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Abstract

In the recent years, Light Detection and Ranging (LiDAR)
technology has become one of the prime technologies for
spatial data acquisition. By rapid and accurate capturing
of high-resolution 3D point-clouds, LiDAR has moved the
focus of further research in Earth Observations towards
data processing. In this paper, we proposes a new ap-
proach for classification of built-up areas from LiDAR
data. The methodology is based on a special class of mor-
phological filters that rely on so-called second-generation
connectivity. We first provide theoretical background on
connected operators and explain how they can be applied
for LiDAR data processing. Finally, we validate the pro-
posed approach on several testcases.

Keywords: LiDAR, mathematical morphology, second-
generation connectivity, object recognition, algorithms

1 Introduction

Light Detection and Ranging (LiDAR) technology has be-
come one of the prime technologies for acquiring high-
resolution spatial data. By rapidly capturing accurate 3D
point-clouds of the Earth’s surface, it allows for monitor-
ing structures and processes with great precision over vast
geographic areas. Over the past decade, a lot of research
has been directed towards object recognition in LiDAR
data and efficient methods for extracting ground [9, 10],
buildings [8, 13, 20], vegetation [5], and even single tree-
crowns [4, 11] have already been developed. The focus of
further research is now shifting towards situation assess-
ment, where recognized objects are taken into account in
order to establish a wider sense of the current situation. A
particularly important example of situation assessment is
a classification of built-up areas, as it is critical for many
studies of impacts that human developments have on the
natural process [7].

In this paper, a new method for the classification of
built-up areas is presented. In contrast to the related
work, the proposed method has a different approach by ex-
ploiting the height information present within the LiDAR

∗robi.cvirn@um.si
†domen.mongus@um.si

data. This is achieved by connected operators from the
framework of mathematical morphology that are based on
second-generation connectivity.

The related work is described in Section 2. The rele-
vant theoretical background is given in Section 3. Section
4 describes the data structuring needed in order to apply
connected operators for LiDAR data processing together
with the proposed method. The results are discussed in
Section 5. Section 6 concludes the paper.

2 Related work

The classification of built-up areas has up to now been
mostly achieved based on human intuition by consider-
ing the actual size of the area (and its population) in ad-
dition to the the services that a given area offers (e.g. by
the presence of education and medical institutions, train
stops, or sports buildings) [1]. Nevertheless, several ap-
proaches have already been developed that rely on satellite
images for delivering quantitative measurement of built-
up areas for their classification. Pesaresi et. al [17] pro-
posed a method for calculating built-up presence index
from panchromatic satellite images. Tomowski et. al [25]
developed a settlement area detection based on panchro-
matic and multispectral data, while Najab et. al [12] in-
troduced a classification of settlements based on holistic
feature extraction technique using high resolution satellite
images. Van den Bergh [26] proposed a method for clas-
sification of settlements based in their illumination geom-
etry in QuickBird images.

3 Theoretical background

This section describes theoretical basics of connected op-
erators within the context of mathematical morphology.
Let a universal nonempty set E ⊆ Rd (i.e. a definition do-
main), define a d-dimensional dataset (e.g. a binary 2D
image, 3D voxel space, or any higher dimensional discrete
set) is defined by the means of nonempty set S⊆ E, where
si ∈ S is a d-dimensional point. A power-set (i.e. a set of
all subsets of set S) is denoted as P (S), while the connec-
tivity between the elements of S is given by the means of
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connectivity class C ⊆ P (S) [15, 22, 23, 24]. For this pur-
pose, C has to satisfy the following two conditions[16]:

• /0 ∈ C and ∀ si ∈ S,s ∈ C and

• ∀ {Ci} ⊆ C ,
⋂

i Ci 6= /0⇒
⋃

i Ci ∈ C .

In simple terms, this means that an empty set, any given
singleton, and any set of subsets Ci ⊆ S with non-empty
intersection is connected. Given si ∈ S, the corresponding
connected component of a set S can be extracted by the
connectivity opening Γ. Its formal definition is given as
[16]:

Γsi(S) =
⋃

j

{C j ∈ C | si ∈C j and C j ⊆ S}. (1)

In order to simplify the notation, we refer to the connected
component addressed by a point si as Ci = Γsi(S).

3.1 Connected operators

Connected operators within the framework of mathemati-
cal morphology are edge preserving operators that act di-
rectly on connected components [21]. Attribute filters are
well-known examples of connected operators. They allow
for filtering connected components according to their at-
tributes. Let attribute function of a connected component
Λ (e.g. its area, perimeter or width) and the correspond-
ing attribute threshold λ , a binary attribute opening of an
arbitrary set S is given as [14]:

Γ(Λ,λ )(S) =
⋃

si∈S

{Γ(Λ,λ )(Γsi(S))}, (2)

where attribute opening Γ(Λ,λ )(S) removes those con-
nected components of S that do not satisfy a given attribute
criteria Λ(Ci)≥ λ (i.e. Γ(Λ,λ )(S) = {Ci | Λ(Ci)}).

3.2 Second-generation connectivity

Each connectivity class C can be evolved to its child class
with curtailed or augmented members. This concept is
known as second-generation connectivity and it allows for
manipulation over the connected components that can not
be achieved by regular connected operators. Two types of
second-generation connectivity exist, namely contraction-
based connectivity that allows for braking the connected
components and clustering-based connectivity that allows
for merging them [3]. Due to the specifics of the proposed
method, (see Section 4), only the latter is considered in
this paper.

A cluster can be described as a set of connected com-
ponents for which the mutual distances between them are
smaller than a certain distance criteria. In order to achieve
clustering, a clustering operator ψ needs to be applied that
complies to the following restrictions [19, 23, 3]:

• ψ needs to be extensive and increasing,

• the resulting connectivity class has to be reduced or
equal to the input connectivity class ψ(C )⊆ C , and

• for all subsets of a set {Si} ∈ P (S) it is required that
∀i, ψ(Si) ∈ C , and

⋂
i Si 6= /0⇒ ψ(

⋃
Si) ∈ C .

Let ψ be a clustering operator on P (S) and C a connec-
tivity class in P (S), a clustering-based connectivity class
C ψ ⊇ C within the definition domain E can than be de-
fined as:

C ψ = {S ∈ P (E) | ψ(S) ∈ C }. (3)

By only redefining the elementary connectivity opening,
this allows for applying second-generation connectivity
together with any of the connected operators without
changing their original definitions. A second-generation
connectivity opening Γ

ψ

(Λ,λ )
(S), defined in regards to an

arbitrary attribute function Λ with attribute threshold λ is
given as [15]:

Γ
ψ

(Λ,λ )
(S) = Γ(Λ,λ )(ψ(S)) ∩S. (4)

Finally, the results of the second-generation connectivity
opening Γ

ψ

(Λ,λ )
(S) applied on a binary image S are shown

in Fig. 1.

Figure 1: Second generation attribute opening, where (a)
the original image S is (b) extended by a clustering opera-
tor ψ(S) and (c) attribute opening is applied Γ(Λ,λ )(ψ(S))
in order to obtain (d) the resulting set Γ

ψ

(Λ,λ )
(S).

4 Implementation of connected op-
erators on LiDAR data

We denote an input LiDAR point-cloud as P = {Pi} where
pi is an individual LiDAR point. Each pi is associated with
a coordinate triple, given as x(pi), y(pi), and z(pi). Note
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that connected operators, as described in previous section,
can not be directly applied on P, due to the lack of its
topological structure. In order to overcome this issue, we
construct a grid G ⊂ R2 of resolution r (usually r = 0.5m
is sufficient) and the extent that is equal to the bounding-
box of P. A grid-cell is denoted as gi ∈ G, while a set
of LiDAR points that are closer to a given gi than to any
other g j ∈ G are denoted as Pgi ⊆ P. In continuation, we
demonstrate the efficiency of the proposed formulation for
the classification of built-up areas.

4.1 Classification of built-up areas

The main objective of this method is to classify the built-
up areas according to their sizes and heights of the con-
tained buildings. The method uses preprocessed LiDAR
data, where points belonging to buildings are already
classified. In our case, were detected by extracting lin-
early distributed points using Locally Fitted Surfaces and
measuring their geometric properties based on differential
morphological profiles[8]. We can thus define a function
class : P→ [building,not building] that returns a classi-
fication of a LiDAR point. A set of building grid-cells
S ⊆ G is formally defined by Eq. 5, while its meaning is
graphically explained in Fig. 2.

S = {gi ∈ G | ∃ p j ∈ Pgi and class(p j) = building}. (5)

Figure 2: The definition of S ⊆ G, according to the
buildings (colored red) contained within the input LiDAR
dataset.

Each connected component represents a building and
is a set of a 8-connected cells (i.e. Ci ⊂ S). In the next
step, we apply a clustering-based second-generation con-
nectivity on the set of connected components contained
in S. Since spatial distance between buildings within the
built-up areas may vary, spatially-variant clustering oper-
ator is an optimal choice [2]. As shown by the results (see

Section 5), sufficient accuracy is achieved by using a mor-
phological dilation with the size of the structuring element
that is directly proportional to the heights of the build-
ings contained within the corresponding connected com-
ponents Ci ∈ S. Let h : G→ R, be a height function, de-
fined at a given gi ∈ G as:

h(gi) =
∨

g j∈Ci

{h(pl) | pl ∈ Pg j}, (6)

where
∨

denotes supremum (i.e. maximum). In addition,
when Pgi = /0, h = 0. A clustering operator in a form of
morphological dilation with variable window size is then
denoted as δ tSh, where tS is a user defined parameter that
defines the linear relationship between the heights of the
buildings and the corresponding size of the structuring el-
ement. The results of δ tSh(S) are shown in Fig. 3.

Figure 3: The spatially-variable dilation δ tSh, applied on
(a and b) two connected components of different heights
(i.e. 13m and 6m, respectively) and (c and d) the obtained
results.

According to Eq. 4, second-generation connectivity
opening that removes those connected components Ci with

areas A(Ci) < a can now be given as Γδ tSh

(Λ,λ ). According
to the literature, built-up areas may be divided into ham-
lets, villages, towns and cities [1]. In order to identify the
correct type, we apply a series of second-generation con-
nectivity openings at an increasing scale and observe those
connected components (i.e. buildings) removed at each of
the scales. This concepts is also known as differential at-
tribute profiles [14]. Let a1 = 50000m2, a2 = 1000000m2,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



and a3 = 5000000m2 be a set of user defined area thresh-
olds that correspond to the areas of particular built-up
types (note that this particular values were intuitively de-
fined, as there is no actual standard definition of the terms
[1]). We may define a set of buildings belonging to each
of them by the following rules:

• Hamlets SH = S \ Γδ tSh

(A,a1)
(S)

• Villages SV = Γδ tSh

(A,a1)
(S) \ Γδ tSh

(A,a2)
(S)

• Towns ST = Γδ tSh

(A,a2)
(S) \ Γδ tSh

(A,a3)
(S), and

• Cities SC = Γδ tSh

(A,a3)
(S).

The obtained results are shown in Fig. 4.

Figure 4: Differential attribute profiles on second-
generation connectivity opening, where (a) the original
S is divided into (b) hamlets SH , (c) villages SV , and (d)
towns ST .

5 Results

The proposed method for classification of built-up areas
was tested on four different LiDAR datasets. Each of them
contained different types of built-up areas as well as dif-
ferent terrain configurations and was acquired at different
data densities. Details about particular test set are given in
Table 1.

5.1 Validation procedure

To verify the quality of classification, the obtained results
were compared with ground truth data. For this purpose,
land cadastral data was rasterized and its actuality was
checked by a domain expert. In this way, we were able

Table 1: Test datasets with description.
Dataset
name Description Terrain

type
Data density
[points per m2]

RA
Rural area
with hamlets
and villages

hilly 7.3

TS
Town and
nearby small
settlements

valley 8.7

CS City and its
suburb flat 12.6

CC Strict city center flat 5.5

to perform a grid-cell to grid-cell comparison, where true
positives (T P), false positives (FP), true negatives (T N),
and false negatives (FN) were measured for each of the
classes. Accordingly, the following measurements of qual-
ity were used for validation [18, 6]:

• Completeness, describing the rate of correctly recog-
nized classes, is defined as:

comp =
T P

T P+FN
, (7)

• Correctness, describing the rate of correct detection,
is defined as:

corr =
T P

T P+FP
, and (8)

• F1-score that is harmonic mean of completeness and
correctness is given by:

F1 = 2∗ comp · corr
comp+ corr

. (9)

5.2 Sensitivity analysis

As explained in Section 4, the proposed method uses one
input parameter tS that defines the linear relation between
the heights of the buildings and the size of the structuring
element in spatially-variant dilation. In order to provide
its optimal definition, we were progressively increasing
the value of tS, while measuring the success rate of the
method. The obtained results are shown in Table 2.

Table 2: Sensitivity analysis of the method in regards to
the parameter tS, presented by F1-score.

Dataset tS

0.5 1.0 1.5 2.0 3.0
RA 50.5 86.3 96.7 35.9 36.3
TS 10.9 18.8 91.4 96.1 94.5
CS 17.7 33.7 43.4 93.2 54.9
CC 73.4 91.2 94.3 94.2 95.2
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As shown by Table 2, the proposed method is sensitive
to the value of tS due to significantly different spacing of
buildings within the different types of built-up areas. This
indicates that, by defining the size of the clustering opera-
tor according to the correspondent height of the building,
the issue can only be mitigated but it cannot be solved.
Still, the proposed method managed to achieve accuracy
of over 93% in all of the cases.

5.3 Validation

A closer look at Table 2 reveals that low tS values are
more appropriate for classifying datasets containing rural
or suburb areas, while large tS values are more suitable for
classifying datasets containing city areas. The main rea-
son for this is that hamlets do not require any clustering
in order to be successfully recognized, while high build-
ings in city areas are often widely spaced with green areas
or parking lots between them. A more detailed analysis
of the method’s quality and accuracy was therefore per-
formed using optimal definition of tS for each particular
test dataset. The obtained results are shown in Table 3 and
Fig. 5.

Figure 5: Examples of classified datasets containing (a) a
city (colored brown), nearby village (colored green), and
hamlets (colored red) and (b) a town (colored purple) with
several nearby hamlets.

As shown by Table 3, the proposed method achieves
average F1-score of over 87% per all classes, with av-
erage completeness as well as correctness close to 90%.

However, large deviations in the results can be noticed
when considering hamlets or villages. The main reason for
this is that these are relatively small types of settlements,
where error in the classification of a single building sig-
nificantly affects the overall accuracy. Nevertheless, most
of the inaccuracies are caused by two characteristic errors.
Namely, isolated low buildings within towns (see an ex-
ample in Fig. 6) and groups of hamlets containing relative
tall buildings that become clustered and recognized as a
town or a village (see example in Fig. 7). Still as shown
in Table 4, the classification of the built-up areas is signif-
icantly more efficient than the traditional approach, where
building heights are not considered in a clustering crite-
rion. In latter case, the used clustering criterion was based
on the area attribute of the regions, while the same tuning
procedure as described in Section 5.2 was used. Although
the proposed approach achieves higher accuracy, the com-
pared method can also be applied on other types of data,
where object heights are not explicitly known (e.g. satel-
lite images [17, 12] or digital orthophoto [26]).

Figure 6: Missclassified low buildings (colored red) within
a town (colored purple).

Figure 7: Missclassified hamlets, clustered into a village
due to the contained high buildings.

6 Conclusions

This paper proposes a new method for the classification
of built-up areas in LiDAR data. The method is based on
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Table 3: Validation results of built-up area classification.

Dataset tS Metric
Built-up area types

SH SV ST SC

RA 1.5
comp 100 96.1 not contained not contained
corr 82.5 100 not contained not contained
F1 90.4 98.0 not contained not contained

TS 2.0
comp 64.5 97.9 100 not contained
corr 95.2 88.7 95.0 not contained
F1 76.9 93.1 97.5 not contained

CS 2.0
comp 96.5 77.8 not contained 98.9
corr 86.2 87.5 not contained 100
F1 91.1 82.4 not contained 99.4

CC 3.0
comp not contained 100 not contained 96.9
corr not contained 0 not contained 100
F1 not contained 0 not contained 98.4

Average -
comp 87.0 93.0 100 97,9
corr 88.0 69.1 95.0 100
F1 86.1 68.4 97.5 98,9

Table 4: Analysis of the method with clustering criterion
based on the area attribute of the regions, presented by F1-
score.

Dataset tS

0.01 0.03 0.05 0.10 1.00
RA 26.9 78.8 93.4 32.5 0.0
TS 17.7 86.9 76.6 58.9 0.0
CS 11.0 93.0 92.4 91.8 85.6
CC 87.8 91.6 93.0 94.1 92.0

mathematical morphology, where connected operators of
second-generation are used for clustering buildings into
groups of built-up areas. As the method uses only one
user defined parameter, its performance can simply be op-
timized, although the method is relatively sensitive to it.
Nevertheless, with the average F1-score of 93%, the pro-
posed method proved to be accurate.
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