying to reduce the number of lights by only
turning them on and off, a binary integer programming
problem has to be solved, which is known to be in the NP-
hard complexity class. Although the number of solutions
increases with the number of lights used, the total amount
is finite (up to 2amount o f lights). This method would be suf-
ficient for simple scenarios, where several light sources
clearly have no contribution to the scene. This could be
the case if an artist has created a light source with almost
no intensity in the scene, or when a light source gets oc-
cluded by some object and suddenly has no contribution to
the image. To decide if a proposed solution is close enough
to the original image, a user-defined threshold could be set.

In practical applications, such easy scenarios will be the
minority of cases. To reduce the overall amount of lights,
changing the intensity of some of them before turning oth-
ers off will be necessary. The solution space in this case
varies drastically from the first one: an infinite amount
of solutions exists, and each one is a valid image gained
with certain light settings. For an arbitrary scene, it is un-
clear which light intensities have to be changed in what
way. Exploring this search space without making more
constraining assumptions is a non-trivial task. This prob-
lem can be addressed by using classical constrained opti-
mization algorithms. In our work, we have used a genetic
algorithm due to its capability to explore such vast search
spaces. How such an algorithm was designed for our prob-
lem is described in the following paragraphs.

Genetic Algorithms (from now on referred to as “GA”)
are search heuristics inspired by the processes and mech-
anisms of natural evolution and can be applied to a large
class of practical problems. The only requirement is that
solutions for the problem can be encoded in a form that
they can be processed by genetic operators such as mu-
tation, crossover and fitness. In a GA, those encoded so-
lutions are also called “chromosomes” [9], [5]. In our
case, a possible solution can be represented by a vector
of values which stores the intensities of each light. Those
values are binary if the lights should simply be turned off
and on, or they can encode continuous intensity values if
the optimization routine should change the light intensi-
ties as well. A collection of initial solutions is generated
by assigning the initial light settings to several chromo-
somes. Then, to gain new solutions, each chromosome
gets randomly modified by either mutation or crossover
operations. Mutation chooses one index of the vector at
random and either flips the bit in binary-mode or adds or
subtracts a small value for continuous optimization. The
crossover operator simply chooses two chromosomes at
random and recombines them at a randomly chosen index
to form a new chromosome.

After the initialization, an evaluation step has to take
place which determines how good a solution is (in terms
of a GA: the fitness of a solution has to be evaluated).
First, the amount of lights used would have to be calcu-
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lated. This is done by summing up all non-zero compo-
nents of a vector containing the individual light source in-
tensities, i.e. ~Xn = [a1,a2,a3, ...,an]. This is done either by
calculating the l0 quasi-norm or l1-norm of a vector:

‖Xn‖0 = 0

√
n

∑
i=1
|ai|0, ∀ai,ai ∈ R, (1)

‖Xn‖1 =
n

∑
i=1
|ai|. (2)

The first case would be an integer optimization problem
where lights only get turned off or on, the second metric
adapts the lights intensities. However, using only the l0- or
l1-norm of a vector to determine the fitness of a solution
would be not sufficient, because it lacks the constraint that
the output should be faithful to the input image.

A simple method to determine if a solution is good
enough would be to define a threshold, which determines
the maximum allowed difference between the initial image
and a possible solution image. Calculating the difference
is done by subtracting the images pixel-wise from each
other and summing up the squared absolute differences.
The solution is only considered as valid if the difference
lies below the threshold, otherwise it is discarded. For
valid solutions, the fitness gets calculated as the weight
of a vector.
This trivial formalization is, however clearly not feasible
as it leaves two problems unresolved. The first problem is
that when creating an invalid solution, the algorithm never
gets any kind of feedback on how close it was to a valid
one. Not having this knowledge of how “close” a solu-
tion is makes optimization no better than any exhaustive
sampling technique. The algorithm needs more elaborate
feedback in order to know if the optimization is heading in
a good direction. The second problem can be depicted by
the following scenario: two valid solutions are available,
both of them use three lights out of many. The three lights
used in the first solution are different from the ones in the
second - which of the two solutions is the better one, when
both of them have the same fitness?

To solve both problems at once, the difference between
the initial image and a temporary solution image is added
after calculating the norm - in this way, the faithfulness of
the output image is also considered, and with this knowl-
edge, the algorithm can generate better and better solutions
in every iteration. The overall fitness f () of a solution
vector ~Xn gets calculated as described in equation 3. The
first term is the calculation of the norm ‖Xn‖s, as explained
above in equations 1 and 2. The second term calculates the
distance between the two images. This is done by sum-
ming up the squared differences of the pixels, where Ti j
stands for the pixels of “target image” and Ci j for the pix-
els of the “current solution image”. There are also two
parameters for weighting the lights (pL) and the difference
(pD). They act as a kind of quality switch and allow more

control on the optimization procedure. The contribution to
the weight of the vector of each light is multiplied by the
factor pL, therefore better fitness values are achieved if the
algorithm tries to turn off lights instead of finding a solu-
tion which has little difference to the initial image. If on
the other hand, a result image that’s very close to the orig-
inal is desired, the weight for the difference would have to
be set to an appropriate value.

f (~Xn) = pL · ‖Xn‖s + pD ∑
i, j
‖Ti j−Ci j‖2, (3)

where s ∈ {0,1}. Adding the second term to the overall
fitness can be done both in integer and in continuous op-
timization mode. A threshold-value as mentioned above
can also be used to let the user control how close a so-
lution must match the original image to be considered as
valid.

Thus, an objective quality metric has been defined for
determining how good or similar a solution is, and a
smaller number encodes a better solution. After having
defined the fitness function, the general procedure of the
algorithm follows the schema of a typical genetic algo-
rithm. In each generation, new solutions are processed and
ranked according to their fitness values. The best solutions
are kept by the principle of elitism, while the others are
modified in order to gain better solutions from generation
to generation. The algorithm would have to find the set-
tings which result in the smallest number representing the
quality of a solution. Mathematically speaking, the whole
problem can be seen as an optimization problem, where a
global minimum has to be found among all possible solu-
tions:

min( f (~Xn)), ∀~Xn ∈ Rn. (4)

4 LuxRender

LuxRender is a physically based, state-of-the-art open-
source software renderer based on Pharr’s and Humphrey’s
physically based renderer, PBRT [10], which was devel-
oped for educational and academic use. LuxRender is a
stand-alone renderer and not a modeling software. Thus
the creation of scenes and models has to be done in other
software, and then they have to be exported for rendering.

In 2007, the creators adapted the original source code
to make it suitable for artistic use [7]. LuxRender imple-
ments different state-of-the-art rendering algorithms and
provides features such as different material types for ob-
jects, post-processing effects, HDR rendering, film re-
sponse among many others. The implementation pre-
sented in this paper works on level of the “Film” stage
depicted in figure 1 and makes use of a feature called Light
Groups. When modeling a scene with several lights, those
lights can be associated with a light group. An arbitrary
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Figure 1: Basic architecture of PBRT. The Sampler pro-
vides the SamplerRendererTask with random samples for
BRDF sampling. With that sample, the camera then con-
structs a ray towards the image plane for the next pixel
position and passes it to the Integrator. The integrator cal-
culates the radiance carried along that ray. The collected
radiance then gets saved on the film.
[10]

number of lights - also only a single one - can belong to
such a light group. During the rendering process, the light
contribution of each group is saved in a separate buffer.
Every group also has a intensity and a color temperature,
which can be controlled by two parameters. This enables
to change the initial light settings in a scene while the ren-
dering is still in process or after it is finished. The user can
modify those parameters in the GUI.

5 Results

The following section consists of two parts, the first show
our results of the empirical test study to verify the assump-
tion that rendering with less light sources increases over-
all rendering speed. The second part presents the results
achieved when using the light source cleaner (further re-
ferred to as LSC) on three specially designed test scenes.
The scenes were all rendered on a computer with an Intel
Core i7-2600K CPU @ 3.40GHz (8 (logical) CPUs), 16
GB DDR3 RAM, and an NVIDIA GeForce GTX 560 Ti
with 1 GB of memory.

(a) Cherry scene (b) Watch scene

Figure 2: Two of the scenes used for comparison of render
times depending on amounts of lights used. The results are
presented in Table 1.

5.1 Test scenes with many/less lights

To verify the assumption that render time can be saved
when using less lights in a scene, test renderings of five
scenes of varying complexity were done. The test scenes
where designed to make use of up to 47 light sources. Each
scene was rendered twice with different light source setup:
once only with a set of light sources that have a contribu-
tion to the lighting of the scene, and once with 17 addi-
tional light sources that have almost no contribution to the
scene. With the exception of the School Corridor scene,
which was rendered for half an hour due to its complex-
ity, the test scenes were rendered for 10 minutes each. A
ground truth image of each scene was also rendered for
one hour.
The resulting images were then compared to the ground
truth using the root mean square error metric (Table 1).
The scenes where less lights are used always have a
smaller difference to the ground truth image than the
ones with many lights. When rendering the test scenes
longer, the difference between using less or many lights
gets clearly visible for the human observer, without using
a comparison software.

(a) LuxBalls Scene

(b) Dragon Scene (c) Fish Scene

Figure 3: Scenes used for testing the algorithm.

5.2 Results of the LSC

We have used several scenes to test our method. In ev-
ery scene, each light used was assigned to a separate light
group - otherwise the light sources can not be manipulated
individually.

First, the integer optimization mode was tested with the
scenes that were already used in the empirical study. In
those scenes, there were “fake” light sources which had
no contribution to the lighting of the particular scene. The
assumption was that the “unnecessary” lights should be
easy to determine, so when running for enough genera-
tions, the algorithm should be able to detect all of them and
turn them off. This worked fine for the tested scenes and
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Scene Balls Dragon Corridor Cherry Watch
Lights 30 30+17UL 20 20 + 17UL 10 10 + 17UL 31 31 + 17UL 11 11+17UL
Path tracing 1040.44 1148.54 224.41 250.42 4918.52 5250.92 2012.82 2238.13 1246.18 1489.03
Bidirectional 1218.10 1333.16 257.46 275.04 2957.23 3827.03 2567.93 3115.10 1220.64 1887.13
Metropolis 1209.58 1347.72 283.97 304.10 3103.88 4082.38 2541.94 3031.82 1408.88 2342.89

Table 1: RMSE of the test scenes compared to ground truth image. Each scene was rendered two times, once with a
certain amount of light sources and a second time with 17 additional “unnecessary lights” (“UL”), which had no visible
contribution to the scene. Rendering time was 10 minutes for each scene except for the Corridor scene, which was
rendered for half an hour due to its complexity. The ground truth images were rendered for one hour. The table shows that
the scenes with less light sources have a smaller difference to the ground truth image than the scenes with many lights.
This verifies the assumption that rendering is more efficient when using less lights in a scene by canceling out lights with
almost no contribution.

should also work for any arbitrary scenes where lights are
used which have (almost) no contribution. However, we
show that our technique is capable of solving more com-
plex scenarios beyond these trivial cases.

For the testing the continuous optimization mode, three
additional scenes were modeled and tested (see Figure 3).
Two rather simple cases were constructed to show that the
algorithm generally works. The first one consists of two
beveled spheres on a pedestal standing in front of a wall.
Three area lights - two small lights and one big light - were
then arranged in the following way: each one of the small
lights is half the size and half the power of the big light,
and the lights were positioned so that the two small lights
together are covering the big light exactly. Also, the lights
are placed exactly at the same height. Figure 4 shows a
screenshot of the 3D-view of the scene for better under-
standing. The assumption was that if the algorithm worked
correctly, it should be possible to achieve the same light-
ing for a scene when turning off the small light sources
completely and increasing the intensity of the bigger area
lights. This makes a simple test case which translates to a
high-dimensional optimization problem, for which we ex-
actly know the analytic solution.
To make the whole scenario more challenging, this basic
setup of three lights was copied and pasted into the scene
several times, so that 12 of those arrangements (this makes
33 lights in total) are present in the scene.

The second scene features a dragon model illuminated
by 50 area lights, positioned pairwise on the same position
and height with the same light intensity. So in this scene,
it should be possible to turn off at least half of the lights
when increasing the intensity of the other half. A 6x3 array
of those lights illuminates the dragon from top, and 7 lights
from the front. The light setup is also rather simple here,
but the amount of lights is already high. Figure 5 depicts
a screenshot again for better understanding.

The third scene which shows an angler fish is the most
complex setup featuring 100 light sources. The majority
are blue area lights, and there are also point lights of no
contribution hidden behind the big stone wall. The algo-
rithm should be able to both turn off many of the point
lights and reduce the amount of area lights also signifi-

cantly. Contrary to the previous scenes, the area lights are
positioned arbitrarily instead of being arranged in a spe-
cial way. This was done to simulate a scene of practical
interest as it occurs in film production.

The initial images were rendered with bidirectional path
tracing, and the algorithm was run on each of them several
times for 100, 500 and 1.000 generations with 15 chromo-
somes each and different weighting parameters. At the be-
ginning, some runs which last only 100 generations were
made several times to ensure that the algorithm works
“right” and gives similar results on each run. Figures 6, 7
and 8 show the result images on the l1-norm of the light
vector at several stages of the optimization process.

Figure 4: Example for the light setup in the Luxballs scene.
The cyan colored rectangle marks the big area light, while
the two red ones mark where the two small area lights are
located. The small lights together cover the same area as
the big one and are placed exactly at the same height. 12
of those arrangements are present in the scene.

6 Conclusion and discussion

We presented a light source minimization technique to
provide a solution for reducing the overall amount of light
sources used in a scene by applying a genetic algorithm to
a multivariate optimization problem. A definitive strength
is the simplicity of the concept and its general applicabil-
ity. Although for this paper the implementation was done
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Figure 5: Example for the light setup in the Dragon scene.
The cyan and red rectangles exemplary mark two area
lights, which are placed exactly at the same position and
have the same intensity.

in LuxRender, this technique can be implemented in any
photorealistic rendering engine as long as there is a mech-
anism that stores the contributions of light sources at dif-
ferent locations. We demonstrated that our technique both
passes on scenes with known analytic solutions and also
works well on scenes of practical interest. We note that
as we are using unbiased and consistent rendering algo-
rithms, it is possible to reduce the number of light sources
while the rendering is still in progress.

Another issue is that a global metric is used to measure
similarity between two images. As the algorithm basically
does a pixel-wise comparison, images with local extrema
may impose problems due to the omittance of small lo-
cal features. Using mean squared error metric instead of
the simple difference between the pictures indeed helps,
but still there is no means to explicitly consider “impor-
tant” pixels like highlights or shadows. One possible im-
provement would be to let the user interactively pre-define
which local effects are important and should be kept after
optimization.

Our proposed technique is simple to implement, and
offers a significant speedup in the execution time of the
rendering step in difficult lighting scenarios with a vast
amount of light sources.
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(a) Initial Image. Amount of lights used: 33 (b) Solution after 100 generations. Amount of lights used: 29

(c) Solution after 500 generations. Amount of lights used: 11 (d) Solution after 1000 generations. Amount of lights used: 12

Figure 6: Luxballs Scene. 33 Lights in total.

(a) Initial Image. Amount of lights used: 50 (b) Solution after 100 generations. Amount of lights
used: 41

(c) Solution after 500 generations. Amount of lights
used:26

(d) Solution after 1000 generations. Amount of lights
used: 24

Figure 7: Dragon Scene. 50 lights in total.
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(a) Initial Image. Amount of lights used: 100 (b) Solution after 100 generations. Amount of lights used: 95

(c) Solution after 500 generations. Amount of lights used: 70 (d) Solution after 1000 generations. Amount of lights used: 58

Figure 8: Fish scene. 100 lights in total.
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Abstract

The paper focuses on the photon mapping method, which
is one of the global illumination methods used in com-
puter graphics. The paper presents a short summary of the
photon mapping method and proposes decomposition of
photon mapping into a set of simpler algorithms. Each of
these algorithms is evaluated in the experimental imple-
mentation in order to identify bottleneck(s) in the method.
The results of the experimental evaluation are presented in
the paper and some suggestions regarding alternative im-
plementation and/or optimization of the computationally
expensive parts are presented as well. Finally, the paper
presents the results of some of the optimization and draws
conclusions.

Keywords: photon mapping, global illumination, kd tree,
nearest neighbors

1 Introduction

Photon mapping is one of the advanced rendering meth-
ods, which belong to the global illumination methods.
Photon mapping is capable of creation of images using ad-
vanced photorealistic elements, such as indirect illumina-
ton and causitcs. Among the global illuminaton tehniques,
photon mapping is one of the fastest one which is able to
render highly photoroealistic images. Recently, new tech-
niques for acceleration of computer graphics were discov-
ered. For this reason, it is interesing to test these tech-
niques and algorithms with photon mapping.

Photon mapping was first introduced by Henrik Wann
Jensen in 1996 [6]. Jensen also wrote a great book [7]
about photon mapping where he is comparing photon map-
ping with other global illumiation methods and presents
advanced techniques in photon mapping such as subsur-
face scattering or rendering participating media. Many ex-
tensions to Photon mapping exists, like Progressive Pho-
ton mapping [4] and Stochastic Progressive Photon Map-
ping [3].

Many researchers worked on fast ray-triangle intersec-
tion. Good results were achieved by Wald [11] or Shevt-

∗xlysek03@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

stov [10]. The currently best performance has the new
method by Havel [5]. In his paper, very good comparison
on ray-triangle intersection methods are shown.

Kd-tree was first presented by J. L. Bentley in 1975 [2].
Using KD-tree with triangles is a little more complicated
then using it with points. For this reason, complicated
heuristic must be performed. Paper by Wald [12] and
Havran is dedicated to fast creation of KD-tree on trian-
gles with complicated heuristics. The paper by Zhou [13]
shows even more speedup of KD-tree construction using
GPGPU.

For fast nearest neighbor searching, it is possible to
combine clasical nearest neighbor searching with aprox-
imate searching. The aproximate searching was first pre-
sented by Area and Mount [1] in 2000.

In the presented work, the main focus was on the above
techniques that were examined, measured on real photon
mapping datasets, the best combination was proposed In
order to achieve the fastest solution.

2 Photon Mapping

Photon mapping is a two-pass rendering method. It was in-
troduced by Henrik Wann Jensen in 1996 [6]. It is based on
aproximation of rendering equation [8] by calculating the
incoming radiance of the selected point, where local illu-
mination model is computed, through the nearest photons.
In photon mapping, the Photon is a bigger particle than
photon known from physics, that, which carries a certain
amount of light energy (higher than real photon) but its
behavior is similar to photon. Before searching for nearest
photon, photon map has to be created for the whole scene.
Photon map is a set of distributed photons on the scene
which represents illumination of the scene. For this rea-
son, photon mapping is two-pass rendering method. In the
first pass, photons are emitted from light sources. These
photons are propagated through scene and if the photon
hits a diffuse surface, the value of the photon energy is
stored into the photon map. Consequently, these photons
are recursively being sent to the scene with direction based
on surface characteristics [7]. The photons, which get
propagated through any transparent objects, are creating
caustics on diffuse surfaces and these caustic photons are
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Figure 1: Indirect Illumination

stored in a separate photon map. Caustics are refracted
light rays which are concentrated into small areas and they
are creating shiny places on diffuse material.

Figure 2: Caustics

Rendering of photon map is possible using several dif-
ferent methods. Probably the most photorealistic results
can be achieved by distributed raytracing [7]. Also very
good results are achievable by the classic raytracing ex-
tended by computing indirect illumination and caustic by
nearest photons in photon map [7].

Figure 3: Block diagram

The Photon mapping task is possible to divide into sev-
eral functional blocks, subtasks, which will be described
later and analyzed:

• Ray-triangle Intersection
There are many methods for computing intersection
of ray with triangle. In paper Yet Faster Ray-Triangle
Intersection [5] is presenting the currently fastest
method. Also, during the performed work, it was

measured how the another ray-triangle intersection
method compares with others. In this comparison,
their method has best result. For exploitation of this
method, some precalculated values have to be pre-
pared for each triangle.

• Spatial index (spatial partitioning)
Spatial index is data structure which divides space
into more smaller subspaces. For each subspaces, all
triangles which lie in a subspace are stored in a list
connected to the individual subspace. When a ray is
being shot through the scene, the ray-triangle tests are
performed only on those triangles, which lie in sub-
spaces which intersect with that ray.

There are many spatial indexes. Performance of each
spatial index is highly dependent on scene setup. It is
impossible to determine fastest index.

The most used spatial indexes are octree and KD-tree.
Octree is a spatial index, which recursivly divides its
space into eight subspaces of the same size. The re-
cursive division is performed to specific level or re-
cursivly dividing is terminated when count of trian-
gles in subspase falls under some specific threshold.

KD-tree is spatial index which recursively divides
space into two subspaces using a dividing plane. This
dividing plane is parallel with one of the axes. Sev-
eral methods exist to determine the dividing plane.
The simpler methods include median split on one of
the axes (e.g. circularly changed). The more ad-
vanced methods use heuristics for determining where
the best dividing plane should lie. With these heuris-
tics, is possible to accomplish better results.

Probably the most used heuritic, used with KD-trees
in spatial triangle indexing, is Surface Area Heuris-
tic [13]. This heuristic attempts to maximize the area
of subspaces and quantity of triangles in these sub-
spaces.

Another possible optimization of KD-tree is ropes
[9]. Ropes are connections between leafs of the spa-
tial index tree. Using this extension, it is possible to
traverse the tree directly through leaf subspaces and
avoid slow crawling up and down the tree.

• Creating photon map
In this block, light propagation is simulated from the
light sources into the scene and the process results in
the photon map. The simulation itself is performed
by discrete sampling of light transmission. One sam-
ple represents the photon and carries fraction of the
light source energy. The light transmission is calcu-
lated for example by rejection sampling [7], in which
photon is sent from the light source in random direc-
tion and then it is propagated through the scene.

The photons are propagated through the scene simi-
larly to the rays in raytracing. If a photon hits diffuse
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surface, energy, direction, and position of the pho-
ton are stored. Recursively, another photon from this
position is sent further to the scene. The direction of
such photon is based on material properties and e.g. if
the material is shiny and transparent, two photons are
investigated one reflected, second transmitted. For
this purpose, an acceleration technique called Rus-
sian roulette was created. When the Russian roulette
is being used, actions and generation of photon (stor-
age, reflection, refraction) are based on random num-
ber with threshold depending on material properties
[7].

Photons, which pass through transparent object cre-
ate caustics. For photorealistic caustic rendering, a
large number of photons, which pass through trans-
parent object, is needed. For this purpose, new simu-
lation is started but photons in this simulation go only
through transparent objects and save values only to
caustic photon map. So, in the end, photon mapping
has two photon maps, one for indirect illumination
and a second one for caustics.

• Raytracing
For the final rendering of the scene, classical raytrac-
ing is used. The values representing indirect illumi-
nation and caustics are treated as a local illumination
model. These values are obtained by searching N
nearest neighbors in photon maps. With increasing N,
the quality of the photorealistic results are improved.

• Finding nearest photons
Nearest neighbor search is performed for each com-
putation of local illumination, hence this block is very
critical and it has very important role in the rendering
performance. The speed of this block is dependent on
the size of the photon map and on the number of the
neighbors.

For acceleration of the nearest neighbor search, it is
appropriate to use searching index. Many different
methods focusing on nearest neighbor search exist.
Some of them are available in libraries. One of the
interesting ones is ANN Aproximate Nearest Neigh-
bor Library and another one is FLANN Fast Library
for Approximate Nearest Neighbors.

ANN is an older library, this library is used for
searching of the KD-trees and BD trees [1]. The
FLANN library is used for indexing using the ran-
domized KD-tree. Both libraries are very often used
in computer vision for nearest neighbor searching in
image features and they are very well optimized for
mulidimensional datasets. In our case, analysis in
lower dimensionality 3D is needed. Both libraries
provide approximate searching search with a small
acceptable error is enabled.

3 Experimental Evaluation

The purpose of the experiments is to test selected methods
on photon mapping datasets. On these datasets, their per-
formance is evaluated, compared against the other meth-
ods, and the method which fit best for photon mapping is
then selected.

Experiments which were performed are:

• Spatial subdivision test - comparing spatial indexes,
octree and KD-tree for acceleration ray-triangle inter-
section.

• Creating photon map compare speed of creat-
ing searching indexes on KD-tree and BD-tree in
FLANN and ANN libraries

• Nearest searching - neighbor number - Comparing
nearest neighbor search time with increasing number
of neighbors to find.

• Nearest searching - size of map - Comparing near-
est neighbor searching time with increasing size of
photon map.

• Approximate nearest search - identification of max-
imum acceptable error and comparison of the approx-
imate searching times.

All the experiments were performed on laptop with Intel
core i7 M620 processor @ 2.67 GHz with 2x 2GB DDR3
RAM 1066Mhz, 7-7-7-20. For compiling, the MSVC 11
(Visual studio 2012) compiler was used. All the measure-
ments were performed on real photon mapping data.

Spatial subdivision test

This test compares speed of spatial indexing methods. In
this test, three methods are being compared. First, the
naive method with no indexing simply bruteforce method
was measured. Then the method is compared to octree and
to KD-tree with ropes.

To compare these methods, I created a simple scene
with 12140 triangles and performed 100 000 ray-triangle
intersection test with this scene. All intersection tests
pointing on same spot.

Name Speed Precomputing

Naive 47.567s -
Octree 1.159s 0.04s

KD-tree with ropes 0.453s 0.16s

Table 1: Comparing spatial indexes

The results of the comparison show that KD-tree with
ropes is approximately two times faster than octree. This
test also shows that using spatial indexes is indeed efficient
and any of the methods outperforms the naive approach.
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The KD was 88 times and octree 44 times faster than the
naive method.

These test also shows speed of creation of the spatial in-
dex. Octree is approximately four times faster than KD-
tree. As the spatial index is created only once in this
method while the ray-triangle intersections are performed
many times - in photon map creating and raytracing. The
KD-tree with ropes is generally the best of the tested ones.

Creating photon map

This test compares times of spatial index creation in pho-
ton maps depending on the total number of photons in
the map. ANN library and FLANN library were used for
nearest neighbor searching on multidimensional datasets.
From the ANN library, KD-tree index and BD-tree were
chosen.

As for the FLANN library, the randomized KD-tree and
special single index KD-tree was chosen. Single index
KD-tree is optimized for lowerdimensional spaces. This
KD-tree is optimized for lower dimensional data and it is
called single index.

For this test, I created a simple scene 1 and photon maps
with 50k, 100k, 200k, and 500k photons. To generate this
amount of photons, I have used photon map block so this
test was performed on the real photon mapping data.

Figure 4: Dependence of map creation time on photon
count.

Figure 5: Average times of creating photon map with in-
creasing photons count.

The results show that BD-trees have the worst time of
index creation. Both of the FLANN indexes KD-tree and
single index have approximately the same time of index
creation in fact, KD-tree is little faster than single KD-
tree. The ANN KD-tree is approximately five times faster
than BD-tree, but two times slower than both of FLANN
indexes.

1Scene is available at http://lyso.cz/dp/house.zip

Nearest search

This test was performed in order to compare the indexing
methods depending on the number of neighbors to search
for. The indexing methods for this test were the same as
in the previous test - ANN KD-tree + bd tree as well as
FLANN randomized KD-tree + single index KD-tree.

The same scene as in the previous tests was used. The
photon map with 500 000 photons was created and on this
map, the search indices were created. During the testing,
the progressively increasing number of nearest neighbor to
find were used.

Figure 6: Dependence of searching time on photon count.

Figure 7: Average time for searching one photon depend-
ing on number of neighbors to search for.

The results show that both ANNs indices and FLANN
single index have the best performance for cases in which
little number of photons is required to be searched for.
However, with the increasing number of photons to search
for, ANN is increasingly worse and FLANN KD-tree be-
comes better than the other two indices.

This test is similar to the previous one but in this case,
the number of neighbors is fixed and the size of the photon
map is changing. In this experiment, the number of neigh-
bors was set to 5 000. The size of the photon maps ranges
from 50 000 to 500 000.

The result shows that increasing size of photon map
does not have too big influence on the achieved speed and
that the size of the number of photons to search for has
large impact on speed.
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Figure 8: Dependence of searching time on photon map
size.

Figure 9: Average time for searching one photon depend-
ing on number of searching neighbors.

Approximate nearest search

The FLANN and ANN libraries provide also an approx-
imate searching method search in which some error is
allowed in the result and which is somewhat faster than
the exact case. It should be interesting to find out how
much influence the approximate searching has on the qual-
ity of rendered images and how much acceleration can be
achieved. As the approximate searching leads into worse
results in terms of quality, it should be found out how
much error is acceptable and then how much it influences
the speed.

For this test I created a simple scene, where only the
indirect illumination was rendered. This indirect illumina-
tion was achieved by search for the nearest photons in the
photon map. Photon map size was 500 000 photons and
in every calculation of indirect illumination 5 000 photons
were used.

Figure 10: Dependence of searching time on epsilon.

Figure 11: Average time for searching one photon depend-
ing on epsilon.

Figure 12: This images shows what influence the allowed
error epsilon has on quality of the rendered image. The top
images are those with epsilon equal to 0, the second ep-
silon equal to 1, the third epsilon equal to 2 and the fourth
epsilon equal to 4

For measurement acceleration of such approximate
searching, another test must be created. For this test, the
same simple scene as described above was used. The pho-
ton map with 500 000 photons was created and 5 000 pho-
tos were used for indirect illumination.

The results show that with the increasing error rate ep-
silon, the time for searching decreases. The times are de-
creasing faster when ANN library is used with increasing
epsilon but not enough to cause the ANN library to out-
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perform the FLANN library. Also, usage of epsilon higher
than one has side effects in bad quality of rendered images,
as it was mentioned and as it was shown above. For this
reason, this approach is generally unusable as it does not
produce good enough photorealistic images.

In these experiments, testing of several types of acceler-
ation structures was successfully accomplished. From the
results of these experiments, it can be seen what are the
best fastest in the application acceleration structures: For
spatial index on ray-triangle intersection it is KD-tree with
ropes and for acceleration on searching in photon map is
the single index KD-tree from FLANN library.

4 Conclusion

In this paper, photon mapping was described along with
some selected acceleration techniques. The photon map-
ping method was subdivided into smaller functional blocks
and these blocks were analyzed and their acceleration at-
tempted the acceleration was specifically performed on
the slowest blocks of the whole computational process.
First experiment was comparing the spatial indices for ray-
triangle intersection search. From the results of this text,
the KD-tree with ropes was selected as the better one com-
pared to the octree. The experiments with photon map
were intended to measure time of creation of the index
of a photon map. Several indexing methods were tested
and the best performance was accomplished by FLANN
indices. Another experiment was performed on evaluation
of time for searching for photons in a photon map with
increasing number of photons to be searched for. From
this experiment single index KD-tree from FLANN library
was better. Yet another experiment was performed only to
demonstrate that the strongest influence on photon map-
ping comes from the number of the photons to be searched
not size of photon map. Also, when the images are ren-
dered using photon maps, the size of photon map should
be bigger. The final experiment was performed on the ap-
proximate searching that seemed quite promising. How-
ever, this test shows that using approximate searching has
side effects in worse quality of rendered image. From
all of these experiments on photon maps, it is clear that
the single index KD-tree from FLANN library is the best
and should be chosen for photon mapping applications.
Further work includes more acceleration structures explo-
ration more complex scenes as well as attempt to speedup
that could be accomplished by using paralelism for exam-
ple port photon mapping into GPGPU.
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Abstract

A new nonlinear refinement algorithm for surfaces is pre-
sented in this work. Our scheme operates on triangular
meshes and interpolates input data. Each triangle is as-
sociated with a small set of neighbouring points and nor-
mals. A low degree algebraic surface (quadric) is fitted
to this set with respect to the chosen objective function.
The new vertex is taken from the computed quadric. Such
a setup overcomes the limitations of the linear schemes.
Our experiments show the scheme might be capable of re-
constructing quadratic surfaces from a coarse approximat-
ing mesh. A comparison of the proposed method with the
linear schemes is shown, as well as an application to the
compression of a large-scale mesh.

Keywords: mesh refinement, subdivision surface, non-
linear scheme, quadric, mesh compression

1 Introduction

The problem of efficient and accurate geometry modelling
of solids has been present in computer graphics from the
very beginning. A new approach for boundary representa-
tion of three-dimensional objects has emerged in the late
1970s. What became known as subdivision surfaces is
now widely used in domains such as CAGD, geometry
modelling for animation, level-of-detail modelling, mul-
tiresolution analysis. For more details on subdivision sur-
faces and related work, see sections 2 and 3.

A novel nonlinear scheme is proposed in our paper.
Even though the scheme is nonlinear, it only requires solv-
ing a well-formed system of linear equations for each tri-
angle of the subdivided mesh. For details on the method
and the implementation, see sections 4 and 5.

In section 6, we experiment with various sets of weights
and analyse the influence of the normal vectors on the limit
surface generated by our method. We also show how the
resulting method can be used to compress triangular mesh
obtained from laser scanning. Such a mesh usually con-
sists of large datasets, typically ∼ 105−106 vertices. Ap-
plying our scheme on properly chosen decimation of input

∗ts@tiborstanko.sk
†pavel.chalmoviansky@fmph.uniba.sk

mesh, we are able to reconstruct scanned data very accu-
rately.

The proposed scheme can also be used for the recon-
struction of quadratic surfaces from a coarse approximat-
ing mesh. We provide a demonstration by reconstructing
the sphere from the cube.

2 Subdivision Surfaces

Subdivision is a way of representing smooth shapes in
computer [1]. The basic idea of subdivision is to define
surface S as a limit of iterative refinement of mesh

S = lim
k→∞
Mk, (1)

where the mesh Mk+1 is obtained by applying set of re-
finement rules on the meshMk, the meshM0 is initial.

A subdivision scheme is interpolating if the limit sur-
face interpolates the vertices of the initial mesh. Other-
wise, the scheme is approximating.

Each mesh M consists of the topological component
(vertices, edges, faces) and the geometric component (ver-
tex positions in R3). Likewise, every subdivision scheme
has topological step and geometric step. In the topologi-
cal step, the topology of the mesh in the next iteration is
determined. New vertices, edges and faces are inserted,
and some of the old ones are removed. Typical operations
in this step include inserting new vertices and leaving out
some of the old, introducing new edges and faces, flipping
an edge. In the geometric step, the new positions of the
vertices are computed.

Linear schemes use linear combinations of the vertices
from the previous iteration to compute the new positions.
Consequently, vertices in the arbitrary iterationMk (par-
ticularly the limit surface S =M∞) can be expressed as
linear combinations of initial meshM0 in a natural way.
For nonlinear schemes, this condition does not hold true.

3 Related Work

Early work on the linear refinement of triangular meshes
has been done by Loop [2], who designed an approximat-
ing scheme. An interpolating scheme was proposed by
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Dyn et al. [3] and later modified by Zorin et al. [4]. An-
other approximating scheme was proposed by Kobbelt [5].
For an overview of existing linear schemes, see [6] or [7].
Extensive bibliography on the topic can be found in the
latter.

While linear methods for surface refinement have been
closely studied in the past decades, nonlinear methods
have received little attention. Linear schemes work well in
cases when only the positions of vertices are known. The
difficulties arise when we try to make use of data coming
from derivatives, such as tangent or curvature. Nonlinear
schemes seem to be the right mechanism to bridge this
gap.

Only a few nonlinear schemes for surface refinement
have been introduced so far. Interpolating triangular algo-
rithms were proposed in [8], [9], [10]. The scheme pre-
sented in this paper was inspired by the work of Chal-
movianský and Jüttler [11], who introduced a nonlinear
circle-preserving algorithm for curve refinement.

4 Refinement via Algebraic Fitting

In this paper, we introduce a different approach to non-
linear subdivision of triangular meshes. The basic idea of
the proposed method is to look for the new vertices on the
quadric surface, which is the best local approximation of
the mesh with respect to the chosen objective function. In
the text, we talk about quadric fitting refinement or simply
QFR when referencing our method.

4.1 Topological step

The quadric fitting refinement uses the topological step in-
troduced by Kobbelt [5]. A new vertex is introduced per
triangle face and connected to all vertices of the triangle.
Old edges are flipped. Figure 1 shows the topological step
on the regular grid for better illustration.

Figure 1: The topological step of Kobbelt’s
√

3-
subdivision used in our scheme.

4.2 Computing position of the new vertex

Since the proposed scheme is interpolating, the positions
of the old vertices remain unchanged. Therefore, the focus
of the scheme lies in the computation of the position of the
new vertex.

Suppose we want to subdivide the meshM. Let V (M)
be the set of all vertices of M. We are looking for

the position of the new vertex v introduced in the tri-
angle T = v0v1v2. The set NT of vertices is called the
m−neighbourhood of T for some m ∈ N if

NT := {p ∈ V (M) : DT (p)≤ m} (2)

for some m ∈ N, where

DT (p) := min
ṽ∈V(T)

(D (p, ṽ)) (3)

is a relative distance of vertex p from the triangle T ,
D(x,y) is a graph distance onM (number of edges in the
shortest path connecting x and y). We choose m to be the
smallest natural number, for which |NT | ≥ 9. Typically,
this yields m = 1 or m = 2. The choice of 9 as the minimal
cardinality is justified later in the text (in section 4.3). An
example of 1-neighbourhood is shown in figure 2.

Figure 2: Visualisation of the set NT (1-neighbourhood)
for the triangle T on the regular grid.

The vertex v is picked out of the quadric surface

Q :=
{
(x,y,z) ∈ E3 : f (x,y,z) = 0

}
, (4)

where

f (x,y,z) = a11x2 +a22y2 +a33z2 +2a12xy+2a13xz+

+2a23yz+2a14x+2a24y+2a34z+a44

(5)

is an unknown trivariate polynomial with real coefficients.
Using matrix notation, the equation (5) is written down to

f (x) = x̃>A x̃, (6)

where

x̃ :=




x
y
z
1


 , A :=




a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44


 ,

x̃ stands for the homogenous coordinates of x ∈ E3, A de-
notes the symmetric matrix of the coefficients ai j from the
equation (5).

4.3 Fitting quadric to vertices

We look for such a quadric Q that is the best approxi-
mation of the mesh M in a close neighbourhood of the
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triangle T . For this purpose, we use the set NT defined
in (2). In order to specify Q, exactly 10 unknown coef-
ficients

{
ai j, 1≤ i≤ j ≤ 4

}
need to be computed up to a

non-zero multiple. This clarifies the required condition on
the cardinality of NT.

To improve the reading comprehension of this section,
we use the following notation for gradient operators:

∇a f =
(

∂ f
∂a11

∂ f
∂a22

∂ f
∂a33

∂ f
∂a12

· · · ∂ f
∂a44

)
(7)

denotes gradient with respect to variables a11, . . . ,a44,
while

∇x f =
(

∂ f
∂x

∂ f
∂y

∂ f
∂ z

)
(8)

is the gradient with respect to x,y,z.
Now, suppose NT = {pi , i = 1, . . . ,n}, where pi =

(xi,yi,zi). Ideally, Q interpolates NT, meaning f vanishes
in every point from NT. In general case though, such an
interpolation cannot be guaranteed. Instead, we compute
the vector

~a :=
(
a11 · · · a44

)> (9)

of the unknown parameters such that the objective function

F (a11, . . . ,a44) =
n

∑
i=1

w̃i f 2 (pi)+ ŵi ‖∇x f (pi)−~ni‖2

(10)
is minimized and

~amin = argmin
a11,...,a44

F (a11, . . . ,a44) . (11)

In (10), the vector~ni = (x̂i, ŷi, ẑi)
> denotes the normal vec-

tor of M at the vertex pi. The scalars w̃i, ŵi > 0 are the
associated real weights, which are specified later in the text
(in section 6.1).

The necessary conditions for minima of the function F
give

∇aF (~a) =~0, (12)

a system of linear equations

∂ F
∂ai j

(a11, . . . ,a44) = 0, 1≤ i≤ j ≤ 4. (13)

If we denote

F̃ (~a) =
n

∑
i=1

w̃i f 2 (pi) , (14)

F̂ (~a) =
n

∑
i=1

ŵi ‖∇x f (pi)−~ni‖2 , (15)

then F = F̃+ F̂ . Therefore,

∇aF = ∇a F̃+∇a F̂ . (16)

Every vertex pi contributes to the objective function in
two parts. The function F̃ measures the distance of pi to
the quadric Q, weighted by w̃i. The function F̂ measures

the deviation of the computed normal from the prescribed
normal (at pi), weighted by ŵi.

Let us have a look at the first term on the right side
of (16). Denote φi := φ(pi), where

φ(pi) := (∇a f )(pi) =
(
xi

2 yi
2 · · · 2zi 1

)>
. (17)

Using (17) and the fact that f (pi) = φ>i ~a, we get

∇a F̃ =
n

∑
i=1

w̃i 2 (∇a f )(pi) f (pi) =

= 2
n

∑
i=1

w̃i φi φ>i ~a = 2
n

∑
i=1

w̃i Φi~a = 2 Φ~a.
(18)

Here, we have used the notation Φi := φiφ>i and Φ :=
∑n

i=1 w̃i Φi for the corresponding matrices.
Now, we analyse the second term on the right side

of (16). First, the gradient of f with respect to x,y,z is
computed

∇x f (pi) = 2




a11xi +a12yi +a13zi +a14
a12xi +a22yi +a23zi +a24
a13xi +a23yi +a33zi +a34


=:




αi
βi
γi


 ,

(19)
where αi,βi,γi are dependent on ~a. Recall the coordinates
of normal~ni at the vertex pi are (x̂i, ŷi, ẑi). Consequently,

‖∇x f (pi)−~ni‖2 = (αi− x̂i)
2 +(βi− ŷi)

2 +(γi− ẑi)
2 .
(20)

Applying the gradient operator ∇a on (20), we have

∇a
(
‖∇x f (pi)−~ni‖2

)
=

= ∇a
(
(αi− x̂i)

2 +(βi− ŷi)
2 +(γi− ẑi)

2
)
=

= 2(αi− x̂i)∇a αi +2(βi− ŷi)∇a βi +2(γi− ẑi)∇a γi.

(21)

Note that applying ∇a on αi,βi and γi, we get the vectors

∇a αi = 2
(
xi 0 0 yi zi 0 1 0 0 0

)>
,

∇a βi = 2
(
0 yi 0 xi 0 zi 0 1 0 0

)>
,

∇a γi = 2
(
0 0 zi 0 xi yi 0 0 1 0

)>
.

(22)

Each of these vectors has only four non-zero coordinates.
Plugging (22) into (21) and substituting into (15) yields

∇a F̂ (~a) =
n

∑
i=1

4 ŵi




xi (αi− x̂i)
yi (βi− ŷi)
zi (γi− ẑi)

(αi− x̂i)yi +(βi− ŷi)xi
(αi− x̂i)zi +(γi− ẑi)xi
(βi− ŷi)zi +(γi− ẑi)yi

αi− x̂i
βi− ŷi
γi− ẑi

0




= 4
n

∑
i=1

ŵi (2Ψi~a−Ωi) ,

(23)
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where

Ψi :=




x2
i 0 0 xi yi xi zi 0 xi 0 0 0
0 y2

i 0 xi yi 0 yi zi 0 yi 0 0
0 0 z2

i 0 xi zi yi zi 0 0 zi 0
xi yi xi yi 0 x2

i +y2
i yi zi xi zi yi xi 0 0

xi zi 0 xi zi yi zi x2
i +z2

i xi yi zi 0 xi 0
0 yi zi yi zi xi zi xi yi y2

i +z2
i 0 zi yi 0

xi 0 0 yi zi 0 1 0 0 0
0 yi 0 xi 0 zi 0 1 0 0
0 0 zi 0 xi yi 0 0 1 0
0 0 0 0 0 0 0 0 0 0




,

Ωi := ( xi x̂i, yi ŷi, zi ẑi, xi ŷi+yi x̂i, xi ẑi+zi x̂i, yi ẑi+zi ŷi, x̂i, ŷi, ẑi, 0)>.
(24)

Introducing the notation

Ψ :=
n

∑
i=1

ŵi Ψi, Ω :=
n

∑
i=1

ŵi Ωi, (25)

the equation (23) becomes

∇a F̂ (~a) = 8Ψ~a−4 Ω. (26)

Using the equations (12), (18) and (26), we obtain the
desired system of linear equations in matrix form

∇aF = 2 Φ~a+8Ψ~a−4 Ω =

= (2Φ+8Ψ)~a−4 Ω = Γ−4Ω = 0,
(27)

with its explicit solution

~amin = 4 Γ−1 Ω, (28)

provided Γ = 2Φ+8Ψ is an invertible matrix.

4.4 Picking the new vertex

After the quadric Q has been found by solving the sys-
tem (27), we are able to compute the coordinates of the
new vertex v. Denote

bT :=
v0 +v1 +v2

3
(29)

to be the barycenter of the triangle T .

4.4.1 Intersection of normal line and quadric

Our first approach is to find the position of v as the inter-
section of quadric Q and the normal line n̄ of the triangle
T . The line n̄ is defined parametrically as

n̄≡ bT + t~nT , t ∈ R. (30)

The vector~nT is defined as the unit normal of the plane de-
termined by the vertices of T (modulo the vector signum),
see fig. 3. Denote the intersection of Q and n̄

vT = bT + t0~nT , (31)

or, coordinate-wise,



xv
yv
zv


=




xb
yb
zb


+ t0




xn
yn
zn


 (32)

T

Q

n̄
p̄

vT

vQ

~nT

~nvQ

bT·

·

Figure 3: Schematic comparison of the two approaches for
picking the new vertex from the quadricQ. The technique
described in section 4.4.1 yields vT , while the technique
from 4.4.2 yields vQ.

for some t0. Plugging (31) into (4), (5), we get

a11x2
v +a22y2

v + · · ·+a34zv +a44 = 0. (33)

This leads to the quadratic equation in t0 of the form

At2
0 +2Bt0 +C = 0 , (34)

where the coefficients A,B,C ∈ R are

A = xn (a11xn +a12yn +a13zn)+

yn (a12xn +a22yn +a23zn)+

zn (a13xn +a23yn +a33zn) ,

B = xn (a11xb +a12yb +a13zb +a14)+

yn (a12xb +a22yb +a23zb +a24)+

zn (a13xb +a23yb +a33zb +a34) ,

C = f (xb,yb,zb) .

Denote the roots of (34) as t1, t2. The parameter t0 is cho-
sen as

t0 =





0, if B2−4AC < 0;
t1, if |t1|< |t2| ;
t2, otherwise.

(35)

If the parameters t1, t2 are real, they determine two points
on n̄. We pick the point which is closer to bT . If t1, t2 are
complex, the barycenter bT is picked as the new point.

4.4.2 Foot point of barycenter

Although the procedure described in section 4.4.1 is easy
to implement, it does not generate optimal choice of the
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Figure 4: Experimental measurements of the time com-
plexity of our algorithm. In average, we were able to pro-
cess 3 500 faces per second.

new vertex. In some cases, the intersection of Q and n̄
does not exist or is relatively distant from the mesh. The
distant vertices create unwanted local sharpness (spikes).
Moreover, if the initial mesh is not closed, the spikes nat-
urally occur around the boundary.

These issues are resolved by picking the new vertex as
a foot point of perpendicular line p̄ from bT onto Q, see
figure 3. To find the foot point, we use the algorithm de-
scribed by Hartmann in [12, section 5.1.2].

5 Implementation

Implementation of our method was done in C++ and com-
piled under GCC 4.8.1. Both techniques for picking the
new vertex from the quadric were implemented. The re-
sults in this paper were obtained using the foot point algo-
rithm exclusively.

For mesh manipulation, we decided to use an open-
source library OpenMesh [13], developed by working
group of Leif Kobbelt at RWTH Aachen University. We
chose OpenMesh for two main reasons:

� meshes are represented using doubly-connected edge
list (DCEL), which allows fast performance of the
mesh operations.

� OpenMesh contains application Subdivider with
built-in framework for subdivision surfaces. Subdi-
vider also implements various linear triangular subdi-
vision schemes (Loop,

√
3, Modified Butterfly) over-

loading abstract base class SubdividerT. Simple
GUI is provided using Qt and GLUT. User can load
and save mesh in popular formats (.obj, .off, .ply) and
iteratively apply subdivision operators.

To solve the linear system (27), we used an open-source
C++ linear algebra library Armadillo [14].

Computational complexity of the quadric fitting refine-
ment is O (F), where F is the number of processed faces.

Figure 4 shows the relation between the time needed to
perform one iteration of the QFR and the number of tri-
angles in the refined mesh. All the measurements were
performed on the PC with Intel Core i7 3517 Ivy Bridge
processor running Ubuntu 13.10 Saucy Salamander.

6 Results

6.1 Choosing the weights

Theoretically, any positive real number can be used as a
weight w̃i of the vertex pi or as a weight ŵi of the normal
~ni. In practice though, the weights have to be chosen care-
fully as their choice can influence the result significantly.

The used weights are dependent on the graph distance
DT (pi) =:Di

T between the vertex pi ∈NT and the triangle
T , see (3). Given the initial values vi,ni and factors v f ,n f ,
the weights are computed as

w̃i = vi vD
i
T

f , ŵi = ni nD
i
T

f . (36)

We demonstrate the effect of different sets of weights
on the Stanford bunny, see figure 5. The bunny mesh was
decimated to 3000 faces and refined using QFR with the
initial values and factors

vi = 1, v f = 1, ni = 1, n f = 1; (37a)
vi = 1000,v f = 1, ni = 0.0001,n f = 0.0001; (37b)
vi = 1000,v f = 0.0001,ni = 0.0001,n f = 0.0001. (37c)

It is clear the strategy of taking all data with the same
weights as in (37a) does not produce fine results for an ir-
regular mesh such as the Stanford bunny. This is due to
the fact that the information carried by normal vectors is
very strong and has to be treated gently. Assigning the nor-
mals smaller weights as in (37b,c) yields much smoother
result. The best results are obtained in (37c), where both
w̃i, ŵi get smaller as the distance from the refined triangle
increases.

In our current setup, the weights need to be adjusted
case-by-case. One of the possible future improvements of
the QFR is to compute the weights algorithmically. The
local geometry of the mesh (vertex angles, triangle areas)
could be used for this purpose.

6.2 Influence of the normal vectors

The normal vector ~ni determines the tangent plane at the
vertex pi. To show how the change in the prescribed nor-
mals influences the limit surface, we applied the QFR on
the Stanford bunny with the alternative set of vertex nor-
mals. This alternative set of normals was generated ran-
domly from a noise function. The results are visualised
in figures 5c (original normals) and 5d (random normals).
The weights from (37c) were used in both cases. The
refined meshes differ dramatically, despite the fact the
weights for normals are much smaller comparing to the
vertex weights (order of 107).
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(a) (b) (c) (d)

Figure 5: (a-c) The Stanford bunny with original normals, refined using the sets of weights from (37a-c). (d) The Stanford
bunny with randomly generated normals, refined using the weights from (37c). Bottom part shows the visualisation of the
discrete ABS curvature.

6.3 Comparison with linear schemes

To compare the proposed algorithm with the linear
schemes, we have used the large-scale mesh of the Venus
of Dolnı́ Věstonice. This mesh is a discretized version of
the small nude female statuette found in Moravia south of
Brno. Dated to 29,000-25,000 BCE, it is considered one
of the oldest known pieces of ceramic in the world.

The original Venus mesh (131 114 vertices) was deci-
mated with app. 99% compression rate (1 356 vertices).
The decimated mesh was refined four times using the
QFR, the

√
3-subdivision, the Modified butterfly and the

Loop scheme. For the QFR, we have used the weights
(vi,v f ) = (1,0.1),(ni,n f ) = (0.001,0.01). The one-sided
Hausdorff distance was used to measure the error and to
compare the refined meshes. For reference, the lengths
of the sides of the bounding box of the Venus mesh are
108.4,31.8, and 42.8 units.

2nd iteration 4th iteration
max. mean RMS max. mean RMS

QFR 1.945 0.092 0.173 1.945 0.093 0.174√
3 1.990 0.167 0.226 2.003 0.174 0.233

MB 1.846 0.083 0.163 1.839 0.084 0.164
Loop 2.001 0.170 0.230 2.003 0.175 0.234

Table 1: Performance of the QFR on the Venus mesh com-
paring to the linear schemes

The results are visualised in figure 7. The numerical
values of maximum, mean and RMS error are summarized
in table 1.

Using this setup, we are able to obtain a close approx-
imation of the original mesh. The performance of QFR
is comparable to the Modified Butterfly. This is related
to the fact that both QFR and Butterfly are interpolating
schemes. However, the mesh produced by our method is
visually smoother. The meshes generated by the approxi-
mating schemes (

√
3-subdivision, Loops) are also smooth,

but they lack the details of the mesh produced by the QFR.

6.4 Reconstruction of quadratic surfaces

In the context of our refinement method, quadratic sur-
faces or quadrics are an important tool. Our algorithm can
also be used for the reconstruction of quadratic surfaces
from a coarse, approximating mesh.

Using the weights w̃i = 1000, ŵi = 0.0001, the scheme
is capable of reconstructing a close approximation of the
sphere from the cube, see figure 6. The initial mesh (cube)
is shown after 0,1,2,3 and 9 iterations, together with the
color visualisation of the distance of the densest mesh
from the sphere. The red color corresponds to zero dis-
tance, blue color corresponds to distance ≥ 0.0025, which
is fairly small taking into account the sphere has unit ra-
dius. The output is also influenced by the initial triangula-
tion of the cube.
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Figure 6: Reconstruction of the sphere x2 + y2 + z2 = 1.

In addition to the sphere, the scheme was capable of
reconstructing a cylinder, an elliptic paraboloid and a hy-
perbolic paraboloid. These experimental results allow to
make a hypothesis that QFR actually reproduces quadratic
surfaces. In the future, we want to study this hypothesis
from the analytic point of view.

7 Conclusions

We introduce a new approach to nonlinear surface subdivi-
sion. While developing the scheme, we encountered prob-
lems with spikes, arising in some regions of the mesh and
around boundary. These issues are resolved by altering the
way the new vertex is picked from the quadric. Although
the alternative setup is more complex, it gives more accu-
rate results and is applicable on general input mesh.

In the future, we plan to study the algorithm from the an-
alytical point of view. We want to prove the limit surface
is G1-continuous and confirm the hypothesis about the re-
production of quadratic surfaces. As we have mentioned
in section 6.1, we also plan to improve the computation of
weights, which should be determined by the local geome-
try of the mesh.

Even though we assume triangular mesh, the proposed
scheme can be extended to quad mesh in a straightforward
way. To perform the extension, appropriate topological
step has to be chosen.
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(a) (b) (c) (d) (e)

Figure 7: Comparison of our method with the linear triangular schemes. (a) Original and decimated Venus mesh, (b-
e) decimated mesh refined with QFR,

√
3, Modified Butterfly and Loop. Top row in (b-e) shows the mesh after four

iterations of given scheme, middle row shows the visualisation of the Hausdorff distance of the original mesh from the
refined meshes. Bottom row displays the histograms of the Hausdorff distance.
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Abstract

We propose an algorithm that generates a base mani-
fold mesh from an input skeleton, based on Skeleton to
Quad Dominant Mesh (SQM) algorithm which converts
skeletons to meshes composed mainly from quadrilaterals.
Each node in skeleton has assigned a sphere with a pre-
defined radius. SQM algorithm first creates branch node
polyhedrons for each sphere corresponding to a branch
node. These polyhedrons are bridged with quadrilaterals
in order to create the final base mesh. We have extended
the algorithm to support generation of meshes from cyclic
skeletons. We have also generalized skeleton nodes to el-
lipsoids instead of spheres. Finally, we extended the al-
gorithm to generate meshes from linear skeletons without
branching and from skeletons which root node is not a
branch node. The generated base mesh is tessellated on
GPU for better visual results.

Keywords: skeleton, convert, base mesh, manifold

1 Introduction

Skeletal structures are often used in computer graphics to
represent basic topology of a model. This representation
allows artists to conveniently animate articulated models,
by manipulating key points represented as joints in skele-
tons. Skeletons corresponding to a model, are often pro-
vided by an artist, or extracted directly from the model
[1]. Since skeletal structures carry an information about
the topology of a model, we could apply a reverse process
to skeleton extraction and recover the base mesh repre-
sented by a skeleton.

Such base meshes, generated directly from skeletal
structures, could be used to ease the modelling of base
models of articulated characters. An artist would only de-
sign the skeleton of the model and the base mesh would be
generated automatically. This technique can also be used
to procedurally generate articulated models. A base mesh
generated from a supplied skeleton can be augmented with
procedurally generated displacement maps in order to gen-
erate a complex model.

∗michal.piovarci@gmail.com

In Section 2, the state of the art methods used in the
area are described. In Section 3, the original SQM algo-
rithm and its drawbacks are discussed. In Section 4, our
implementation of base mesh generation is described. In
Section 5, our proposed solutions to discussed drawbacks
of the original SQM algorithm are presented. Finally, in
Section 6 the results of our implementation are presented.

2 Related Work

The most notable algorithms generating base meshes from
skeletons are B-mesh [4] by Ji et al. and SQM [2] by J.
A. Bærentzen et al. The input for both algorithms is a
skeleton with a sphere defined for each node of the skele-
ton which represents the local geometry of desired output
base mesh. Both algorithms present a different way how to
approach generation of base meshes from the input skele-
ton.

The former B-Mesh algorithm firstly generates geom-
etry for paths connecting skeletal branch nodes. These
paths are then stitched together at each branch node and
the resulting mesh is evolved to better approximate the in-
put skeleton. On the other hand SQM algorithm uses a
reverse process. First polyhedrons corresponding to each
branch node are generated. The generated polyhedrons are
joined together via a tube consisting of quadrilaterals. The
resulting mesh is subdivided to increase visual quality.

There are more techniques that generate base meshes
but are not limited or used on skeletal structures only. In
Solidifying wireframes [7] Srinivasan et al. proposed a
method similar to B-Mesh. The proposed method firstly
generated mesh corresponding to tubular parts of wire-
frames. These paths are later joined at branch nodes in
a similar manner as in B-Mesh. Although the method is
more general than B-Mesh it suffers from the same draw-
backs mainly the stitching geometry which produces un-
desired triangular faces. In a more recent paper Leblanc
et al. [6] proposed generating base meshes by iteratively
combining blocks into cuboid shapes. Since our algo-
rithm should operate on skeletal structures, by limiting
the connectivity of blocks to skeletal structures only, we
would lose many of the advantages of the original tech-
nique. Base mesh could be also recovered from medial
axis transform [8]. However, due to the nature of me-
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dial axis transform it is not suitable for editing by artists.
Taking in account all the previous drawbacks and that ”B-
Mesh produces three to four times more irregular vertices
than SQM” [2], we have decided to base our algorithm on
SQM.

3 Original SQM Algorithm

The algorithm consist of four steps and one preprocessing
step:

Preprocessing: Skeleton straightening - serves to sim-
plify step number 3 of the algorithm.

Step 1: BNP generation - generation of branch node poly-
hedrons (BNPs).

Step 2: BNP refinement - subdivisions of BNPs.
Step 3: Creating the tubular structure - bridging of BNPs.
Step 4: Vertex placement - reverting straightened mesh to

its original pose.

Figure 1: Steps of SQM algorithm. (a) the input skeleton;
(b) generated BNPs; (c) refined BNPs; (d) BNPs bridges
with quadrilateral tubes; Image from [2].

.

Straightening This is a preprocessing step of the algo-
rithm that simplifies the generation of tubular structures.
For each connection node its child is rotated, so that the
edge between connection node and its child is parallel with
the edge between connection node and its parent. This is
useful, because during step 3 the algorithm needs to gen-
erate straight tubes only and does not need to take rotation
into account.

BNP Generation A Branch Node Polyhedron (BNP) is a
polyhedron assigned to a branch node. Vertices of a BNP
correspond to a set of points that are generated by inter-
secting the sphere assigned to a branch node with each
edge connected to said branch node. We will call these
vertices as intersection vertices. To form a BNP intersec-
tion vertices are triangulated. After that each triangle is
split into six triangles by inserting one vertex in the mid-
dle of each triangle and in the middle of each of the edges
of the triangle. These vertices are then projected back onto
the sphere associated with a branch node. This projection
is needed because if the intersection vertices are coplanar,

or nearly coplanar the generated polyhedron would have
zero volume, or very small volume, respectively. The re-
sult of this step can be seen in Figure 1b.

BNP Refinement During step 3 of the algorithm, the
BNPs connected via path are bridged with tubes consist-
ing solely of quadrilaterals. This is done by connecting the
one-rings of two corresponding intersection vertices with
faces. To ensure that we can use only quadrilaterals the
one-rings need to have the same valence. Each BNP is re-
fined so that the valence of two intersection nodes lying
on the same path are equal. We take the notion of a Link
Intersection Edge (LIE): ”An LIE is simply a set of edges
in a subdivided BNP which belong to the links of two path
vertices”, from [2]. During the refinement phase only one
representative edge of each LIE is subdivided. Subdivided
BNPs are displayed in Figure 1c.

Creating the Tubular Structure After previous step of
the algorithm, connected BNPs can be joined by a tube
formed by quadrilaterals. The tube is divided into seg-
ments. Each of the segments corresponds to a connection
node. Vertices corresponding to a certain connection node
are projected onto its corresponding sphere. Leaf nodes
are terminated with a triangle fan, which central vertex
corresponds to the leaf nodes position. The result is il-
lustrated in Figure 1d.

Vertex Placement The base mesh is now finished. All
that remains is to reverse the rotations used to straighten
the input skeleton. After final vertex placement the result-
ing mesh is smoothed with three iterations of Laplacian
smoothing and attraction scheme.

Discussion Because SQM generates BNPs, it resembles
the geometry of the input skeleton even without smooth-
ing or evolution of the mesh. SQM produces small num-
ber of triangles because after the joining step triangles re-
main only in parts of the mesh corresponding to leaf nodes.
Limitations of the algorithm are:

1. The root of the input skeleton has to be a branch node,
as discussed in McDonells Skeleton Based Interac-
tive 3D Modelling [3].

2. SQM can not generate a base mesh from linear skele-
tons without branching.

3. SQM supports only a sphere defined for each node
of a skeleton to represent the local geometry where a
more general input as ellipsoids may be desired.

4. A different termination method for leaf nodes, for ex-
ample capsule termination, may be desired.

5. SQM can not handle implicitly defined cycles in the
input skeleton.
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The goal of our adaptation of SQM algorithm will be to
improve upon all of the listed drawbacks as well as moving
final vertex placement on GPU.

4 Our Base Mesh Implementation

Skeleton Straightening Skeleton straightening is a pre-
processing step that simplifies bridging of branch node
polyhedrons. Straightened skeleton is a skeleton which
nodes in every path between two branch nodes, two leaf
nodes, or a branch node and a leaf node are co-linear. In
addition we have added an extra condition that angles be-
tween branch nodes child nodes should be the same in
straightened skeleton as they are in the input skeleton. To
achieve the first condition for each connection node, we
take the normalized direction of a vector formed by con-
nection nodes parents position and connection nodes posi-
tion. The direction vector can be seen in Figure 2 as the
green arrow. Then we project the child node onto the di-
rection vector. The projected position is the position of the
child node in the straightened skeleton. We then calculate
rotation between connection nodes child original position
and its new position, in respect to the position of connec-
tion node. Finally, we rotate all descendants of the con-
nection node. In order to conform to the second condition,
at each branch node we do not alter the position of its child
nodes.

Figure 2: Skeleton straightening. Left: input skeleton;
Right: straightened skeleton.

Skinning In final vertex placement, we need to revert
the rotations applied to the input skeleton during straight-
ening. We have decided that the best solution is to use
skinning since it can be implemented on GPU and we
wanted to move all post-processing on the GPU. Straight-
ened skeleton represents bind pose for skinning purposes
and the input skeleton represents reference pose. Now
we can calculate rotations, represented as quaternions, re-
quired to transform bind pose to reference pose. Tradi-
tionally, this would require to find the rotation between
two corresponding nodes in respect to their parent. Rotat-
ing all child nodes in bind skeleton using the same rota-
tion and propagate the rotation calculation to child nodes.
However, since we know precisely how bind pose was
constructed, we can exploit this knowledge and avoid the
rotation of child nodes. In fact, we do not even need the
bind skeleton itself because the positions can be calculated

from reference pose. We want to calculate the rotation that
would transform a node from its bind pose to its reference
pose. We know that the nodes parent is already in refer-
ence pose. We also know that bind pose was constructed in
such a way that all connection nodes childes are co-linear
and preserve the distances between nodes. That means
from nodes parent reference pose we can calculate where
would the node be in bind pose, if we would apply on it the
same transformation matrices as were applied to its parent
node. The distance between parent and child nodes re-
mains constant in both poses. And the direction at which
the child node would be in bind pose is the same as the di-
rection from its grandparent node to its parent node. Now
we only need to store the rotation between calculated child
node position in bind pose and its actual position in refer-
ence pose with respect to its parent node. The following
formula demonstrates the calculation of a quaternion re-
quired to transform one node from straightened bind pose
to input reference pose:

node← nodeInRe f erencePose

parent = node.Parent

grandParent = parent.parent

distance = dist(node, parent)

direction = normalize(parent− grandParent)

nodeInBind = parent + distance∗ direction

u = normalize(nodeInBind− parent)

v = normalize(node− parent)

rotation = QuaternionBetweenVectors(u,v)

BNP Generation We generate BNP as in original SQM
algorithm. First we generate intersection vertices. Second
we triangulate and subdivide these vertices. The newly in-
serted vertices now should be projected onto the sphere as-
sociated with their corresponding branch node. However,
a detailed description of this projection was not given in
the original SQM article. We have explored various pos-
sible projections. In the end we have decided to use a
ray-sphere intersection. The sphere is branch nodes cor-
responding sphere onto which we want to project new ver-
tices. The origin of the ray is the position of each newly
inserted vertex. The direction of the ray is mean normal of
the faces that are connected with the vertex. This means
that for the vertices in the center of each face the normal
of the subdivided face is used. For vertices inserted in the
middle of each edge the mean normal of faces correspond-
ing to that edge is used. This method does work if the
center of the sphere is not in the generated BNP as well as
if the generated BNP is coplanar.

BNP Refinement During BNP refinement we always
split only representative edges of each LIE. In order to
maintain roughly equal distribution of edges in a LIE
we are applying a smoothing scheme after each subdivi-
sion. The smoothing is very important, because gener-
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ated base mesh quality directly depends on the smoothing
scheme. Ideally, the length of each edge in a smoothed
LIE would be equal. However since smoothing is ap-
plied after every subdivision, the smoothing algorithm
should be reasonably fast. We propose three smoothing
schemes. These smoothing schemes are illustrated in Fig-
ure 3, where the polyhedron from Figure 3a is smoothed
with various smoothing schemes.

Averaging smoothing calculates new position for each
vertex on a LIE by averaging vertices in its one-ring neigh-
bourhood. We start with the last vertex of a LIE, that is the
vertex on the last edge of a LIE and move towards the first
vertex. We move each vertex, except the first and the last
vertices, to the barycentre of its one-ring neighbourhood
and project them back onto the sphere corresponding to
BNPs node. The resulting smoothed polyhedron is shown
in Figure 3b. This approach is iterative and would need
several iteration to achieve global optimum, however we
have found that one iteration is enough for our needs.

Quaternion smoothing calculates a quaternion repre-
senting the rotation from the first vertex of each LIE to
its last vertex. From each quaternion we extract its corre-
sponding axis of rotation and angle of rotation. We smooth
only points between the first and the last vertex so the cal-
culated axis of rotation and angle are constant. During
each smoothing step we first count the number of vertices
in a LIE. Then we divide the angle of rotation by that num-
ber and form a new quaternion from already calculated
axis of rotation and the newly calculated angle. For each
vertex in a LIE between first and last we apply the rota-
tion stored in the quaternion and update its position. This
method produces LIEs that lie on small circles of their cor-
responding sphere. The spacing between vertices is regu-
lar and thus its very suitable for our needs. The result of
quaternion smoothing is shown in Figure 3c.

Laplacian smoothing adapts the algorithm described in
[1]. The weights used for smoothing are based on the one-
ring area of each vertex. We use one iteration of Lapla-
cian smoothing and then project the new vertices back onto
their corresponding sphere. The smoothed mesh is shown
in Figure 3d. The result is not as good as either Avaraging
or Quaternion smoothing.

Figure 3: LIE smoothing schemes. (a) original poyle-
hdron; (b) polyhedron after applying averaging smooth-
ing; (c) quaternion smoothing; (d) Laplacian smoothing.

BNP Joining After refinement of BNPs intersection ver-
tices connected via path have the same valence. Now
BNPs can be joined by tubes consisting from quadrilater-

als only. We loop through each branch node in a depth-first
search from skeletons root. We process each BNP in the
following manner. We start with the whole BNP Figure 4a.
We loop through all intersection vertices corresponding to
current BNP. We remove each intersection vertex and its
corresponding faces and edges from current BNP. In Fig-
ure 4b we can see the removal of third intersection ver-
tex after first and second intersection vertices were joined.
After the removal of an intersection vertex we continue
joining all nodes on the path that produced the removed
intersection vertex. For each node, we generate new ver-
tices and connect them with corresponding vertices from
previous node. If the path leads to a branch node we re-
move the destination branch node corresponding intersec-
tion vertex and faces and edges connected to it. The tube
generated from connection nodes is then joined with desti-
nation intersection vertex former one-ring. This approach
is more suitable for our data structure than the approach
proposed in SQM. Splitting a quadrilateral face into two
faces is equally difficult as creating two new faces. That
means the split operation would need more time in our data
structure as our approach.

Figure 4: BNP joining process. (a) polyhedron before
joining; (b) polyhedron with removed faces corresponding
to an intersection vertex; (c) new vertices for connection
node before projection; (d) projected vertices of connec-
tion node.

Final Vertex Placement We use quaternions calculated
during skeleton straightening. For each skeletal node we
accumulate the final rotation in a matrix. Matrices are used
because they are more suitable for GPU calculations than
quaternions. Linear blend skinning, as described in [5], is
used to combine skinning matrices corresponding to each
vertex on GPU. We apply skinning transformation on GPU
in tessellation shaders.

5 Our Base Mesh Improvements

In this Section we propose solutions for several limitations
of original SQM algorithm discussed in Section 3. We also
describe how we implemented each solution.

1. Root That Is Not a Branch Node If the root of the
input skeleton is not a branch node and a branch node is
present in the skeleton, we can find it with a depth first
search. When we have at least one branch node we can
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re-root the tree so that the located branch node would be
the root of the tree. This change simplifies the modelling
process as user does not need to be aware of the number
of neighbours of the root node.

2. Linear Skeletons Linear skeletons, which do not
have branch nodes, lack the initial geometry that is gener-
ated during BNP generation step. Additional nodes could
be inserted into the input skeleton to form at least one
branch node, but we have found that it needlessly disturbs
the flow of the output mesh. Instead we decided to use a
different approach. We introduce an additional input pa-
rameter N which specifies how many vertices should be
generated, for each node of the linear skeleton. This pa-
rameter does not decrease the robustness of our approach,
because additional vertices are generated during tessella-
tion and the original number of vertices is negligible.

First step of the algorithm is setting the root to be the
head of the input linear skeleton. Next step of the algo-
rithm is straightening of the input linear skeleton. The in-
put skeleton is shown in Figure 5a. Next, N vertices are
generated around first connection node, which is a child
of the root node. These vertices are distributed regularly
around the node by slerping a quaternion, which center
of rotation is nodes position, axis of rotation is the di-
rection from connection node to root node and magnitude
is 360/N. Newly generated vertices are then joined with
other vertices as in original base mesh algorithm. Leaf
nodes form a triangle fan and connection nodes form a
tube of quadrilaterals. The joined linear base mesh is
shown in Figure 5b. Skinning matrices are used to trans-
form the generated linear skeleton into its input pose Fig-
ure 5c.

Figure 5: Linear base mesh generation. (a) input linear
skeleton; (b) straightened and joined linear skeleton; (c)
final linear base mesh.

3. Ellipsoid Nodes An ellipsoid can be defined as a
sphere with associated transformation matrix. We take
advantage of this representation of ellipsoids. Instead of
more complex ray-ellipsoid intersection that would have
to be computed at each ellipsoid node, we have decided
to represent each ellipsoid node as a sphere and a trans-
formation matrix. First our base mesh algorithm is evalu-
ated as described in Section 3 with spherical nodes. After
that we send the transformation matrices corresponding to
each ellipsoid node to GPU. The vertices corresponding

to each ellipsoid node are transformed directly in vertex
shader. Thanks to this, ellipsoid nodes require minimal
extra computing resources from CPU. The results can be
seen in Figure 6.

Figure 6: Ellipsoid nodes. (a) skeleton with ellipsoid
nodes specified; (b) base mesh generated from skeleton;
(c) base mesh from different angle.

4. Capsule Ending A capsule is a hemisphere gener-
ated at each leaf node of the input skeleton. Generation
of capsules can be approached in two ways. The first is
to generate a capsule at each leaf node corresponding to
its radius. The second is inserting additional nodes into
the input skeleton with decreasing radius that would ap-
proximate a capsule. We have implemented the second
approach because it fits nicely into our pipeline. Capsules
generated this way, can be directly tessellated on the GPU
without any additional processing. At each capsule leaf
node, we insert additional nodes into the input skeleton,
proportional to the radius of the capsule node. The ra-
dius of each node is decreased according to the follow-
ing equation: newRadius =

√
nodeRadius2 ∗ (1− step2)

where nodeRadius is the radius of capsule node and step
is a number between (0− 1], that represents the distance
from center of the capsule to its edge. Final tessellated
capsule is shown in Figure 7.

Figure 7: Capsule generated by our algorithm.

5. Cyclic Skeletons Our last improvement is generation
of base meshes from cyclic skeletons. The cycle can be
located anywhere in the input skeleton. The base algo-
rithm could not be modified to allow generation of cyclic
meshes, because during BNP refinement step of the algo-
rithm a cycle could cause an infinite loop. However we can
modify the input skeleton in a way that would allow us to
generate cyclic skeletons. As the input we have a cyclic
skeleton Figure 8a. Cyclic edge is marked with dark blue
color and cyclic nodes with dark green (upper node) and
dark violet (lower node) colors. First, we split the cycle
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by removing the cyclic edge. To each cyclic node we add
an extra child node as shown in Figure 8b. Light green
node for dark green cyclic node and light pink node for
dark violet cyclic node. These new nodes serve to preserve
the skinning matrices that will rotate tubes generated from
cyclic nodes to face each other. This can be seen in Figure
8c. Base mesh was generated as described in Section 4
with one exception. We do not generate geometry for light
green and light pink nodes. Now the gap between cyclic
nodes should be closed. We first project vertices associ-
ated to each cyclic node to a plane with origin at O(0,0,0)
and normal n(0,1,0). Next, we normalize the vertices so
that vertices associated with violet node lie at a circum-
ference with radius 1 and vertices associated with green
node lie at circumference with radius 2. The position of
projected points is shown in Figure 8e, outer points corre-
spond to dark green node and inner points correspond to
dark violet node. Now we execute a Delaunay triangula-
tion on the transformed points. After the triangulation is
done, we exclude triangles generated solely between inner
or outer vertices. The remaining triangles, Figure 8f repre-
sent the faces that should be generated between vertices of
cyclic nodes in our generated base mesh in order to close
the gap. Final cyclic mesh is shown in Figure 8d.

(a) Cyclic skeleton, cyclic
edge marked with dark
blue color, cyclic nodes
with dark green and dark
violet

(b) Split cycle with one
inserted node for each
former cyclic nodes light
green for green node and
light pink for violet node

(c) Generated base mesh
before the cycle is closed

(d) Generated base mesh
after the cycle is closed

(e) Vertices correspond-
ing to green and vio-
let cyclic nodes projected
onto the same plane

(f) Faces generated by tri-
angulation that will be
used between original un-
projected vertices

Figure 8: Cyclic skeleton base mesh generation.

6. Tessellation Tessellation shaders available since
OpenGL 4.0 are used to tessellate the generated base
mesh. Two connected spherical nodes, a parent and a
child, implicitly define a truncated cone between them.
The base of the cone has the radius of parent spherical
node and the top of the truncated cone has the radius of
child spherical node. Each vertex generated during tessel-
lation is projected onto this cone. The projection is done
by translating the vertex along its normal until it reaches
the surfaces of the cone. A generated base mesh is shown
in Figure 9a and after tessellation in Figure 9b. However
during this step the generated base mesh gains volume and
the newly generated vertices can intersect the tessellated
base mesh. This effect can be seen in Figure 9c. To re-
cover from this situation, we detect sharp vertices in the
input mesh and apply a radius scaling scheme. Sharp ver-
tices are vertices which faces are forming acute angles. In
tessellation shader we have access only to one patch and
its vertices. So we compute the sharpness of each vertex
by comparing and thresholding the normal of each vertex
with the direction of the patch. The smaller the angle be-
tween vertex normal and patch direction is, the sharper the
vertex is. We apply Bézier curves to modify the radius of
the truncated cone. We use Bézier curves that yield val-
ues between [0,1]. For each tessellated vertex its distance
from the beginning of the patch is calculated. The dis-
tance is equal to tessellation parameter v computed by the
GPU. Scaling reduction factor is calculated by sampling a
point on Bézier curve at point t = distance. The radius of
each vertex is then multiplied with calculated factor. The
smoothed mesh is shown in Figure 9d. Currently, the scal-
ing bezier curve is constant, but it could be dynamically
changed based on the sharpness of the vertices.

Figure 9: Tessellation. (a) non-tessellated mesh; (b) tes-
sellated mesh with 20 subdivisions; (c) tessellated mesh
with self intersection; (d) tessellated mesh with scaling.
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Model Node Distribution Timing of steps in milliseconds
#nodes #branch #connection #leaf straightening generation subdivision joining Total

worm 23 21 2 0 0 0 0 5 5
dummy 56 2 49 5 0 4 2 15 21
cycle 14 1 12 1 0 4 2 18 24
octopus 131 1 117 13 1 9 5 54 69
dummy 2 140 5 122 13 1 11 6 39 57
goat 150 9 123 18 1 16 10 47 74

Table 1: Table showing statics of base mesh algorithm. From left to right: name of the model, node distribution in skeletal
structure, timing of each step of the algorithm measured in milliseconds.

6 Results

The algorithm was implemented in C++ in Visual Studio
2012. Mesh is stored in open source half-edge data struc-
ture OpenMesh 2.2. OpenGL 4.3 is used to visualize the
algorithm and tessellate the generated base mesh. We have
also developed an interactive system, where the user can
create, save and load skeletons. Nodes can be edited di-
rectly with mouse input, or using node property inspector.
New nodes can be inserted into the skeleton with mouse
clicks.

Performance of the algorithm is shown in Table 1. The
table shows from left to right: the name of measured
model, distribution of branch, connection and leaf nodes in
the model and time required for each step of the algorithm
measured in milliseconds. Time was measured on Intel R©

CoreTM i7-3615QM a four core processor with each core
clocked at 2.3 GHz. From the table, we can see that the
joining step, during which the tubular structure is gener-
ated, took the most time. Therefore, it is a candidate for
optimization since other steps of the algorithm took nearly
no time to execute. However, even at current speed we can
generate base meshes at interactive frame rate.

Our algorithm is also capable of generating base meshes
from skeletons on which SQM would fail. For example, in
Figure 10a we can see a fish produced in SQM without el-
lipsoid nodes. The generated base mesh resembles an eel.
Our algorithm with ellipsoid nodes, Figure 10b, produces
a base mesh that corresponds to a fish. In Figure 10d we
can see a cyclic mesh generated by our algorithm. We tried
to generate similar mesh in SQM from the same skeleton,
Figure 10c. Producing a similar mesh in SQM is not pos-
sible as the cycles do not lie in symmetrical region of the
input skeleton and SQM would not close them.

7 Conclusion

We have managed to improve all the drawbacks discussed
in Section 2. Our algorithm is capable of generating base
meshes from linear skeletons, explicitly defined cyclic
skeletons, as well as from skeletons with root that is not
a branch node. We have moved Final Vertex Placement
step of the algorithm on GPU. Lastly, we can set arbitrary

ellipsoids at each skeletal node and improve visual quality
of generated base mesh in tessellation shaders.
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(a) Fish without ellipsoid nodes as would be generated by SQM

(b) Fish with ellipsoid nodes generated by our algorithm

(c) Mesh from cyclic skeleton as would be generated by SQM

(d) Mesh from the same skeleton generated by our algorithm

Figure 10: Comparision of SQM to our implementation.

Figure 11: Goat creature generated with our base mesh
algorithm.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
136



Applying Engineering Constraints
in Digital Shape Reconstruction

István Kovács∗
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Abstract

The goal of digital shape reconstruction is to create com-
puter models from point clouds; however, inaccuracies
may occur due to the noise of measured data and the nu-
merical nature of the algorithms used for fitting. As a con-
sequence, faces will not be precisely parallel or orthogo-
nal, smooth connections will be of poor quality, axes of
concentric cylinders may be slightly tilted, and so on. In
this paper we present algorithms to eliminate these inac-
curacies and create perfect models, which are suitable for
downstream CAD/CAM applications. We extend a for-
merly published technology [1] in two areas. We propose
methods to (i) automatically set up hypotheses for likely
geometric constraints and (ii) compute global constraints
related to the whole object, such as, an optimal coordi-
nate system and associated grid, or the best - full or partial
- axes of symmetries. In this paper we investigate pla-
nar contours with constraints; nevertheless, extending this
technology to 3D is in progress, as well. A few interest-
ing examples will be presented to show how constrained
fitting can improve the quality of reconstructed objects.

Keywords: Reverse engineering, Constrained fitting,
Symmetry detection

1 Introduction

Digital shape reconstruction (reverse engineering) is an
expanding, challenging area of Computer Aided Geomet-
ric Design [12]. This technology is utilized in various ap-
plications where a given physical object is scanned in 3D,
and a computer representation is needed in order to per-
form various computations. A wide range of applications
emerges in engineering, medical sciences, and to preserve
the cultural heritage of mankind [6]. Examples include re-
designing and re-manufacturing old mechanical parts, cre-
ating surface geometries from clay models, or producing
surfaces matching human body parts for hearing aids, den-
tures, prosthetics, etc.

∗kovacsi@math.bme.hu
†varady@iit.bme.hu

1.1 Digital shape reconstruction

Digital shape reconstruction consists of the following
technical phases: (1) 3D data acquisition (scanning),
(2) filtering and merging point clouds, (3) creating triangu-
lar meshes, (4) simplifying and repairing meshes, (5) seg-
mentation (partitioning into disjoint regions), (6) region
classification, (7) fitting surfaces (i.e. approximating the
data points), (8) fitting connecting surfaces (e.g. fillets),
(9) perfecting surfaces (including constrained fitting and
surface fairing), (10) exporting to CAD–CAM systems for
downstream applications.

Assume segmentation has taken place, and classifica-
tion produced a surface type for each region that will best
approximate the related data points. The conventional ap-
proach is to fit surfaces individually. Let us denote the sur-
faces by {si}, and the corresponding point clouds by {pi j}.
Our goal is to minimize the average square distances be-
tween the surfaces and the point clouds. Let x contain the
parameters of the surfaces. Then the problem is

fi(x) = ∑
j

d(pi j,si)
2, fi(x)→min .

Fitting simple surfaces is generally based on solving
eigenvalue problems [2] [11]; for more complex surfaces
efficient numerical methods exist [9]. Fitting surfaces sep-
arately is likely to produce inaccuracies; fortunately, the
model quality can be perfected, if we recognize and en-
force various geometric constraints and then fit groups of
related surfaces simultaneously.

1.2 Constrained fitting

Geometric constraints define relationships amongst vari-
ous entities. This is a key issue in engineering design;
orthogonality, parallelism, tangency, symmetry, etc. can
be best prescribed by means of constraints, which are ex-
pressed in the form of various algebraic equations.

We may distinguish between constraints that has local
effect related to pairs of curves and surfaces, such as, lines,
circles, planes, cylinders, cones, extruded and rotational
surfaces, and more complex constraints that globally de-
termine groups of surfaces. The most frequent local con-
straints include

• orthogonal/parallel curves and surfaces,
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Figure 1: An engineering object with many self-contained
constraints.

• concentric curves and surfaces,

• tangential curves and surfaces,

• rounded numerical values,

• fixed numerical values.

The most frequent global constraints include

• common direction for extrusions,

• common rotational axes,

• global grid,

• global axis of symmetry,

• global rotational symmetry.

The scanned data – in itself – do not carry informa-
tion about the structure of the object and the constraints
between its high-level geometric entities. These need to
be set either explicitly by the user, or recognized and set
by some ”intelligent” algorithm. After individual fitting
— due to noise and numerical inaccuracies — constraints
will be satisfied only within some tolerances; an example
with inaccurate values is shown in Figure 2. If we set a
constraint system, we can enhance the model and refit the
surfaces accordingly. This process is called constrained
fitting.

Our goal is to minimize the average square distances
between the point clouds and the surfaces while constraint
equations are enforced.

1.3 Previous work

Numerical methods to solve this problem have been pub-
lished earlier [14] [8]. An important paper on constrained
fitting was published by Langbein et al. [3], where partial
symmetries on point sets are detected based on an alge-
braic concept. In the paper of Mitra et al. [7] it is shown
how partial global symmetries on 3D models by feature
points can be detected. Our paper expands a numerical

technique originally suggested by Benkő et al. [1], that
can handle under- and over-constrained systems with pri-
orities, applying a special extension of Newton’s method.
An interesting approach was recently published in [4], that
discovers certain primitives, such as, planes, cylinders,
cones and spheres using RANSAC method [10] and then
sequentially enforces constraints amongst them.

1.4 Outline

In this paper we focus on algorithms, that substitute
user driven, manual constrained fitting by automatic tech-
niques. After presenting the basic algorithm of Benkő et
al. [1] in Section 2, we present how to detect and enforce
various hypotheses for likely local geometric constraints
in Section 3. Then we continue with methods to detect
global constraints, including best fit grids and optimal axes
of symmetries - see Section 4 and 5, respectively. Finally,
results will be illustrated by a few examples using 2D point
sets and related constraints for planar curves.

2 Constrained fitting – basics

2.1 A simple example

Consider the profile curve in Figure 2(b) [13]. If we fit-
ted these circles independently, the tangential constraints
would not be satisfied, however, constrained fitting pro-
vides an appropriate solution. In this example, let ci denote
the circles to be constrained with parameters (Ai,Bi,Ci,Di)
, and the corresponding equations are Ai(x2 + y2)+Bix+
Ciy+Di = 0. The average squared distance to be mini-
mized is

f (x)=∑
i, j

d2
i, j =∑

i

1
ni

∑
j
(Ai(x2

i j+y2
i j)+Bixi j+Ciyi j+Di)

2.

The constraint system includes

• normalization constraints (B2
i + C2

i − 4AiDi = 1);
these assure that the distances from the points closely
approximate the Euclidean distances, and

• tangential constraints (2A jDi + 2AiD j − BiB j −
CiC j±1 = 0); these assure that each pair of adjacent
circular arcs shares a common endpoint and tangent.

2.2 The numerical method

Let us continue with presenting the method of Benkő et
al. [1], this is necessary to understand the rest of the pa-
per. We use the previous notations, where d(pi j,si) de-
notes the distance between surface si and point pi j. Let αi
be the positive weights assigned to the i-th surface. Let x
contain the parameters of all surfaces, and let us define the
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(a)

(b)

(c)

(d)

Figure 2: Constrained fitting: (a) profile of a gear wheel;
(b) three circles with prescribed tangency; (c) indepen-
dent fitting yields discontinuity; (d) fitting with constraints
guarantees smooth connections.

constraint equations in the form of ck = 0. Then we can
write the global system of equations as

c(x) = 0. (1)

We minimize the average square distance while the con-
straints are satisfied:

f (x) = ∑
i

αi ∑
j

d(pi j,si)
2 (2)

Let c(x) = (c1(x), ...,ck(x)), where the constraints are
ordered by priority and suppose that f (x) and c(x) are
smooth enough (at least C2). Here we have a highly non-
linear system of equations, that we are going to solve using
a special Newton iteration. We approximate c in first or-
der, and f in second order. The Taylor approximations of
c and f around x0 are the following:

c(x0 +d)≈ c(x0)+ c′(x0)d (3)

f (x0 +d)≈ f (x0)+ f ′(x0)d+
1
2

dT f ′′(x0)d (4)

In each step we want to determine a small difference vector
d. Using the above equations, the problem can be written
locally in the form

Cd̃ = 0 (5)

d̃T Ad̃→min, (6)

where d̃ = (d1, ...,dn,1), C = [c′(x0)|c(x0)] and A is an
(n+1)× (n+1) size matrix, as follows:

A =

[
f ′′(x0) f ′(x0)
f ′(x0)

T 0

]
. (7)

In order to calculate d̃ we have to reduce it to a lower
dimensional vector d∗ by (5), such that d∗ has only inde-
pendent coordinates. We calculate a matrix M, such that
d = Md∗, and CM = 0. Now the dimension of d∗ gives
us, how many independent variables exist in the system.
Finally, we can solve d∗T A∗d∗→min without constraints,
where A∗=MT AM, and this can be solved as a simple sys-
tem of linear equations. We note that, this minimization is
always solvable, the proof is based on the fact, that f ′′(x0)
is symmetric positive definite in this case.

The way of calculating M is very similar to Gauss elim-
ination. During elimination, we can check if some of the
constraints contradict to each other, or if the system is
over-determined (see details in the original paper [1]).

2.3 Auxiliary objects

The use of the so-called auxiliary objects is an important
idea in constrained fitting. We illustrate this through a sim-
ple example. Take three lines that are supposed to meet in
a common point (see Figure 4(a)). We can formulate the
related constraints by taking line 1 and 2, compute their
intersection and constrain this intersection point to lie on
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line 3; then we take line 2 and 3, and line 3 and 1 with sim-
ilar constraints. This set of equations defines a relatively
simple problem in a very complicated way.

An alternative solution is to introduce an auxiliary point
p. This is also an unknown entity, but now we can define
our constraints by three simple equations: i.e. all three
lines must pass through p. Clearly, we have increased the
number of unknowns in the parameter vector x, but the
system of equations – and all related Taylor approximants
– have become much simpler. Note, the unknown surface
parameters are generally associated with a corresponding
point sets, but for auxiliary objects such a data point has
no meaning. Typical auxiliary entities include a point, a
point and a normal, a distance, etc.; their exclusive role is
to simplify the system of equations and thus our computa-
tions.

3 Automatic detection of local con-
straints

Let us start with a simple example. We wonder whether
pairs of lines are perpendicular or not, and we wish to
incorporate additional constraints into our system, if the
likelihood of being perpendicular is high. This can clearly
be controlled by a user defined angular tolerance, and extra
constraints will be added automatically, if two lines span
an angle between 90± ε .

Formally: let c(x) = 0 a simple constraint between two
objects. Let ε be a tolerance level. The c constraint is
within tolerance if and only if |c(x)| < ε , and we want to
validate whether the constraint holds. For this, we intro-
duce the following function:

sε(x) :=
{

x if |x|< ε
0 otherwise.

We observe that, if c(x) is out of tolerance, then sε(c(x))
vanishes, and the constant zero constraint will not modify
our system, otherwise sε(c(x)) reproduces c(x).

A necessary condition for c is, that c(x) represents a
so-called faithful representation for the distance used for a
given entity. (Faithful means that the true Euclidian dis-
tance or a close approximation is computed in the vicinity
of the curve/surface to be fitted, see details [1]). For ex-
ample, for the line meets point constraint, we must use a
normalized line-point distance function

cpl(x) =
|Ax0 +By0 +C|√

A2 +B2
.

Also note that sε is not continuous, but a piecewise con-
tinuous function, so if we calculate the derivative numeri-
cally, we need to make it piecewise, as well.

To detect constraints automatically, we take the modi-
fied constraints for all object pairs. The numerical method
will enable constraints only that are within the related tol-
erance level. The user typically defines different toler-
ances for different – parallel, perpendicular, tangential,

(a)

(b)

(c)

Figure 3: Automatically detected constraints: (a) — ini-
tial state; (b) and (c) — different configurations created by
different tolerance levels

(a) (b) (c)

Figure 4: Three lines meet at a common point: (a) initial
state; (b) pairwise intersection (auxiliary points); and (c)
enforce the ’three points are equal’ constraint.
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concentric, etc. – constraints. Let us denote the set of
objects by S = {si}, and the constraint types by {c j}, such
that c j(s1,s2) denotes an actual constraint between s1 and
s2. Then for all c j, consider the following constraint set:

C j = {sε j(c j(s1,s2))|s1,s2 suitable for c j}.

Thus the global constraint system includes the explicitly
defined constraints, and the C j-s, i.e. the ’likely’ constraint
set.

A somewhat artificial example with three circles and
three lines can be seen in Figure 3 that shows different
configurations created by different constraint tolerances.
Compare cases (b) and (c). The angular tolerances of
’lines orthogonal’ are (b):10, (c):10 degrees. The distance
tolerances of ’line passes through the center of a circle’
are (b):10, (c):10 units, and ’line is tangent to circle’ are
(b):15, (c):25 units, respectively.

We can also handle more complex local (i.e. not pair-
wise) constraints. For example, take the previously men-
tioned three lines meet in a single point constraint in Fig-
ure 4. We may create auxiliary intersection points for all
three pairs of lines, and by means of a corresponding line
close to point constraints the algorithm can detect, whether
the three intersection points are ”likely to be” coincident
or not. In the former case the three lines will be fitted si-
multaneously, enforcing a common point of intersection.

4 The best fit global grid

In this section, we investigate how to detect and create a
best fit ’grid’ object and set the corresponding constraints.

The grid is represented as a 5 dimensional auxiliary ob-
ject with the following parameters:

• the orientation of the grid (n),

• the origin of the grid (p0),

• and a positive constant, the width of the cells (d).

Note that, the above parameters are not uniquely de-
fined, since we can select all intersection points of the grid
as origin, and we have four ways to define the orientation.

We can define constraints for the grid in a similar way,
as earlier. For example, the constraint of a line (Ax+By+
C = 0) is orthogonal/parallel to the grid can be given as
c(x) = min(|An1−Bn2|, |An2 +Bn1|) = 0. We can define
the point meets grid constraint as 〈p− p0,n〉/d and 〈p−
p0,n⊥〉/d are integers. So the most important constraints
are the following:

• certain parameters (n, p0,d) are fixed,

• points are contained in the grid,

• lines are orthogonal/parallel to the grid,

• lines lie on the grid lines.

(a) (b)

(c) (d)

Figure 5: Detect grid: (a) original glass object; (b) seg-
mented profile with straight segments; (c) optimal orienta-
tion; (d) final fit with optimal cell size.

For detecting the above constraints, we can use the auto-
matic methods shown earlier, but this will work only, if the
grid has been initialized ’almost perfectly’. Alternatively,
we suggest an algorithm based on the following four basic
steps (a related example can be depicted in Figure 5):

1. determine the best orientation,

2. fit the corresponding lines,

3. determine the best width parameter,

4. refit the objects matching the enhanced grid.

4.1 Determine the best orientation

Assume that, each line belongs to a straight section. Let
us denote the length of li as h(li), and the angle from x-
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axis of its normal vector li in radian as 6 (li). With respect
to the grid, α and α +π/2 have the same orientation, so
we work with angles modulo π/2. The solution is given
by clustering the angular values. We associate a radius
with each cluster, that depends on a tolerance level and
a weight by w(S) = ∑l∈S h(l). We select the best cluster
(where w(S) is maximal), and the weighted average of the
angles will yield the best orientation.

4.2 Determine the best cell size

After setting up the best oriented grid, we fit the corre-
sponding lines by the automatic method presented in Sec-
tion 3. The next problem is determine the best common
divisor of the distances between the parallel lines.

Let us denote the lines fitted according to the optimal
orientation by {li}, and the absolute distances between the
parallel lines by {di j} = {nl}. If d is a suitable width of
the grid cells, then the average remainder by {nl} is small.
The sum of remainders can be written in the form

δ (d) = ∑
l

min
({nl

d

}
,1−

{nl

d

})
,

where {x} denotes the fraction part of x.
Now the goal is to find the minimum of δ (d) in the

[dmin,dmax] interval. It is easy to see, that the function
δ is piecewise monotone, and the monotonicity drops at
numbers being in the form of nl/k, for certain nl-s, where
k is a positive integer. Therefore, we need to search for
the minimum only at these points, and we can find this
in O(N2nmax/dmin) steps, where N is the number of dis-
tances, and nmax = maxl nl .

After setting up the optimal grid size, we can automati-
cally detect the lines that satisfy all the grid constraints.

5 Estimate global symmetries

The second area of setting global constraints is the compu-
tation of axes of symmetry. We investigate algorithms for
curves consisting of straight segments and circular arcs.
First we determine all potential axes that may occur, then
evaluate and prioritize them, and finally select the best
one(s). Let P = {pi} denote the endpoints of the segments
and the centers of the circles, and L = {li} the lines.

The main steps of the algorithm are the following (see
also Figure 6):

1. Collect all perpendicular bisectors between the points
of P, and all angular bisectors between the lines of L.
These bisector lines are called auxiliary lines.

2. Determine clusters of the auxiliary lines.

3. Evaluate the clusters (i.e. compute the corresponding
axes and evaluate their ’measure’ of symmetry).

4. Select the best axis (axes), and apply constrained fit-
ting accordingly.

(a) (b)

Figure 6: Detected axis of symmetry: (a) the best axis of
symmetry (88.2%); (b) the second best axis of symmetry
(35.9%).

The set of auxiliary lines A contains the perpen-
dicular bisectors between the points of P: A1 =
{PBisector(pi, p j) : i < j}, and the angular bisectors be-
tween the lines of L: A2 = {ABisector(li, l j) : i < j}. Now
we cluster these in two steps. First by the argument of the
normal vectors (modulo π), then by the distances from the
origin. For each cluster C, let lC denote the average of C,
these are the axis candidates. The number of elements in
a given cluster is not necessarily the best quantity to mea-
sure the extent of symmetry; it is better to locate the cor-
responding symmetric parts by the related axis candidate
and compute their arc lengths. With other words, symme-
tries amongst many small segments will be considered less
important than those of a few large segments.

The clusters also provide information about symmetries
of circular arcs, which help to enhance these computa-
tions. For each pair of arcs, we determine the correspond-
ing arcs, or parts of arcs, that can really be considered as
symmetric. The sum of these arcs yield additional weights
to qualify the axis candidates.

We generally define constraints for axis of symmetry
using auxiliary objects, as well. For example,

• an axis is a perpendicular bisector of a segment,

• axis is an angular bisector of two lines, etc.

Finally we perform constrained fitting according to the
best axis of symmetry.

6 Examples

In this section, we present some examples using our algo-
rithms of constrained fitting.
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6.1 Case Study 1 - Gear wheel

As it was shown earlier in Figure 2, if we fit three circles
independently, there will be small gaps between the adja-
cent arcs without tangential continuity, thus yielding a pro-
file curve with poor quality. To avoid this, we must apply
constrained fitting, as shown in Figure 2(d). In this case
the least-squares deviation will be somewhat worse, but
the prescribed constraints will be satisfied. This is illus-
trated numerically in Figure 7. The average least-squares
errors increased by at most 15.5%, but this is still negli-
gible compared to the magnitude of the circle radii. The
radius of the first circle has been increased by almost 20%,
actually this is the correct value. The reason for this is that
the points lie on a relatively small segment of a large circle.
In these cases the computed value of the best-fit radius is
not so robust, and this may lead to relatively large changes
once the constraints are enforced.

Independent fit Constrained fit Deviation
1. error 1.015 1.201 15.50%
1. radius 125.762 155.810 19.28%
2. error 1.138 1.216 6.44%
2. radius 50.590 51.683 2.11%
3. error 0.822 0.855 3.77%
3. radius 145.962 156.278 6.60%
1. constraint 2.142 0
2. constraint 1.010 0

Figure 7: Numerical analysis of unconstrained vs. con-
strained fitting for the profile curve in Figure 2. (i) Least
squares errors and (ii) radii of the three fitted circular arcs,
(iii) estimated deviation errors at the connecting points of
the circles.

6.2 Case Study 2 - Bottle

To demonstrate our algorithms for detecting global con-
straints we used the profile curve of a glass. Both algo-
rithms (detecting grid and axis of symmetry) have pro-
duced satisfactory results.

Grid detection has already been shown in Figure 5; the
algorithm located the best orientation and cell size for the
grid, when performed constrained fitting. As explained
earlier, the algorithm has a dynamic behaviour, i.e. it ad-
justs, which constraints are actually taken into considera-
tion when the system of equations is finally solved. Close
views of Figure 5 are shown in Figure 8. We can see the
middle purple line in 8(b) is almost parallel to the grid, but
the angle is out of the tolerance level. The same thing hap-
pens on the 8(e) with the first yellow line. Another inter-
esting effect, is the third purple line in 8(e), which is fitted
to the orientation, but not fitted to the grid. This illustrates
that, the algorithm is sensitive to the local inconsistencies,
and adaptively determines the constraints for the optimal
global grid.

Symmetry detection was demonstrated in Figure 6. The
algorithm determined two axes of symmetry with symme-
try levels 88.2% and 35.9%, respectively. The first axis is

the global axis of symmetry, while the other one indicates
a local symmetry in the middle of the object.

(a)

(b)

(c)

(d)

(e)

Figure 8: Close views of Figure 5.

7 Conclusion

It is a crucial issue to perfect engineering objects being
reconstructed from measured data. Having only rough ap-
proximations for perpendicularity, parallelism, concentric-
ity, etc, would not be acceptable for the majority of down-
stream CAD applications. In this project we have inves-
tigated perfecting techniques to automatically set up and
enforce local and global geometric constraints. We have
tested our methods for planar point data sets, represent-
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ing straight and circular curve segments. These algorithms
can be generalized to 3D objects in a reasonably straight-
forward way; this is subject of ongoing research. In the
future, we plan to detect other types of global symmetries,
such as, rotational and translational symmetries, then later
apply these techniques to couple conventional and free-
form curves and surfaces, as well.
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Abstract

Various types of approaches that can model a human vi-
sual attention have been already proposed. However, a
model that could perfectly simulate the human perception
and methods of computer prediction of human visual at-
tention belongs to one of the high focused research areas.

Our work is aimed at methods of generating a saliency
map which will detect the areas in the picture that could
most likely attract a human attention. The basis of our
work is method of saliency detection using superpixels
published by authors Z. Liu, O. Meur and S. Luo. Sev-
eral modifications of this method with the aim to improve
the results have been proposed, tested and evaluated in our
experiments. In this paper, we present our proposed mod-
ification based on border prior and statistical evaluation
of the saliency central position in the used dataset. This
center position will be expressed using a fitted Gaussian
function. Results of all experiments are evaluated and pre-
sented in the following paper.

Keywords: saliency map, superpixels, border prior

1 Introduction

In our daily lives we are surrounded by incredible amount
of information, which we are not able to process all at
once. We need to restrict our attention only on certain area
or objects at a time so we can process this information one
after another. Scientists have been examining what under-
lies our attention to help us avoid information overload.
They came up with the idea to create a saliency map for a
given image that represents information about human vi-
sual attention of this image.

The saliency map is a topographically arranged map to
represent the saliency of the visual scene and it gives us
information about where in the image the areas that attract
our attention are. It can reflect several salient objects or
areas which are sorted by their saliency.

Saliency map is often used as a prior for a classifica-
tion system to detect objects. These maps are useful for

∗v.nika.olesova@gmail.com

many applications such as image compression, predicting
eye movements, autofocus and visualization.

The main problem of existing models generating
saliency maps is that they usually work with specific cases
and are not able to cover all of them.

2 State Of The Art

There are a lot of differently oriented models to creating
a saliency map that have achieved good performance in
predicting human eye fixations. The most common mod-
els that are often used for comparison are A Model of
Saliency-based Visual Attention for Rapid Scene Anal-
ysis [5], Graph-Based Visual Saliency [4] and SUN: A
Bayesian Framework for Saliency Using Natural Statistics
[10]. We will describe the main ideas of these models in
this section. In more detail we will analyze another model,
called Superpixel-based saliency detection [8], which is
the basis of our work.

2.1 Model of Saliency-based Visual Atten-
tion for Rapid Scene Analysis

Itti proposed a model [5] which is inspired by the architec-
ture proposed by Koch and Ullman, who came up with the
idea that the different visual features should be combined
into one single topographically oriented map. Most of the
later works use Ittis model for comparison since it is the
earliest model of a saliency map.

Visual preprocessing of this model consists of creating
five Gaussian pyramids that are generated from intensity
image and four color channels - red, green, blue and yel-
low. Image is then decomposed into a set of topographic
feature maps. Each feature is computed by a set of lin-
ear center-surround operations. These maps are normal-
ized and combined into three conspicuity maps. The final
saliency map is the result of the normalization followed by
a summation of the three conspicuity maps.

This architecture is not designed to detect conjunctions
of features; it can only recognize a target which is differ-
ent from surrounding by its intensity, color, size and ori-
entation, and will fail once the salient object has another
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feature. The salient object has to be represented in at least
one feature map in order to pop out.

2.2 SUN: A Bayesian Framework for
Saliency Using Natural Statistics

The title of the second mentioned approach [10] is SUN
because it depends on the statistics of natural images.
The saliency map of this framework can be generated ei-
ther by bottom-up, top-down or a combination of those
approaches. By choosing bottom-up approach, saliency
is represented by self-information and by choosing top-
down, it is defined as log-likehood. In this model, the
features are calculated in two ways. The first approach
calculates the features as responses of linear filter known
as DoG and the second as the responses to filters learned
from natural images using independent component analy-
sis ICA.

2.3 Graph-Based Visual Saliency

Graph-Based Visual Saliency [4] consists of three main
steps. First, feature maps need to be extracted at multi-
ple spatial scales. To do that, a scale-space pyramid is
obtained from image features: intensity, color and orienta-
tion, which is similar to model of Itti. The second step is
to form an activation map using these feature maps. In the
final step the activation map is normalized to emphasize
the most important information and then combined into a
single saliency map.

This model assigns greater saliency to locations situated
in the middle of the image. The reason is that most of
nodes are closer to a few center nodes than to any point
located near the image boundary. The described process is
computationally quite expensive and the resulting saliency
map has ill-defined object boundaries, which can restrict
the usefulness in certain applications.

2.4 Superpixel-based saliency detection

This model [8] consists of three major steps. At the be-
ginning it is important to simplify the input image by us-
ing superpixel segmentation and color quantization. Then,
similarity between each superpixel has to be found. Fi-
nally, the global contrast and spatial sparsity is computed
for each superpixel.

A superpixel should contain pixels that are similar in
color and texture, and therefore are likely to belong to the
same object. This assumption leads to the advantage of
superpixel primitives over pixel primitives. Another ad-
vantage of this representation is that computational ele-
ments are greatly reduced and the segmentation result will
be better since superpixels preserve the objects shape in-
formation and are more robust to noise.

2.4.1 Image simplification

The image is converted to the CIE L*a*b*, perceptual uni-
form color space, which is designed to approximate hu-
man vision. The first simplification consists of creating
superpixels using SLIC algorithm [2]. This divides a pic-
ture into approximately 200 smaller regions, which is suf-
ficient to preserve different boundaries in the used dataset
well. The result of superpixel segmentation using SLIC al-
gorithm can be seen in Figure 1. Then, the number of dis-
tinct colors has to be reduced by applying the color quanti-
zation. The image histogram is created by quantizing each
color into qxqxq bins. For each bin, mean color and num-
ber of pixels belonging to this bin is computed. Bins that
cover more than certain number of pixels are preserved
and the rest are merged into ones that have the smallest
difference between their quantized colors.

Figure 1: Superpixel segmentation

2.4.2 Superpixel similarity

Each superpixel is assigned to a color histogram which is
calculated based on the one created in the previous step.
The histogram is normalized so that the summation of val-
ues in each histogram is equal to 1. Two types of similari-
ties for each pair of superpixels are computed.

The color similarity of two superpixels is computed as
the sum of intersection of their histograms:

Simc(i, j) =
m

∑
k=1

min
{

Hi(k),H j(k)
}

(1)

The spatial similarity is defined as:

Simd(i, j) = 1−
∥∥µi−µ j

∥∥
d

(2)

where d is the diagonal length of the image and µ is the
center of the superpixel.

By combining those similarities, the resulting similarity
is obtained:

Sim(i, j) = Simc(i, j)∗Simd(i, j) (3)
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2.4.3 Superpixel saliency

Authors [8] suggested that color contrast can be easily
seen between the salient object and the background. They
also noticed that spatial distribution of salient object su-
perpixels is sparser than background superpixels. Because
of this, global contrast of each superpixel and their spatial
sparsity are evaluated for measuring the final saliency.

Global contrast of each superpixel is defined as:

GC(i) =
n

∑
j=1

W (i, j) ·
∥∥mci−mc j

∥∥ (4)

where mc is the mean color of superpixel and the weight
is defined as:

W (i, j) =| SPj | ·Simd(i, j) (5)

where | SPj | stands for the number of pixels in the super-
pixel. We have to normalize this global contrast so that the
values map to the range from 0 to 1:

NGC(i) =
GC(i)−GCmin

GCmax−GCmin
(6)

where GCmax is the maximum value of global contrast
among all the superpixels.

The spatial sparsity of a superpixel is computed as:

SS(i) =
∑n

j=1 Sim(i, j) ·D( j)

∑n
j=1 Sim(i, j)

(7)

where D( j) is a distance between the center of image and
the superpixel j. This is also normalized, but this time
inversely:

NGC(i) =
GC(i)−GCmin

GCmax−GCmin
(8)

We have refined the normalized global contrast and spa-
tial sparsity so that superpixels with higher similarity have
more similar values:

RGC(i) =
∑n

j=1 Sim(i, j) ·NGC( j)

∑n
j=1 Sim(i, j)

(9)

RSS(i) =
∑n

j=1 Sim(i, j) ·NSS( j)

∑n
j=1 Sim(i, j)

(10)

The final saliency value for each superpixel is defined
as the multiplication between refined global contrast and
spatial spread:

Sal(i) = RGC(i)∗RSS(i); (11)

3 Our Contribution

In this section we present our experiments that include bor-
der prior, its update and central position modification.

3.1 Border Prior

We have extended the original model by adding the border
prior, which achieves better results. This prior comes from
the basic rule of photographic composition, that is, most
photographers will not crop salient objects along the view
frame. In other words, the image boundary is mostly back-
ground [9]. However, this only applies to photographs that
are intentionally taken by humans and it is not general.

Huaizu Jiang and others [6] made the following survey:
”we made a simple survey on the MSRA-B data set with
5000 images and found that 98% of pixels in the border
area belong to the background.”

In our algorithm we label the superpixels that touch any
of the image borders as background and find other super-
pixels that are very similar to them. Each of these super-
pixels is considered background and its saliency is auto-
matically zero. In the Figure 2 we can see the difference
between the saliency map which uses this prior and the one
that does not.

Figure 2: (a) Original image, (b) ground truth, (c) saliency
map without border prior, (d) saliency map with border
prior.

However, if there is a salient object that only slightly
touches the boundary, the whole object could be missed.
In order to prevent such situation, we compute global con-
trast for the group of superpixels that touch the boundary
and remove the first 10% whitest of them. These superpix-
els could be a part of the object and it would be wrong to
mark them as background. The chosen percentage is only
an estimation based on observation of the used dataset of
images. An example is shown in Figure 3 where we can
see that in the image c) a man is missed because he touches
the boundary and in the image d) we see that the most con-
trast superpixels help us identify this man.

3.2 Central Position Modification

The original distance shown in Equation 7, which is used
for computing the spatial sparsity, did not seem accurate
to us. The result of the function D( j) is simply a distance
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Figure 3: (a) Original image, (b) ground truth, (c) saliency
map border prior, (d) saliency map with updated border
prior.

between a superpixel j and center of image. It does not
take into account the most probable distance to which the
salient object could occur. We decided to statistically eval-
uate the central position in the dataset and create a new
function that could be used instead of the original distance.
This modification is also not general and applies only to
the used dataset.

Firstly, our intention was to get a histogram for each
ground truth image in the dataset, which would indicate
how far is the salient object from the center. Ground truth
is human-segmented image dataset used to compare image
segmentation algorithms. Basically, it is a binary image
whose white pixels belong to the salient object and black
pixels to background. To create a histogram, we calculated
the number of white pixels that fall within each distance
from the center position of the image. Then we summed
all the histograms of each image and divided each value of
the resulting histogram by the length of the corresponding
circle. This histogram was then fitted to Gaussian function
using matlab:

[ f y,god] = f it(x,y,′ gauss1′); (12)

where x is a vector of distances from the center image and
y is a vector of number of pixels.

The plot of the resulting function is in the Figure 4
where we see that most of the pixels belonging to the ob-
ject are situated near the center of the image and the output
is the Gaussian function in the following form:

726.9∗ exp(−(x−6.692
97.7

)2) (13)

The distance D( j) has been replaced by this exponential
function.

Figure 4: Fitted gaussian function.

4 Tests and Results

We came up with two types of evaluation. In each of
them we use images from the MSRA1 dataset, which is
the largest object dataset containing 20 000 images in set
A and 5 000 images in set B. Achanta [1] has created
the dataset2 containing 1 000 manually segmented ground
truths corresponding to 1 000 images from the set B.

4.1 Precision and Recall

The first type of evaluation is used to test a precision and
recall of a border prior, its update and a center modifica-
tion. Precision and recall are statistical measures that are
very often used to measure how well the saliency model is
able to predict human eye fixations. Precision is a measure
of accuracy and recall is a measure of completeness.

At first we have to generate a saliency map for each
of 1000 images from MSRA dataset. To get a seg-
mented image we simply threshold the map by assign-
ing the pixels above the given threshold as salient (white
background) and below the threshold as non-salient (black
background). Then we compare the resulting image to its
ground truth. From this comparison we are able to get
statistics like precision and recall rate by using the follow-
ing pseudo-code:
if (value_of_saliency_map > threshold)

{
segmented_foregound_pixels++;
if (value_of_ground_truth != 0)

hit++;
}

if (value_of_ground_truth != 0)
ground_truth_foreground_pixels++;

precision = hit / segmented_foregound_pixels;
recall = hit / ground_truth_foreground_pixels;

By sliding the threshold from minimum to maximum

1Downloaded from http://research.microsoft.com/
en-us/um/people/jiansun/SalientObject/salient_
object.htm

2Downloaded from http://ivrgwww.epfl.ch/
supplementary_material/RK_CVPR09/
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value, we achieved the precision-recall curves that we use
for the comparison between various methods.

The graph of comparison between the algorithm with-
out and with the border prior implemented (SB and BP) is
in Figure 5. We can see that our algorithm updated with
the border prior achieves better results in precision. There
is no saliency map that would have the precision smaller
than 0.55. In addition, this graph shows the difference
between another 3 models including Graph-Based Visual
Saliency (GB) [4], A Model of Saliency-based Visual At-
tention for Rapid Scene Analysis (IT) [5] and Frequency-
tuned Salient Region Detection (IG) [1]. To compare these
methods subjectively, we created a table of few images
that can be found in the Figure 6. We can see that the
background is most suppressed using the border prior. In
this comparison we used datasets containing 1000 saliency
maps for each model created by Achanta et al.

Figure 5: Comparison between different saliency models.

Figure 6: (a) Original image, (b) IT, (c) GB, (d) IG, (e)
original, (f) border prior, (g) ground truth.

In the second graph represented by Figure 7, we can
see a precision-recall curve between border prior (BP) and
its updated version (UBP). Unfortunatly, precision of this
method has regressed but the recall has improved. Images
with the object touching the boundary were succesfully
identified, however, this dataset contains a lot of pictures

without such objects. In those images, by removing 10%
of superpixels from background we removed superpixels
that were actually background.

Figure 7: Comparison between border prior (BP) and up-
dated border prior (UBP).

We have also evaluated the modification of center po-
sition (BPCM) which can be observed in Figure 8. The
recall rate of this modification is the same as the unmod-
ified border prior but the precision has decreased. We as-
sume that its because of the images that do not fit into our
gaussian function.

Figure 8: Comparison between border prior (BP) and bor-
der prior with center position modification (BPCM).

4.2 Histograms

The second evaluation is implemented in matlab and is
aimed at any of the modification but we used it to test the
updated border prior. The key is to create a histogram by
which we would be able to see how many pixels and what
shades of gray from our saliency map belong to the object
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and how many to background. This is done by compar-
ing our saliency map to the ground truth. The number of
pixels that belong to salient object and to background are
computed individually. We divided grayscale into 10 inter-
vals and assigned a number of corresponding pixels from
our saliency map to each of them. Therefore each bar of
histogram is an interval of size 25 and holds a number of
pixels.

An example of such histogram is in the Figure 9, which
evaluates the images (c) and (d) in the Figure 3. A symbol
TP in this histogram stands for the true positive (number
of pixels belonging to the object) and FP is false positive
(number of pixels belonging to background). We can see
that TP - original (image (c) in the mentioned figure) bar
with the pixel value of 1 is bigger than bar TP - modifica-
tion (image (d)) next to it. This means, that the image with
only border prior implemented (TP - original) has more
pixels in the range between values 0-25 belonging to ob-
ject. The other method d(TP - modification) has this num-
ber lower, which is good, because we do not want black
pixels in the object.

Figure 9: Comparison between border prior (original) and
its updated version (modification) by histogram.

5 Conclusion and Future Work

We have presented a few modifications to the existing
method [8] to creating a saliency map. These modifica-
tions are customized to the used dataset and therefore are
not general. Comparing to other models using the same
dataset we were able to see that our modification of bor-
der prior is better at precision but slightly worse in recall.
The update to this method slightly downgrades the pre-
cision but improves recall and modification of center po-
sition does not change the recall of the border prior but
decreases precision.

However, results provided by this method are still not

perfect and other modifications are required. We assume
that using only color contrast, spatial distribution and bor-
der prior is not enough and it would be vital to use higher
features such as face detection. Our next goal is to im-
plement a center surround method adjusted to superpixels.
Authors suppose that the salient object is enclosed by a
rectangle R and they construct a surrounding contour Rs
with the same area of R. Then the distance between R and
Rs can be measured using various features such as inten-
sity, color, and texture. By this technique it is possible to
measure how distinct the salient object in the rectangle is
with respect to its surroundings. In our case we would use
groups of superpixels instead of rectangles and measure a
distance between these groups and their surrounding su-
perpixels by color.

Images in the MSRA dataset contain only a single
salient object and most of them are large and near the im-
age center. For the future work it would be appropriate
to use more challenging images in a combination with a
dataset containing human eye fixations.
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and S. Süsstrunk. Slic superpixels. EPFL Technical
Report, (149300), June 2010.

[3] R. Gonzalez and R. Woods. Digital Image Process-
ing. Number 2. 2001.

[4] J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. Advances in Neural Information Processing
Systems 19, pages 545–552, 2007.

[5] L. Itti, C. Koch, and E. Niebur. A model of saliency-
based visual attention for rapid scene analysis. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 20(11), 1998.

[6] H. Jiang, J. Wang., Z. Yuan, Y. Wu, N. Zheng, and
S. Li. Salient object detection: A discriminative re-
gional feature integration approach. IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 2083–2090, 2013.

[7] T. Liu and Z. Yuan. Learning to detect a salient ob-
ject. IEEE transactions on pattern analysis and ma-
chine intelligence, 33(2):353–367, February 2011.

[8] Z. Liu, O. Meur, and S. Luo. Superpixel-based
saliency detection. International Workshop on Im-
age and Audio Analysis for Multimedia Interactive
services, pages 1–4, July 2013.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
152



[9] Y. Wei, F. Wen., W. Zhu, and J. Sun. Geodesic
saliency using background priors. Proceedings of
the 12th European Conference on Computer Vision,
pages 29–42, 2012.

[10] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and
G. W. Cottrell. Sun: A bayesian framework for
saliency using natural statistics. Journal of Vision,
8(7):1–20, 2008.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)
153



154



Gaze-dependent Ray Tracing

Adam Siekawa∗

Supervised by: Radoslaw Mantiuk†

Institute of Computer Graphics
West Pomeranian University of Technology

Szczecin / Poland

Abstract

In this paper we introduce a method for acceleration of
the real time ray tracing by using characteristic traits of
visual perception. Ray tracing is a demanding rendering
technique which is much slower than currently dominating
scanline methods. Performance hit especially arise when
we use huge amount of samples for anti-aliasing or other
sample-based effects. We show how to decreases number
of rays by increasing the perceptual size of selected pixels
by using combination of eye tracking and the human gaze-
dependent contrast sensitivity. Our study shows that num-
ber of processed pixels can be reduced three times without
perceptually noticeable quality loss. As a result, we can
greatly increase performance of ray tracing.

1 Introduction

The gaze-dependent vision is a characteristic way in which
the human visual system builds an image of the world.
We perform frequent and rapid eye movements, called sac-
cadic movement, and follow moving objects in the smooth
pursuit movement [2]. These rapidly changing snapshots
are combined by the Human Visual System (HVS) in a
stable image of the entire scene. Interestingly, a gaze-
dependent model of image synthesis is not used in contem-
porary computer imaging systems, even despite the fact
that a significant reduction of computation complexity is
possible during image rendering in the parafoveal and pe-
ripheral regions of vision.

Ray tracing is a popular image synthesis technique
which can benefit from the gaze-dependent characteris-
tic of vision. Generally, even using the basic Whitted
model [11], the ray tracing can produce images of the
higher quality that the scanline techniques. However, this
is achieved at the expense of larger computation complex-
ity. The main bottleneck of this technique - finding inter-
sections - can be reduced by decreasing the number of pri-
mary rays. In this work we propose a gaze-dependent ray
tracing in which the number of rays per unit angle fits the
sensitivity of HVS. We use the gaze-dependent contrast
sensitivity function (CSF) to reduce sampling in peripheral
∗adamsiekawa@gmail.com
†rmantiuk@wi.zut.edu.pl

vision. Temporal location of the gaze point is captured by
the eye tracker and used by the interactive ray tracing sys-
tem to render images with the highest quality only in the
gaze-point surrounding.

In Sect. 2 we outline the directionality of the human vi-
sion, introduce the gaze-dependent CSF and discuss exist-
ing gaze-dependent techniques of image synthesis. Sect. 3
presents our gaze-dependent ray tracing system based on
the weighted sampling. In Sect. 4 we show how the gaze-
dependent sampling was implemented in our ray tracer.
Sect. 5 discusses the achieved performance boost with re-
spect to image quality deterioration. The paper ends with
conclusions and future work in Sect. 6.

2 Background

In this Section we present a basis of the human eye
physiology and describe technologies used in the gaze-
dependent rendering frameworks.

2.1 Gaze-dependent contrast sensitivity
function

Human vision has a strong feature of the directionality of
view. We can see the details only in a small viewing angle
subtended 2-3 degrees of the field of view. In this range, a
human sees with a resolution of up to 60 cycles per angular
degree, but for a 20-degree viewing angle, this sensitivity
is reduced ten times [6].

The fundamental relationship describing the behaviour
of the human visual system is the contrast sensitivity func-
tion (CSF) [1]. It shows the dependence between the
threshold contrast visibility and the frequency of the stim-
ulus. The CSF can be used to e.g. better compress the
image by removing the high frequency details that would
not be seen by humans. An extension of the CSF, called
the gaze-dependent CSF, is measured for stimuli observed
in various viewing angles [3, 12]. It models the impact of
deviations from the axis of vision (called eccentricity (E))
to the most recognisable stimulus frequency (see Fig. 1).

In this work we use the gaze-dependent CSF proposed
by Peli et al. [3]:

Ct(E, f ) =Ct(0, f )∗ exp(k f E), (1)

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

eccentricity (E) [deg]

fre
qu

en
cy

 (f
) [

cp
d]

Gaze−dependent contrast sensitivity function (CSF)

Figure 1: Gaze-dependent contrast sensitivity function.
The dashed line shows the maximum frequency of our dis-
play.

where Ct denotes contrast sensitivity for spatial fre-
quency f at an eccentricity E, k determines how fast sen-
sitivity drops off with eccentricity (the k value is ranged
from 0.030 to 0.057). Based on the above equation, the
cut-off spatial frequency fc can be modelled as:

fc(E) = min(max display cpd,E1 ∗E2/(E2 +E)), (2)

where E2 is retinal eccentricity at which the spatial
frequency cut-off drops to half its foveal maximum (it
ranges from E1=43.1 to 21.55), and E2 = 3.118 (see de-
tails in [13]). An example region-of-interest mask com-
puted for our display based on the gaze-dependent CSF
is presented in Fig. 2. Applying this mask, one can e.g.
sample an image with varying frequency generating less
sampling rays for the peripheral regions of vision.

Figure 2: Region-of-interest mask computed based on
CSF for an image of 1920x1080 pixel resolution (gaze
position at (1000,500)), lighter area denotes higher fre-
quency of HVS.

2.2 Gaze-dependent image synthesis

Information about temporary gaze direction was previ-
ously used to reduce the computational complexity of the
image synthesis. An example of this approach is the tech-
nique called the level of detail (LOD), in which the simpli-

fied models of objects are located in the peripheral areas
of vision [7, 9].

In the ray casting [9] and volumetric rendering [5] the
gaze-dependent sampling is applied in the screen space.

A similar solution was used to accelerate the ambient
occlusion algorithm [8]. This technique introduces a novel
filtration method, in which the global lighting is calculated
only for the area surrounding the gaze point. In peripheral
areas of vision only fast computations based on the local
lighting model are performed. The perceptual experiments
showed that the participants did not notice the quality de-
terioration of the generated images.

The models of the gaze-dependent vision seems to gain
an increasing importance in improving the efficiency of
the image synthesis. The leading IT companies are inter-
ested in new gaze-dependent rendering techniques. For
example, in the solution proposed by Gunter and others
in [4], the scanline-based rendering engine generates three
low-resolution images corresponding to the different fields
of view. Then, the wide-angle images are magnified and
combined with non-scaled image of the area surrounding
the gaze point. Thus, the number of processed pixels can
be reduced by 10-15 times.

3 Gaze-dependent rendering

Fig. 3 presents the gaze-dependent rendering scheme. Our
system requires the eye tracker data which represents a
momentary gaze direction of a human observer. We render
the scene using ray tracing. The screen space is sampled
(the primary rays are generated) according to the gaze-
dependent contrast sensitivity function. Less rays is gen-
erated in parafoveal and peripheral regions. The output
image is reconstructed from the non-uniformly distributed
samples and displayed in real time on the screen.

gaze data
(�ltration)

observer
interaction

eye tracker

display

human 
observer

real time renderingreal time rendering

gaze-dependent sampling

ray tracing

screen mapping

Figure 3: Gaze-dependent rendering system.

The whole system must be scaled in the real-world di-
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mensions. We transform the gaze data to screen space us-
ing physical dimensions of a display, its resolution, and
viewing distance between observer and the display screen.

3.1 Gaze-dependent sampling

The gaze-dependent CSF defines a solid angle in which
a human cannot see details. This angle defines a limit of
the HVS resolution and can be scaled in the perceptual
JND units. We call this angle a perceptual unit angle. The
further from gaze point a sample is, the larger the angle
becomes. In this angle the human eyes integrate the im-
age, i.e. it computes the average luminance. To sample
an image during rendering, we use the constant number of
rays per perceptual unit angle. For peripheral vision, the
perceptual unit angle covers more pixels and the number
of rays per image area decreases (see Fig. 4).

Figure 4: Less sampling rays falls on the area in the pe-
ripheral vision. The perceptual unit angles are marked in
colours.

The perceptual unit angle (α) covers an area derived
from CSF:

α = 1/(2∗E1 ∗
E2

E +E2
)[deg], (3)

where E denotes a viewing angle subtended from the
gaze direction to the direction towards a considered pixel,
E1=43.1, E2=3.118 [3]. This angle can be computed using
equation:

E = atan(
pdistance ∗ psize

d
)[deg], (4)

where pdistance is a distance between pixel and the gaze
point in [pixels], psize is a physical pixel size in [cm], and
d denotes a distance from the screen to observer’s eyes
expressed in [cm].

The number of pixels covered by a perceptual unit angle
α can be derived from:

ρ = ‖α
β
‖, (5)

where β is viewing angle in [deg] corresponding to one
pixel.

In the gaze dependent renderer one can reduce the
number of rays shoot per pixel based on the informa-
tion whether a considered pixels belongs to the larger or
smaller perceptual unit angle.

In our system we group together pixels belonging to one
perceptual unit angle and form cells. Then, the image is
sampled based on distribution of the cells. We shoot the
constant number of anti-aliasing rays per cell (see details
in Sect. 4.2) but, as the cells are larger in peripheral vi-
sion, the total number of sampling rays is reduced. Cells
positioned further from gaze point will produce less anti-
aliased results, however the artefacts will not be visible for
the human observer. Cells are put together into an image
after rendering. Visual representation of cell distribution
is presented in Fig. 5.

Figure 5: Cell map generated for an example location of
the gaze point. Each cell larger than original pixel size
is given a random color, non scaled cells are coloured
in white. The enlargement shows unique structure of the
map.

3.2 Rendering

The ray tracing was used for rendering because of sim-
plicity of implementation of complex sampling schemas
in the screen space. We implemented the Whitted ray trac-
ing model which supports Phong lighting, shadows, reflec-
tion and refraction rays. See the implementation details in
Sect. 4.1.

In this work we use a prototype renderer which does not
work in real time. This solution does not meet the main as-
sumption of the gaze-dependent rendering system, i.e. the
gaze-driven rendering in which image content is changed
with the gaze movement. However, our setup allows to
perform the quality tests based on the offline results.

In future work we plan to adapt a real time ray tracer,
such as OptiX [10] or Octane Renderer. Alternatively, we
consider implementation of own ray tracer engine based
on OpenCL or CUDA APIs. In the raw estimation, one
ray should be rendered in 3e−8 [sec] to generate 60 frames-
per-second in a typical viewing conditions. This require-
ment seems to be a challenge for a typical ray tracer and
the gaze-dependent solution which significantly reduces
the number of traced rays is highly beneficial (see details
in Sect. 5).
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4 Implementation

We implemented our own ray tracer extended with the
gaze-dependent sampling technique. All images presented
in this paper were rendered with this application.

4.1 Ray tracer

Ray tracer that was used in our project as a proof-of-
concept is an off-line renderer implemented in C Sharp.
It is build in a content based fashion, where one can create
material by adding extra effects to the base type. There are
two lighting models implemented: Phong and Ashikhmin-
Shirley models. The ray tracer supports reflections, refrac-
tions, textures, and both hard and soft shadows.

One can load 3D scene stored in most of the popu-
lar formats, e.g. Wavefront OBJ format, COLLADA, or
Autodesk 3DS file. The ray tracer can also render non-
triangulated spheres. A scene is created in a code, i.e. one
can position loaded models, created spheres, lights and
camera then append them to the rendering list. The octree
acceleration structure is applied to improve performance.
Moreover, C# style parallel foreach is used for sampling
each cell individually and utilise all available CPU cores.
Results are saved as a linearly tone-mapped bitmap image.
It is also possible to output image sequence which can later
be put into a video.

Our ray tracer implements stochastic, regular (sam-
ples are distributed in a grid fashion) and adaptive anti-
aliasing techniques. However, we found the most useful
the stochastic sampling based on the random samples dis-
tribution. We use this type of anti-aliasing in all tests.
Sample rays are distributed to fit the whole cell region (see
details in 4.2). The first ray is always shoot in the centre
of the cell (pixel or group of pixels). For the following
samples we generate random single precision value which
is used for offsetting ray direction.

4.2 Cell map generator

A cell map generator is an implementation of the gaze-
dependent sampling in which cells are the discrete repre-
sentation of the perceptual unit angles (see Sect. 3.1). One
cell can cover one or more pixels, as seen in Fig. 6. Our
algorithm requires information about gaze point (obtained
from eye tracking device) and viewing conditions (width,
height and viewing distance from a display) to compute
number of pixels ρ that is within perceptual unit angle size
(see Sect. 3.1). Result of the cell map generator is a cell
vector with one cell per one unit angle and a cell mask
which stores relationship between cells and pixels.

Single cell is a structure described by the set of param-
eters:

• unique cell id stored also in the cell mask

• size ρ , when equal to 1 it indicates that cell is cover-
ing single physical pixel.

Figure 6: A cell vector for a 5x6-pixel image. Groups of
pixels covered by the unit angle computed for a current
distance from the gaze point (pixel with index of 9) are
assigned to consecutive indices in the cell vector.

• pixel’s centre position in the screen space

• camera information

• default luminance value (clear color)

The cell id is necessary for image reconstruction. Size,
position and camera data is used during ray tracing proce-
dure to generate the primary rays. The cell mask forms a
matrix (with the size of destination image), which contains
cell ids and helps to maintain the overlapping cells.

The cell vector is sent to ray tracing pipeline and is
used during AA rays generation. We distribute the con-
stant number of samples in a region covered by a given
cell.

Final step is image reconstruction, for that we need to
use cell mask mentioned earlier. As illustrated in Fig. 6,
pixels have the same cell id as the cell that covers them.
In order to retrieve our image, we need to iterate over that
mask and extract the final color value from a cell with the
same cell id and write it into a place holder for an image
(e.g. DirectX or OpenGL texture).

5 Results

We rendered a set of images applying the gaze-dependent
sampling calibrated for our hardware setup: 1080p res-
olution display measuring a 50 [cm] screen width and
35 [cm] height, observed from 60 [cm]. We used 32 sam-
ples for the stochastic anti-aliasing. This number seems
to generate almost perfectly anti-aliased images of our test
scene. The computational complexity remains the same as
in classic ray tracing and cell map generation is not taken
into account since it is used as a precomputed input. Ex-
ample renderings are presented in Fig. 7. In the top image
a typical ray tracing technique with the per-pixel stochastic
anti-aliasing was used. The bottom image was generated
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using the gaze-dependent technique with 32 anti-aliasing
rays per cell (perceptual unit angle). The quality of image
with reduced number of samples is noticeably worse, how-
ever this deterioration is not visible if observer is looking
at the gaze point. This phenomena is even better visible
on video we delivered in the supplementary materials. We
prepared a HDTV clip (1080p, 25 FPS) with sampling rate
reduced to 4 anti-aliasing rays per a cell.

Figure 7: Comparison of the full frame (top) and the gaze-
dependent rendering (bottom). Gaze point is marked as the
red cross in the bottom image. The enlargements on the
right depict borders between region with ρ = 1 and ρ = 2.
Left enlargements show artefacts in region far away from
the gaze position.

Cell overlapping

The cell mapping produces more apparent artefacts with
increasing distance from the gaze point. Some of the cells
may overlap each other, creating characteristic shapes sim-
ilar to letter ’L’, which are visible in Fig. 5. These artefacts
are appearing when cell of size ρ = n neighbours cell with
size of ρ = n− 1, causing displacement of each consecu-
tive cell. However, observer couldn’t see this artefacts.

Performance

We measured the rendering performance on the laptop
with Intel i3-2310M CPU, 2.1 GHz with 2 cores, 4 threads
in total. It took 48 minutes and 16 seconds to render
full frame anti-aliased image (see Fig. 7,top). During this
time a 66.35 million anti-aliasing rays were traced. The

cell map method needed only 14 minutes and 52 seconds
with 20.65 million anti-aliasing rays shoot. The gaze-
dependent technique was more than 3 times faster and al-
most 70% of sampling rays was required.

The acceleration will be even more significant for future
displays of the retinal resolutions (60 cycles per visual an-
gle). Our display should have a resolution of 5400x3900
pixels to reach the HVS resolution. In this case a typical
full frame ray tracing would require 674 million sampling
rays, but with cell map approach we would need only 27
million million rays, which is around 95% less.

6 Conclusions and Future Works

In this work we introduced gaze-dependent rendering as a
sample reduction method for increasing ray tracing perfor-
mance. Our algorithm is based on gaze-dependent CSF. It
takes into account viewing conditions and physical dimen-
sions of the display. We demonstrated how the cell map-
ping algorithm based on perceptual gaze-dependent sam-
pling of the screen space can result in major performance
boost. Although presented algorithm generates artefacts in
the parafoveal region, they are unnoticeable for a viewer.
In the paper we mainly focus on improving performance
by accelerating anti-aliasing algorithms, but we expect that
the same concept can be applied to other performance
heavy algorithms based on sampling.

In future work we plan to deploy a real-time version of
the system. In addition to the implementation of a fast ray
tracker, our cell map generation process might proof to be
difficult for parallel computing. One way of solving this
issue is creating a precomputed cell map, which would use
extra memory (four time more than map generated during
runtime). We also want to address the problem of over-
lapping cells. Our algorithm might also proof useful in
increasing performance of other rendering techniques i.e.,
path tracing or photon mapping.
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Abstract

The aim of the General Shape Analysis (GSA) is to find
one or a few most similar general templates for a processed
object — exact identification is not performed, but the gen-
eral shape features are obtained. The GSA approach may
be applied for coarse separation of objects in the database
prior to their classification or in the case when the data
are incomplete or there is a high variability within them.
In this paper, the GSA problem is investigated using var-
ious combinations of shape descriptors and methods for
estimating the similarity or dissimilarity between shape
representations. The experiments involved the use of five
shape descriptors, namely the Two-Dimensional Fourier
Descriptor, Generic Fourier Descriptor, UNL-Fourier de-
scriptor, Zernike Moments and Point Distance Histogram,
as well as four matching methods, that is the Euclidean
distance, Mahalanobis distance, correlation coefficient and
C1 metric. The effectiveness of the experiments was cal-
culated as a coincidence between experimental results and
results provided by people through inquiry forms. The ex-
periments made it possible to determine the influence of
various matching methods on the final effectiveness when
a particular shape descriptor was applied. The best result
was obtained for the combination of UNL-Fourier descrip-
tor and C1 metric.

Keywords: General Shape Analysis, shape descriptors,
similarity and dissimilarity measures

1 Introduction

The problem of General Shape Analysis (GSA) is consid-
ered similar to typical shape recognition or shape retrieval,
however both of these approaches differ in their purpose.
The GSA is aimed at finding one or a few most similar
general templates for each investigated test object. Usu-
ally, a template is a simple geometrical figure, e.g. a tri-

∗kgosciewska@wi.zut.edu.pl
†dfrejlichowski@wi.zut.edu.pl

angle, rectangle or circle, whereas a test object is a more
diversified shape for which the similarity to one or several
templates is defined. This approach enables to determine
the most general and predominant shape features. The idea
of the GSA is to represent all shapes using a particular
shape descriptor and calculate a similarity or dissimilarity
measure between test objects and templates. Next, a set of
most similar templates indicated by the algorithm is com-
pared with the results provided by people through inquiry
forms, in which they were asked to indicate five templates
for each investigated object — from the most to the least
similar one. The percentage convergence between the two
gives the final effectiveness value of the experiment.

The General Shape Analysis was introduced in [1] and
firstly applied for the Two-Dimensional Fourier Descrip-
tor. In subsequent years, this approach has been exam-
ined with the use of other shape descriptors, among which
were the UNL-Fourier descriptor [2], Generic Fourier De-
scriptor [3], Point Distance Histogram [2, 3], Zernike
Moments [4], Moment Invariants [4] or Curvature Scale
Space [5]. Based on what is known from available liter-
ature, the Euclidean distance has been used to establish
shape dissimilarity. The first application of a different
shape matching method was presented in [6], where the
correlation coefficient was applied to match Fourier-based
shape representations.

In this paper, various combinations of shape descriptors
and matching methods are investigated. The shape de-
scriptors include some of the methods mentioned above —
the Two-Dimensional Fourier Descriptor, Generic Fourier
Descriptor, UNL-Fourier descriptor, Zernike Moments
and Point Distance Histogram, however in the paper sev-
eral versions of each shape descriptor are used, i.e. feature
vectors of various size. For shape matching, two dissim-
ilarity measures were selected, namely the Euclidean dis-
tance and Mahalanobis distance, and two similarity mea-
sures — the correlation coefficient and C1 metric. This
made it possible to determine the most appropriate method
for solving the GSA task. Moreover, in this paper, a dif-
ferent approach for estimating experimental effectiveness
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is applied. Usually, the three most similar templates in-
dicated by the algorithm and people in the inquiry forms
were compared with respect to the sequence of indications.
According to the suggestions included in [4], the sequence
of indications is not taken into account and only the first
template indicated by the algorithm is considered. Under
this condition a template is proper only if it matches one
out of three indications from the human benchmark result.

Some may disagree with the abovementioned manner
of estimating effectiveness, arguing that human shape per-
ception is supported by the theory of Recognition-By-
Components proposed by Biederman. This theory as-
sumes that an object is an arrangement of a number of
basic components, including block, sphere, arc, cylinder
or wedge, and that these components can be used to de-
scribe a shape [10]. Furthermore, it cannot be overlooked
that there are other approaches to cognitive pattern recog-
nition, such as the Theory of Template or the Theory of
Feature. According to the former, people store templates
in the long-term memory and use them to recognize a pat-
tern. Contrarily, the latter one states that instead of match-
ing the entire pattern with a template, people try to match
their features [15]. It also needs to be emphasized that the
General Shape Analysis is not concerned with studying the
way in which people process the shape and establish the
similarity between some shapes, but it investigates the re-
sults provided by people and based on them it tries to find
an appropriate substitute in the area of computer pattern
recognition. In addition, we should also think of how peo-
ple describe things in daily life. Relatively often we define
a shape of an unknown object using commonly known fea-
tures — for example, we say that something is round or
square or has several features in the sense that we can dis-
tinguish several known characteristics in the entire shape.
Moreover, in some aspects of life, establishing an objects
similarity to simple geometric figures is common and con-
sidered useful, for instance, in case of human body shape
or a shape of a face, where the awareness of the shape sim-
plifies choosing an outfit or hairstyle. Despite the triviality
of this example, it is undoubtedly true that people tend to
compare shapes to their simpler equivalents.

Taking into account what has been stated in the above
paragraph, as well as focusing on the algorithms, the GSA
approach may be applied for coarse separation of objects
in the database prior to their exact classification or in the
case when the data are incomplete or there is a high vari-
ability among the data. The GSA has been successfully ap-
plied in the identification of stamp types, which is useful in
searching for presumably falsified digital documents [14].
The approach may also be applied in searching large mul-
timedia databases, where voice commands are used for
shape retrieval [2]. In this paper, focus is not placed on
a specific application, but rather on the evaluation of the
methods and algorithms.

The rest of the paper is organised as follows. The
second section describes methods for estimating similar-
ity and dissimilarity between shape representations, i.e.

methods for matching feature vectors. The third section
briefly presents algorithms selected for shape representa-
tion. The fourth section provides the conditions of the
experiments and experimental results concerning the ap-
plication of various combinations of shape descriptor and
matching method as part of the GSA task. The last section
summarizes and concludes the paper.

2 Methods for estimating similarity
and dissimilarity between shape
representations

In the GSA, test objects are compared with the templates
in order to estimate the similarity (or dissimilarity) be-
tween shapes. Shape similarity enables to establish the
level of similarity (or dissimilarity) between two shapes.
Shape similarity criteria have to be adapted to the spe-
cific problem, i.e. the shapes have to be represented using
features relevant to the problem under consideration [8].
The similarity of shapes is determined through matching
a shape and calculated measure. In this paper, four mea-
sures are investigated — two similarity and two dissimilar-
ity measures. The similarity measure is based on the max-
imization of correlation between shapes, while the dissim-
ilarity measure — on the minimization of the distance be-
tween shapes.

Let us take as an example two vectors VA(a1,a2, . . . ,AN)
and VB(b1,b2, . . . ,BN), which represent object A and ob-
ject B in a N-dimensional feature space. The Euclidean
distance dE between these two vectors is defined by means
of the following formula [11]:

dE(VA,VB) =

√
N

∑
i=1

(ai−bi)2. (1)

The Mahalanobis distance dM between vectors VA and VB
can be derived as follows [7]:

dM(VA,VB) =
√

(VA−VB)T E−1(VA−VB), (2)

where E−1 is the covariance matrix.
The correlation coefficient may be calculated both for

the matrix and vector representations of a shape. The cor-
relation between two matrices can be derived using the for-
mula [16]:

cc =
∑
m

∑
n
(Anm− Ā)(Bnm− B̄)

√(
∑
m

∑
n
(Anm− Ā)2

)(
∑
m

∑
n
(Bnm− B̄)2

) , (3)

where:
Amn, Bmn — pixel value with coordinates (m,n), respec-
tively in image A and B,
Ā, B̄ — average value of all pixels, respectively in image
A and B.
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The C1 metric is also a similarity measure based on
shape correlation. It is obtained by means of the following
formula [12]:

c1(A,B) = 1−

H
∑

i=1

W
∑
j=1

∣∣ai j−bi j
∣∣

H
∑

i=1

W
∑
j=1

(∣∣ai j
∣∣−
∣∣bi j
∣∣)

(4)

where:
A, B — matched shape representations,
H, W — height and width of the representation.

3 Selected Shape Descriptors

3.1 Two-Dimensional Fourier Descriptor

The use of Fourier-based shape descriptors is widespread
in pattern recognition and valued for its properties, includ-
ing shape generalisation, robustness to noise, scale invari-
ance and translation invariance. The Two-Dimensional
Fourier Descriptor (2DFD) has the form of a matrix with
absolute complex values, and is derived as follows [9]:

C(k, l) =
1

HW
|

H

∑
h=1

W

∑
w=1

P(h,w) · exp(−i 2π
H (k−1)(h−1)) · . . .

. . . · exp(−i 2π
W (l−1)(w−1)) |, (5)

where:
H,W — height and width of the image in pixels,
k — sampling rate in vertical direction (k ≥ 1 and k ≤ H),
l — sampling rate in horizontal direction (l ≥ 1 and
l ≤ W ),
C(k, l) — value of the coefficient of discrete Fourier trans-
form in the coefficient matrix in k row and l column,
P(h,w) — value in the image plane with coordinates h, w.

3.2 UNL-Fourier

The UNL-Fourier (UNL-F) descriptor is composed of the
UNL (named after Universidade Nova de Lisboa) descrip-
tor and Fourier transform. The UNL utilizes a com-
plex representation of Cartesian coordinates for points and
parametric curves in discrete manner [17]:

z(t) = (x1 + t (x2− x1))+ j(y1 + t (y2− y1)) ,

t ∈ (0,1), (6)

where z1 = x1+jy1 and z2 = x2+jy2 are complex numbers.
In the next step, the centroid O is calculated [17]:

O = (Ox,Oy) =

(
1
n

n

∑
i=1

xi,
1
n

n

∑
i=1

yi

)
, (7)

and the maximal Euclidean distance between contour
points and centroid is found [17]:

M = max
i
{‖zi(t)−O‖} ∀i = 1 . . .n t ∈ (0,1) . (8)

Based on the above formulations, a discrete version of the
new coordinates is calculated as follows [17]:

U(z(t)) =
‖(x1+t(x2+x1)−Ox)+j(y1+t(y2+y1)−Oy)‖

M +

+j× arctan
(

y1+t(y2−y1)−Oy
x1+t(x2−x1)−Ox

)
.

(9)

Original pixel values are put into a square Cartesian ma-
trix based on the new coordinates. This results in an image
containing unfolded shape contour in polar coordinates,
in which rows represent distances from the centroid and
columns — the angles. As a result, the 2DFD can be ap-
plied.

3.3 Generic Fourier Descriptor

The Generic Fourier Descriptor (GFD) utilizes the trans-
formation of a region shape to the polar coordinate system.
It means that all pixel coordinates of an original image
are transformed into polar coordinates. Next, the original
pixel values are put to new coordinates on a rectangular
Cartesian image, in which the row elements correspond to
distances from the centroid and the columns to angles [13].
Again, the result is two-dimensional and the Fourier trans-
form can be applied.

3.4 Point Distance Histogram

The Point Distance Histogram (PDH) is a shape descrip-
tor that utilizes information about the shape contour. In
order to derive a PDH representation, an origin of the po-
lar transform of a contour is firstly selected, usually a cen-
troid O. Polar coordinates are stored in two vectors — Θi

for angles and Pi for radii [3]:

Θi = a tan
(

yi−Oy

xi−Ox

)
, (10)

Pi =

√
(xi−Ox)

2 +(yi−Oy)
2. (11)

In the next step, the values in Θi are converted to the near-
est integers. Then the elements in Θi and Pi are rearranged
with respect to the increasing values in Θi, and denoted as
Θ j, P j. If there are any equal elements in Θ j, then only
the element with the highest value in P j is left. Next, only
the P j vector is selected for further processing and denoted
as Pk, where k =1,2,. . .m and m ≤ 360. The elements of
Pk vector are normalized and assigned to bins in the his-
togram (ρk to lk) [3]:

lk =
{

r, if ρk = 1
brρkc , if ρk 6= 1 (12)
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where r is a previously determined number of bins. In
the next step, the values in the histogram bins are normal-
ized according to the highest one. Ultimately, the final
histogram which represents a shape is obtained and can be
written as the following function h(lk) [3]:

h(lk) =
m

∑
k=1

b(k, lk), (13)

where [3]:

b(k, lk) =
{

1, if k = lk
0, if k 6= lk

(14)

3.5 Zernike Moments

Zernike Moments (ZM) are orthogonal moments. Among
the advantages of this descriptor are rotation invariance,
robustness to noise and minor variations in shape. The
complex Zernike Moments are derived from orthogonal
Zernike polynomials, which are a set of functions orthog-
onal over the unit disk x2 + y2 < 1. The Zernike Moments
of order n and repetition m of a region shape f (x,y) can be
obtained by the following formula [13]:

Znm = n+1
π ∑

r
∑
θ

f (r cosθ ,r sinθ) ·Rnm(r) · exp( jmθ),

r ≤ 1. (15)

where Rnm(r) is the orthogonal radial polynomial [13]:

Rnm(r) =
(n−|m|)/2

∑
s=0

(−1)s · . . .

. . . · (n−s)!

s!×
(

n−2s+|m|
2

)
!
(

n−2s−|m|
2

)
!
rn−2s, (16)

where n = 0,1,2, . . .; 0≤ |m| ≤ n; n−|m| is even.

4 The Description of the Experi-
ments and Experimental Results

During the experiments, five different shape descriptors
and four matching methods were used. In each experi-
ment, one combination of a shape descriptor and matching
method was investigated. Firstly, all shapes were repre-
sented using a selected variant of the shape descriptor — a
feature vector, i.e. part of the absolute spectrum in case of
2DFD, GFD or UNL-F, various orders for ZM and various
number of histogram bins for PDH. Next, the representa-
tions of test objects were matched with the representations
of templates by calculating the similarity or dissimilarity
measure. Lastly, one most similar template was selected
for each investigated object, giving a set of templates.

At this point it is important to take a closer look at the
data and shape representations. The shapes that were used

in the experiments are depicted in Fig. 1 and consisted of
200×200 pixel size images with a white background and
black silhouettes of similar size placed in the middle. The
shapes consisted of ten shapes that were general templates
(the first row in Fig. 1) and test objects. The shape repre-
sentations varied significantly in terms of size. In case of
shape descriptors based on the Fourier transform, various
parts of the original absolute spectrum were investigated,
namely 2×2, 5×5, 10×10, 25×25 and 50×50 subparts
of the coefficient matrix. Each block was transformed into
a vector to form a final shape representation. The Zernike
Moments descriptor was calculated for orders from 1 to
20, what resulted in feature vectors having from 2 to 121
elements. The Point Distance Histogram descriptor had
seven variants that were obtained for 2, 5, 10, 25, 50, 75
and 100 histogram bins, and simultaneously produced fea-
ture vectors of size equal to the number of bins.

Figure 1: Shapes used in the experiments divided into 10
templates (first row) and 40 test objects (rest) [3].

The effectiveness of the experiment was estimated by
calculating the percentage of the templates selected in the
experiment that was consistent with the templates indi-
cated by people in the inquiries concerning the same GSA
task. In the inquiry people were asked to indicate five most
similar templates for all test objects and arrange them from
the most to the least similar one. In the paper, for an in-
dividual test object, only three out of five templates were
taken into account and are compared with one template
resulted from the experiments — here the sequence of in-
dications is not taken into account. Templates indicated by
people are provided in Fig. 2. The percentage differences
of indications between the most and the second most simi-
lar templates are various and depend on the test object. For
instance, for test object no. 14 a cross template was indi-
cated by 65% of people and the star template by 64%. In
case of test object no. 4 the difference was greater — 94%
of people indicated a triangle and 46% indicated trapeze.

The aim of the experiments was to select the combina-
tion of a shape descriptor and matching method that gave
the highest effectiveness and, additionally, in the case of
several combinations with the same percentage effective-
ness, in which the size of the shape representation would
be the smallest. The following part of this section de-
scribes the experimental results.

The first set of the experiments utilized the Two-
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Figure 2: Templates most frequently indicated by people
in the inquiries.

Dimensional Fourier Descriptor and five different absolute
spectrum subparts. The percentage effectiveness values
for each combination of a shape descriptor and matching
method are provided in Fig. 3. As can be seen in Fig. 3, the
effectiveness values vary significantly and the weakest re-
sults were achieved in case of the use of the Mahalanobis
distance. The highest effectiveness was obtained in the
case of combinations with the percentage value equal to
55%. The best result can be attributed to the 5×5 subpart
of the 2DFD and both similarity measures — correlation
coefficient and C1 metric.

In the second set of the experiments, the Generic Fourier
Descriptor was used and again five absolute spectrum sub-
parts were investigated (see Fig. 4). Compared to the pre-
vious experiment, the best result was obtained using a
dissimilarity measure — the Euclidean distance, and the
smallest feature vector — 2× 2 subpart of the absolute
spectrum. Similarly as in the previous case, the Maha-
lanobis distance provided the lowest effectiveness values.

The third set of the experiments included the application
of the UNL-Fourier descriptor and again various subparts

Figure 3: Bar chart representing the experiment results us-
ing the 2DFD.

Figure 4: Bar chart representing the experiment results us-
ing the GFD.
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of the Fourier coefficient matrix. The results are provided
in Fig. 5. Three combinations stood out — 2×2 and 5×5
subparts of the UNL-F, which were matched using Eu-
clidean distance, and 2×2 subpart of the UNL-F matched
using C1 metric. These combinations gave 62,5% twice
and 70% respectively. It is worth noting that the small-
est feature vectors were sufficient to distinguish templates
from each other and indicate the templates consistent with
human indications.

Figure 5: Bar chart representing the experiment results us-
ing the UNL-F.

The fourth set of experiments concerned the investiga-
tion of the effectiveness of Zernike Moments descriptor
and different orders of moment were used (see Fig. 6).
The results are varied — the percentage effectiveness val-
ues range from 22.5% to 60%. Suprisingly, the best results
were observed when the Mahalanobis distance was appied
as the matching method and the first-order moment was
used. In this case the feature vector had only two elements.

The last set of the experiments examined the Point Dis-
tance Histogram descriptor. A different number of his-
togram bins was utilized, what resulted in a varying num-
ber of elements in each feature vector. As can be seen in
Fig. 7, the highest effectiveness value was equal to 50%
and was obtained for the combination of the PDH descrip-
tor calculated for five histogram bins and C1 metric.

5 Conclusions

The paper covered the problem of the General Shape Anal-
ysis and investigated some solutions to it. Firstly, the idea
underlying the approach was introduced and its possible
applications, as well as several methods and algorithms
that are already in use were briefly presented. In solv-
ing the GSA problem we are establishing the degree of
similarity between test objects and general templates —
one or few templates, which are most similar to an inves-

Figure 6: Bar chart representing the experiment results us-
ing the ZM.

Figure 7: Bar chart representing the experiment results us-
ing the PDH.
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tigated object are selected and compared with benchmark
results in order to estimate the effectiveness of the exper-
iment. The main goal of the experiments presented in the
paper was to examine various combinations of shape de-
scriptors and matching methods. Five shape descriptors
were used to calculate shape representations (feature vec-
tors) of various size. The descriptors comprised the Two-
Dimensional Fourier Descriptor, Generic Fourier Descrip-
tor, UNL-Fourier, Zernike Moments and Point Distance
Histogram. The matching methods included two similar-
ity measures, namely the correlation coefficient and C1
metric, and two dissimilarity measures — the Euclidean
and Mahalanobis distances. Based on the experimental
results, the best solution for the GSA problem was se-
lected, i.e. a combination of a shape descriptor and match-
ing method, which gave the highest percentage effective-
ness. What is more, the smaller the feature vector the bet-
ter the result. On the basis of the abovementioned crite-
ria, the best solution for the GSA problem is the combi-
nation of the UNL-F descriptor, 2× 2 subpart of the ab-
solute spectrum and C1 metric. Pictorial results are pro-
vided in Fig. 8. Additionally, both the calculation of de-
scription vectors (shapes and templates together) and sim-
ilarity measures between shapes are not time-consuming.
There are slight differences between runtimes when using
various matching methods and previously calculated de-
scriptors (see Fig. 9), however they are not significant for
small-sized description vectors.

Figure 8: Results of the best experiment using UNL-
Fourier descriptor and C1 metric.

By way of conclusion, it needs to be highlighted that the
matching method has a significant impact on the final ef-
fectiveness of the experiment. Moreover, the effectiveness
values also depend on the applied version of the shape de-
scriptor. In other words, taking into consideration solely

Figure 9: A comparison of matching times for various size
of UNL-F Descriptor and matching methods.

one particular shape description algorithm, each combi-
nation of a feature vector and matching method produces
different experimental results. This in turn may indicate
that some feature vectors represent significant shape fea-
tures in a more appropriate way, enabling easy recognition
and matching of all shapes with common general charac-
teristics. However, a matching method does not change
the original efficiency of the shape description algorithm.
A high diversity in effectiveness values stems from the
fact that each matching method is based on different in-
puts, therefore it should be properly selected to fit the ac-
tual problem and the shape descriptor applied. Summariz-
ing, three factors can affect the final experimental result:
a shape description algorithm, the size of a feature vec-
tor and a method for estimating similarity between shape
representations.
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