
Real-time Cast Shadow Contours

Péter Barabás∗

Supervised by: László Szécsi†

Computer Graphics Group
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
Budapest / Hungary

Abstract

This paper presents a real-time algorithm for drawing
shadow contours in non-photorealistic rendering. We
use the straightforward idea of intersecting shadow vol-
umes with shadow receiver surfaces, proposing a practical
scheme for accelerating the process on the GPU. Real-time
operation is achieved by building a 2D bounding volume
hierarchy (BVH) that relies on implicit spatial coherence
in triangle mesh models.

Keywords: NPR, outline rendering, shadow volumes

1 Introduction

Photo-realism has been in the focus of rendering systems
for decades. Photo-realistic rendering aims at creating
images that are indistinguishable from real-world pho-
tographs, which is made possible by the precise simula-
tion of physics laws during the rendering process. How
accurately physics is applied in the rendering algorithm
determines the level of realism of the result.

Computer graphics also tries to mimic artistic expres-
sion and illustration styles [6, 16, 18]. Such methods are
usually vaguely classified as non photo-realistic render-
ing (NPR). While the fundamentals of photo-realistic ren-
dering are in optics that are well understood, NPR sys-
tems simulate artistic behavior that is not mathematically
founded and often seems to be unpredictable. Therefore,
the first step of NPR is to model the artist by establish-
ing a mathematical model describing his style, and then
solve this model with the computer. The result will be ac-
ceptable if our model is close to the not formally specified
artistic behavior. During the history of NPR, many indi-
vidual styles were addressed. Many of those styles employ
pen lines, pencil lines, or brush strokes to build an image.
These elements are often used to draw outlines.

Outline visualization is extensively used in a wide range
of applications, from CAD systems to stylized rendering.
It can clarify the shape of a complex 3D object or may

∗medve9213@gmail.com
†szecsi.laszlo@gmail.com

highlight essential features. The human visual system pro-
cesses seen images by identifying shapes separated by dis-
continuities. Outline rendering provides strong cues for
shape separation, substituting for subtle and expensively
rendered real-world cues like scattered lighting and shad-
ows, and providing a stronger visual language in stylistic
rendering. Cartoon shading, in particular, relies on edge
visualization to convey shape information, in lieu of real-
istic shading.

This paper proposes a stylized rendering method where
outlines are drawn to emphasize the contours of shadows,
and describes a GPU-based real-time implementation. The
organization of the paper is as follows. In Section 2 we
summarize the related previous work on NPR, and out-
line rendering in particular. We explain why cast shadow
contours received little attention, and evaluate the fitness
of existing methods for this purpose. Section 3 introduces
our approach. A detailed description of the final algorithm,
and the discussion of results and future work conclude the
paper.

2 Previous work

There are two well known approaches to outline rendering.
The first one works in image space with the use of color,
normal, and depth maps [15]. Edge pixels—those that lie
near discontinuities in these maps—can be found using
edge detection filters. What level of image-space discon-
tinuity warrants outline edges must be adjusted by fine-
tuning filter parameters and applying mask textures [17].
Object-space consistency of outlines during animations is
also subject to those parameters. Cast shadow contours
can easily be drawn if edges are detected on an untextured
but shadowed rendering of the scene. The main problem
with this approach is the excessive texture access band-
width and the absence of real scalability in line features.

The other approach works in world space and generates
new triangle strip geometry to visualize the outlines. In the
following, we discuss methods in this category in greater
detail.

There are two basic classes of outlines that are always
drawn in line art, both indicating some kind of perceived

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Crease (left) and silhouette (right) outlines.

discontinuity (see Figure 1). Silhouettes appear at discon-
tinuities in image space, where a continuous object sur-
face appears to end. For manifold surface models this can
happen only where the surface folds behind itself, mean-
ing that outlines are located on the border of the visible
(camera-facing) and not visible (back-facing) part of the
object surface. The other class of displayed outlines—
called creases or feature lines—indicate discontinuities in
the surface normals, and they are defined by the topology
of the mesh itself, independent of the view direction or the
camera settings. In this paper, we take some ideas from
conventional silhouette identification approaches, and dis-
cuss which are useful in finding shadow contours. Our pre-
sented results also include conventional outline rendering
in addition to the newly proposed shadow contour outlines.

In addition to the silhouettes and creases discussed
above, outline drawings may feature further lines. Sug-
gestive contours [4] and apparent ridges [10] define out-
lines based on surface curvature characteristics. While
these can provide superior visual cues, especially in ab-
sence of additional shading, they are less fit if we aim at
minimal-overhead real-time rendering [3].

Cast shadow contours are yet another class of outlines
that can appear in drawings. They have received less at-
tention in research, both for artistic and technical reasons.

On the artistic side, cast shadow contours are relatively
rarely drawn in technical or artistic images. Quite of-
ten, under natural illumination, shadows are supposed to
have soft edges, and it is undesirable to draw attention to
discontinuities in brightness due to cast shadows. When
shadows need to appear hard, they are often rendered in
solid black, making outlines not very prominent, even if
drawn. However, where shadows need to be emphasized,
especially in architectural or artistic sketches (Figure 2),
shadow outlines are often drawn. Even in paintings, some
strokes aligned on cast shadow contours are present (Fig-
ure 3).

On the technical side, cast shadow contour generation
is theoretically straightforward, and less prone to artifacts
than silhouette outlines. Eisemann et al. [5] described the
process of intersecting shadow volumes with the meshed
shadow receiver surface. It requires the identification of
the shadow caster silhouette as seen from the light source,
and projecting it onto shadow receiver surfaces. We dis-
cuss these two phases in the following subsections.

source: https://u.osu.edu/idvisualization/

source: http://tightline-sketchblog.blogspot.hu/

source: http://www.anfitrion.co/p/2682/

source: https://alison512480.wordpress.com

Figure 2: Architectural or artistic sketches with cast
shadow contours.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: The Night Café in Arles by Vincent van Gogh,
watercolor.

2.1 Shadow volume generation

Extraction of the shadow caster silhouette is a well-known
operation in shadow volume computation used for sten-
cil shadows, which can be implemented in a GPU shader
pass [2].

Figure 4: Markosian [14] (left), and Herzmann–Zorin sil-
houettes [9] (right) seen from a viewpont different from
the camera position used for silhouette extraction. Figure
taken from Benard et al. [1].

There are two basic ways to define silhouettes on trian-
gle meshes. The approach by Markosian et al. [14] oper-
ates on the discrete triangle mesh geometry itself, select-
ing those edges as silhouette edges which separate front-
facing and back-facing triangles. When rendered in solid
color, the silhouette looks smooth, but—as shown in Fig-
ure 4—it is often ragged on the object surface. In the im-
age plane, the edge loop can even turn back along the ob-
ject silhouette multiple times, which becomes apparent if
strokes are rendered semi-transparently. The definition by
Hertzmann and Zorin [9] avoids this problem, as it con-
siders the smooth surface instead of the triangulated one,
reconstructing silhouettes from the vertex normals. For a
given vertex a with normal na and vector ca to the cam-
era, we define the scalar field f (a) = na · ca, extending f
to triangle interiors by linear interpolation. Silhouettes are
taken to be the zeroset of f , yielding clean, closed poly-
lines whose segments traverse faces in the mesh (rather
than following edges, as in the Markosian method).

For stencil shadows, the Markosian-style silhouettes are
extruded, as they provide artifact-free self-shadowing, and
overly complex or back-tracking shadow volume bound-
aries do not influence the quality of the projected shadows.
However, for the purposes of cast shadow contour ren-
dering, these problems are just as relevant as for straight-
forward silhouette rendering. Therefore, Hertzmann-and-
Zorin-style silhouettes should be preferred.

When rendering silhouettes, hidden outlines should be
removed. This is expensive to solve geometrically, thus
screen-space methods are preferred. Depth testing is
quite unreliable, and ID buffers were more successfully
used [13]. For cast shadow outlines, there is no estab-
lished practice. Geometric processing of shadow volumes
would not be real-time, and adapting the ID buffer method
is also not straightforward. Thus, we propose to solve the
problem of removing cast shadow outlines due to hidden-
from-light silhouettes in screen space (in Section 3.2).

2.2 Intersection

Eisemann et al. [5] described the process of intersecting
shadow volumes with the meshed shadow receiver surface.
Their purpose for extracting cast shadow contours was to
transform 3D objects into 2D clip art. Therefore, real-time
performance was not targeted and no acceleration scheme
for the intersection was proposed.

Performing intersection in real time, however, is chal-
lenging in practice, as it is a crossbar on shadow volume
and surface mesh faces, resulting in a naive algorithm of
O(n2) time complexity. Intersection tests can be accel-
erated using spatial subdivision schemes, but in dynamic
scenes the cost of constructing those may be prohibitive.

In this paper, we show that we get a reasonably tight
bounding volume hierarchy over the shadow volume faces,
if we apply the object median subdivision scheme on the
primitive stream generated by a contour-extruding geome-
try shader, without any additional ordering or cost heuris-
tics. We compare intersection performance with that of a
proper top-down object median subdivision scheme with
object sorting to show that there is no significant perfor-
mance penalty incurred.

3 New method

Generating cast shadow contours is a simple and straight-
forward problem in theory. By using the geometry of
shadow volumes, we can easily find the intersections be-
tween shadow volume faces and shadow receiver faces.
This would mean, however, that we would need to check
every shadow volume face against every shadow receiver
face. Even a moderately complex scene would impose a
prohibitively large computation time, if we were to utilize
this naive approach.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

3.1 Intersection acceleration

We assume a perspective pinhole camera for a point light
source, or an orthographic camera for a directional light
source. Shadow caster silhouette edges—which are also
faces of the shadow volume, when extruded—appear as
2D line segments when projected on the camera’s image
plane. Our method relies on building a 2D bounding vol-
ume hierarchy (BVH) over these line segments. Travers-
ing the BVH allows us to reduce the number of shadow
volume faces we need to check for each receiver face.
The contour edges constitute the leaves of the BVH tree,
and nodes are axis-aligned bounding boxes, or AABBs—
rectangles in this 2D case—, enclosing all child leaves.
During traversal, we project each shadow receiver face to
the camera plane, and check its AABB against the cells
of the BVH recursively. If there is no intersection with a
cell, its children are not traversed, filtering out most of the
shadow volume faces that our shadow receiver face does
not intersect.

A BVH is useful if it eliminates costly intersection com-
putations. Thus, BVH cells should be as small as possible.
This is often achieved by separating primitives into two
locally coherent clusters, and repeating the process recur-
sively to obtain a hierarchy. The clustering can be done by
sorting primitives according to one (or more) of their spa-
tial position coordinates, and splitting the sorted list into
two parts. Splitting may be based on cost heuristics or
simple strategies like the spatial median (similarly sized
cells) or the object median (same number of elements in
both cells) [8, 19].

Building a BVH that is efficient, however, suffers from
the same performance problems that we aim to solve. Var-
ious methods for interactively building BVHs with GPU
support have been proposed, one of the most relevant be-
ing linear bounding volume hierarchies (LBVH) [12, 11].
However, even this method requires sorting primitives at
least once, with a severe performance impact for our ap-
plication. In this paper, we investigate the effect of relying
on the inherent spatial coherence in typical triangle mesh
models, completely forgoing the sorting step. This means
that we use the cast shadow contour’s edge primitives in
the order they are written by the GPU after the silhou-
ette detector shader. We use the object median splitting
scheme, to avoid computation of cost heurisics, and ob-
tain a balanced BVH tree, which is both easy to store and
efficient to traverse on the GPU. This allows us to create
the BVH in a bottom-up fashion, which can be solved ef-
ficiently using parallel reduction [7].

As triangle mesh geometries are typically modelled
with some inherent spatial coherence or even optimized
into triangle strips, our intuition was that even if the silhou-
ette detection and the parallel stream processing introduce
some randomness, the output contour segments would still
exhibit sufficient coherence on a local scale. This would
mean that the BVH built using this ordering is only sub-par
on a few of the highest levels, compared to one built with

proper sorting, introducing a fairly constant, but relatively
small overhead.

3.2 Hidden caster silhouette removal

Shadow caster silhouettes hidden from the light source
appear on the shadow receiver surface as shadow con-
tours that fall inside already shadowed areas. These in-
ner shadow contours need to be filtered out, otherwise
multiple objects casting overlapping shadows or concave
shadow casters would cause erroneous contours to appear
on receivers. To solve this, we utilized the information al-
ready available to us via shadow volume generation—the
stencil buffer. In the stencil buffer, each texel has a value
corresponding to the amount of shadow volumes it is con-
tained in. This means we can use that information to check
if a contour edge is inside a single shadow volume or not.
Some ambiguity would be present, as all contours are ex-
actly on the boundary of the shadow volume. In order to
avoid the flickering caused by these inaccuracies, we off-
set all contours towards the inside of the shadowed surface,
using the receiver surface normals and the shadow volume
face normals.

4 Implementation

The implementation of such an algorithm is inherently
multi-pass. The following steps provide an overview of
what an implementation entails:

• shadow volume generation,

• rendering shadow volume faces and computing axis
aligned bounding rectangles in the light source cam-
era’s screen space,

• building the bounding volume hierarchy,

• checking for shadow volume–shadow receiver inter-
sections using the bounding volume hierarchy.

Each step is implemented as a separate shader pass.
Since we want to implement the bounding volume hier-
archy builder using parallel reduction, using the GPU and
a very short compute shader is a natural choice. Normally,
only the result in the stencil buffer is used when imple-
menting shadow volume based shadows, the geometry is
thrown away. For our purposes, we need to access the
geometry of the shadow volume in later passes. For this
we use the stream output functionality of GPUs, emitting
the world positions of the vertices composing the extruded
faces of the volume.

Once we have the shadow volume faces, we feed the
contents of the stream output buffer back into the pipeline
for a pass rendered from the light source. The light source
requires its view and projection matrices to be set-up—
similar to the shadow mapping technique—since we are
rendering from the viewpoint of the light. The shader run

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

in this pass is very straightforward, we just transform the
primitives to the space of the light source, project them,
and create the AABBs we need in the next step. The end
results are streamed out as well, which gives us the actual
order of the leaves later in the bounding volume hierarchy.

4.1 Building the BVH

We set up the buffer that will contain the bounding volume
hierarchy using a representation that is similar to the array
representation of the heap data structure. This helps us to
easily calculate indexes of child nodes. The bounding vol-
ume hierarchy is created using a compute shader, which
processes each level above the leaf level. The buffer con-
taining the hierarchy is filled up from back to front, with
leaves being the elements at the end, and their parents oc-
cupying the previous elements.

The only guarantee in stream output primitive order is
that subsequent draw calls will take up subsequent regions
in the stream output buffer. Since the primitive order de-
fines the spatial coherence of the bounding volume hi-
erarchy, we will need to measure performance against a
bounding volume hierarchy constructed with proper sort-
ing.

4.2 Tree traversal and edge generation

The final pass is where we find the actual shadow con-
tours. A geometry shader runs on the shadow receiv-
ing meshes. As visible cast shadow outlines appear on
faces that appear as front faces as seen both from the cam-
era and from the light source, back faces in either aspect
are culled. Then, we generate the light-screen-space axis
aligned bounding rectangle of the primitive, and traverse
the bounding volume hierarchy while checking against the
axis aligned bounding rectangles of its nodes. For each tra-
versed leaf we precisely calculate if there actually is any
intersection with the primitive. If there is, we have to de-
termine whether the contour is completely inside the prim-
itive, or just partially, and calculate the actual intersection
points accordingly.

Traversing a tree-like data structure is usually achieved
by recursion, which is forbidden in shader code. There-
fore, we implemented recursion using a small local stack.
At each intersected node of the tree we push one child
node on our self-managed stack and evaluate the other.
After a traversal branch terminates because of a non-
overlapping AABB or because of reaching a leaf, we pop
a node from the top of the stack. Traversal is complete
when no nodes remain on the stack. We also skip faces
with normals facing away from our light source to elimi-
nate intersections on sides opposite from the light, and to
save performance.

There is a practical limitation with regards to using the
geometry shader. The buffer we output vertices into is
limited in size, so depending on the amount of data we
want to stream out—position, in our case—we can only

output a limited number of vertices. With a single po-
sition tuple of four floats, we can currently output 256
vertices, which means 128 contour edges for each trian-
gle. This limitation could require us to increase poly-
gon count on shadow receiving geometry to prevent the
GPU from discarding contour edges. To lower the im-
pact of this limitation, we quantize the positions and dis-
card contour segments which have no length after quan-
tization. We achieve this by defining a grid in 3D world
space with a small enough resolution to be unnoticeable—
usually around 1/10 of the contour stroke width—and then
each contour segment point is snapped onto the nearest
grid point. If the length of the contour segment is zero
after quantization, we do not render it.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

F
ra

m
er

at
e

#shadow contour segments

Sorted
Unsorted

Figure 5: Overall performance of shadow outline render-
ing with our GPU bottom-up bounding volume hierarchy
construction without sorting, and with the CPU top-down
solution with sorting, on an NVidia 970 GTX and an i7
3770K. The shadow receiver had 2182 faces.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

T
im

e(
m

s)

#shadow contour segments

Sorted
Unsorted

Figure 6: Tree traversal times for trees constructed with
our GPU bottom-up approach without sorting, and with
the CPU top-down solution with sorting. Surprisingly, the
unsorted tree often outperformed the sorted one.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

5 Evaluation of unsorted bounding
volume hierarchy performance

For the purpose of comparison, we needed to implement a
bounding volume hierarchy building algorithm that does
not exploit pre-existing locality, but sorts the silhouette
segments before subdividing them. Numerous such algo-
rithms exist, with different schemes used for partitioning
objects (Sulaiman [19] offers an overview). These may
have significant differences in performance. We opted for
a simple one that is close to our method in that it builds
a balanced tree, and does not use expensive cost estimates
to improve partitioning: the object median method. This
is a top-down method, sorting the objects according to a
coordinate axis, and splitting them so that the two parti-
tions have the same number of elements. We implemented
this method on the CPU. There is little doubt that compar-
ison with a more sophisticated bounding volume hierar-
chy construction scheme (e.g. with surface area heuristics)
could provide better traversal statistics—at least in theory.
In practice, traversing unbalanced trees would require a
larger local stack and a less direct tree representation, both
of which would impact GPU performance, which is why
we focused on the most practical object median method.

We measured our bottom-up GPU implementation
against the top-down CPU algorithm. Not surprisingly, the
overall frame rate was much more favorable with the GPU
algorithm, especially as the face count of the shadow vol-
ume increased (Figure 5). This is easy to explain, as CPU
sorting made the application CPU-limited, and bounding
volume hierarchy construction stalled the rendering pro-
cess. This could be somewhat mitigated by parallel sort-
ing on the GPU—making the solution much more complex
and difficult to implement—but tree construction times
will always remain relatively high.

Figure 7: Eagle shadow caster test scene with cast shadow
contours on double ellipsoid receiver.

More interestingly, we measured the tree traversal times
for the two methods. Test scenes are shown in Fig-
ures 7, 8, 9, 10, 11. Table 1 shows scene characteristics and

Figure 8: Deer shadow caster test scene with cast shadow
contours on double ellipsoid receiver.

Figure 9: Eagle and giraffe shadow casters test scene with
cast shadow contours on double ellipsoid receiver.

times for tree traversal with the sorted and unsorted trees.
We expected the sorted tree to perform better, but of course
not so much as to validate construction overhead. Surpris-
ingly, we found that more often than not the unsorted tree
performed even better than the sorted one. Thus, we con-
clude that not sorting the objects is perfectly sound in this
application.

6 Conclusion

We have shown that during shadow contour rendering, it
is unnecessary to include an expensive sorting step, when
building an acceleration hierarchy over the contour edges.
We have presented an algorithm for rendering cast shadow
contours exploiting this fact. Comparison with the ob-
ject median split scheme using sorting revealed that traver-
sal times remain similar, while tree construction times are
much lower, allowing for real-time operation for scenes of
about thirty thousand triangles.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 10: Candle shadow casters test scene with cast
shadow contours on deck chair.

Table 1: Tree traversal times (in ms) for the test scenes.
Shadow caster polygon counts and the number of shadow
contour edges are given for every scene.

Test scene polys lines sorted unsorted
Eagle 21328 707 18.66 19.13
Deer 28434 797 30.25 25.23
G&E 25930 954 55.23 50.69
Candles 21594 512 28.3 19.24
Heart 20468 293 5.11 6.93

7 Future work

Stylization of the shadow contour strokes should be im-
proved to mimic actual artistic work.

Cast shadow outlines should integrate smoothly with
other kinds of strokes in artistic rendering, offering a spe-
cial tool for emphasizing shadows. Therefore, we need to
integrate our method with NPR techniques other than out-
line rendering. Filling the shadows with hatching is the
most obvious task. In architectural rendering, research-
ing ways to render outlined shadows with precise hatching
strokes may be interesting.

We could further compare the performance of the un-
sorted bounding volume hierarchy against more sophis-
ticated methods, like the linear bounding volume hierar-
chy [12, 11]. This could provide some additional insight
into the locality requirements characteristics. However, if
not sorting works adequately, it is hard to envision a sce-
nario where devoting resources to build a better bounding
volume hierarchy could pay off—at least in a dynamic en-
vironment where shadow contours change in every frame.

8 Acknowledgements

This work has been supported by OTKA PD-104710.

References

[1] Pierre Bénard, Aaron Hertzmann, and Michael Kass.
Computing smooth surface contours with accurate
topology. ACM Transactions on Graphics (TOG),
33(2):19, 2014.

[2] Stefan Brabec and Hans-Peter Seidel. Shadow vol-
umes on programmable graphics hardware. In Com-
puter Graphics Forum, volume 22, pages 433–440.
Wiley Online Library, 2003.

[3] D. DeCarlo, A. Finkelstein, and S. Rusinkiewicz. In-
teractive rendering of suggestive contours with tem-
poral coherence. In Proceedings of the 3rd Interna-
tional Symposium on Non-photorealistic Animation
and Rendering, pages 15–145. ACM, 2004.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and
A. Santella. Suggestive contours for conveying
shape. In ACM Transactions on Graphics (TOG),
volume 22, pages 848–855. ACM, 2003.

[5] Elmar Eisemann, Holger Winnemöller, John C Hart,
and David Salesin. Stylized vector art from 3d mod-
els with region support. In Computer Graphics Fo-
rum, volume 27, pages 1199–1207. Wiley Online Li-
brary, 2008.

[6] Paul Haeberli. Paint by numbers: Abstract im-
age representations. In ACM SIGGRAPH Computer
Graphics, volume 24, pages 207–214. ACM, 1990.

[7] Mark Harris et al. Optimizing parallel reduction in
CUDA. NVIDIA Developer Technology, 2(4), 2007.

[8] Vlastimil Havran. Heuristic ray shooting algorithms.
PhD thesis, Citeseer, 2000.

[9] A. Hertzmann and D. Zorin. Illustrating smooth
surfaces. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques, pages 517–526. ACM Press/Addison-Wesley
Publishing Co., 2000.

[10] T. Judd, F. Durand, and E. Adelson. Apparent ridges
for line drawing. In ACM Transactions on Graphics
(TOG), volume 26, pages 19–19. ACM, 2007.

[11] Tero Karras. Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. In Proceedings
of the Fourth ACM SIGGRAPH/Eurographics con-
ference on High-Performance Graphics, pages 33–
37. Eurographics Association, 2012.

[12] Christian Lauterbach, Michael Garland, Shubhabrata
Sengupta, David Luebke, and Dinesh Manocha. Fast
bvh construction on gpus. In Computer Graphics Fo-
rum, volume 28, pages 375–384. Wiley Online Li-
brary, 2009.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

[13] L. Markosian and J.F. Adviser-Hughes. Art-based
modeling and rendering. Brown University, 2000.

[14] L. Markosian, M.A. Kowalski, D. Goldstein, S.J.
Trychin, J.F. Hughes, and L.D. Bourdev. Real-
time nonphotorealistic rendering. In Proceedings
of the 24th annual conference on Computer graph-
ics and interactive techniques, pages 415–420. ACM
Press/Addison-Wesley Publishing Co., 1997.

[15] M. Nienhaus and J. Doellner. Edge-enhancement—
an algorithm for real-time non-photorealistic render-
ing. Journal of WSCG, 11(2), 2003.

[16] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. In Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 581–581.
ACM, 2001.

[17] J. Shin. A stylised cartoon renderer for toon shading
of 3d character models. Master’s thesis, University
of Canterbury, UK, 2006.

[18] Thomas Strothotte and Stefan Schlechtweg. Non-
photorealistic computer graphics: modeling, render-
ing, and animation. Elsevier, 2002.

[19] Hamzah Asyrani Sulaiman. Bounding Volume Hier-
archies for Collision Detection. INTECH, 2012.

Figure 11: Heart shadow caster test scene with cast
shadow contours on three bowling pin receivers.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

