
Procedural Generation using Grammar based Modelling and
Genetic Algorithms

Karl Haubenwallner∗

Supervised by: Markus Steinberger†

Institute of Computer Graphics
Graz University of Technology / Austria

Procedural modeling with shape grammars is a powerful
tool to create complex 3D models, but the results are often
difficult to control. In this paper we investigate the use of
Genetic Algorithms as an optimization algorithm to find
a suitable solution for a given target shape. We present a
genome representation, a crossover-operator and mutation
operators for shape grammars. Furthermore, we demon-
strate the feasibility of this approach, using a grammar for
spaceships and a volumetric evaluation method, and eval-
uate the parameters for the genetic algorithm.

Keywords: Procedural Generation, Genetic Algorithms,
Shape Grammar, Computer Graphics

1 Introduction

The last years have seen an increasing use of vast open
worlds in games such as The Elder Scrolls series, the
Fallout series and Grand Theft Auto, among others.
Such worlds can increase the immersion during game-
play immensely, but creating such large worlds is a time-
consuming and mostly tedious task for artists.

Procedural generation and shape grammars offer the
possibility to create arbitrarily large and complex worlds
and models algorithmically from a small set of rules, thus
allowing artists and designers to focus on the narrative
and compelling aspect of those worlds. Unfortunately
shape grammars are notoriously difficult to control, and
small changes in the rules can produce huge differences in
the outcome, which only changes the task of creating the
world to the equally time-consuming task of finding the
right rules and parameters.

Recently there has been some progress in using various
methods from machine learning to control the result of
procedural generation, where an algorithm takes a shape
grammar and a high-level specification, e.g. a sketch or
volumetric shapes, as input and generates a derivation tree
for the grammar to produce a model that best matches the
specification.

While existing work mostly uses Markov Chain Monte
Carlo (MCMC) methods and variations thereof, we

∗karl.haubenwallner@student.tugraz.at
†markus.steinberger@mpi-inf.mpg.de

present an alternative method using Genetic Algorithms
(GA), which have the advantage of creating many equally
viable solutions, and therefore providing access to a cre-
ative solution process.

1.1 Shape Grammars

One possible approach when creating 3D models is to start
with a basic shape (e.g. a cube) and deform and modify it
until it resembles the desired model. This is done by ap-
plying various operations to the basic shape like transla-
tion and rotation or more involved ones like extrusion or
splitting, which results in a complex model that bears only
a slight resemblance to the initial shape.

Shape grammars try to codify this approach by defin-
ing an initial state (called axiom), assigning symbols to the
shapes and defining production rules, which declare how
to generate symbols and how apply the different opera-
tions. This allows them to define a complex model with
an initial axiom and a sequence of production rules only.
By passing the axiom and the rules to a production system,
which applies the operations defined in the rules, an actual
model is generated. Since the operations can create new
shapes, and the resulting model depends on the sequence
of operations applied to certain shapes, the sequence is
usually stored as a tree structure, called a derivation tree.

1.2 Genetic Algorithms

Genetic Algorithms, a subset of Evolutionary Algorithms
(EA), are iterative optimization algorithms with the ability
to generate many different, equally viable solutions for any
given problem, and therefore provide access to a creative
solution process.

The method is inspired by evolution and natural selec-
tion, where traits and characteristics of individuals of a
species are encoded as genes and chromosomes, and in-
dividuals with successful traits get more chances to pass
on their genes to future generations, while less successful
traits tend to disappear, thus leading to a better adapted
population.

GAs follow this process by introducing a genome rep-
resentation, which is a indirect encoding of the problem
space. These genes, traditionally symbols of a bit-string,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

are then assembled into a chromosome, which form an in-
dividual that represents one possible solution for a given
problem. They then go on to create a random set of indi-
viduals, which form the initial population, and explore the
problem space by evaluating the individuals and assigning
each a fitness value, and by selecting the fittest individuals
and combining them to form a new generation of possible
solutions, which in turn serve as the parents for the next
generation.

2 Related work

Shape Grammars Shape grammars were first intro-
duced by Stiny [20], and Lindenmayer [7] used them to
create plant models using algorithms. They were ex-
panded with various operators by Stiny [21] and Wonka
et. al. [23] among others. Muller et al. [9] introduced
the shape grammar CGA Shape to generate architectural
models on a large scale by iterative refining shapes from
a basic vocabulary, and Schwarz et al [15] expanded CGA
Shape with CGA++ by introducing boolean operators, and
simultaneous operations on groups of shapes.

Procedural modeling There have been several works
with procedural modeling using shape grammars, such as
generating road networks [12], or generating and render-
ing architecture and cities on the GPU [6, 19], and sev-
eral works using inverse procedural modeling, such as
recreating trees with biological models [18], or creating
derivation trees for shape grammars using MCMC meth-
ods [14, 22], or using constraint systems [8].

Genetic Algorithms and evolutionary computing GAs
were introduced by Holland in [5], and in turn have been
adapted to a wide range of problems, several of which
make use of the inherent creativity, such as creating and
evolving simulated lifeforms (Sims, [16]), or designing
radar antennas (DeJong et. al. [3]). There have also been
some applications using GAs to evolve shape grammars in
2D (O’Neill et. al. [11]), or improve the structure of power
pylons (Byrne et. al. [2]).

3 Approach

In this paper we use GAs as a method to stochastically
explore all possible derivation trees for a given grammar
and select those that best fit a given criteria.

The GA requires only minimal explicit knowledge
about the rules of the grammar and can optimize towards
any criteria that can be used to rank the derivation trees,
and can provide many different viable solutions.

To illustrate our approach we focus on a grammar
that creates spaceship models by accumulating geometric
shapes, and use the volume of a target model as an opti-
mization criteria. To ensure the volume of the target model

is possible to reach, we generate it using the same pro-
duction system and a fixed derivation tree, but any target
volume could be used.

3.1 Genetic Algorithm

Key points for the functionality of GAs are the distinc-
tion between genome encoding (genotype) and the expres-
sion of the genomes in the problem space (phenotype),
and genetic operators. Operators modify the chromosomes
of individuals without necessarily having any information
about how the modifications affect the solutions. This dis-
tinction allows the GA to operate on a variety of problems,
but requires the definition of genome representation and
genetic operators for each specific problem. In this chap-
ter we specify the genome representation and the genetic
operators, and give details about the implementation of the
GA.

3.1.1 Genome Representation

The genome representation should encode complex oper-
ations in the problem space in a way that allows the GA to
identify and combine building blocks for good solutions,
while being as simple as possible, to keep the chromo-
somes manageable. At the same time, since the fitness
evaluation of a given individual usually requires a transla-
tion of the genes into their expression, they should also be
easy to decode.

For shape grammars, the traditional approach of using
bit-strings of fixed size is somewhat limited, but the struc-
ture of the derivation tree facilitates these features, so we
use it as our genome representation. This representation is
similar to the ones used by [10, 16, 22], where a tree struc-
ture is encoded within a chromosome in various ways.

In our representation a single gene consists of a produc-
tion symbol and it’s parameters, and a reference to the par-
ent gene within the tree structure. A vector of genes form a
chromosome, which can be expressed as a derivation tree
and used by a production system to generate a model.

This structure also allows for a variable length of the
chromosomes and easy insertion of new genes into the
chromosome without changing the already existing en-
tries.

To allow the operators to keep the generated or modi-
fied chromosomes within the confines of a valid derivation
tree, each possible type of gene is defined by a symbol
descriptor (Fig. 1), which contains the possible child sym-
bols, how likely they are to be generated during mutation
and a description of the parameters. The information in
these descriptors is inferred from the rules for the given
grammar.

3.1.2 Crossover Operator

The crossover operator produces a viable pair of children
given a pair of parents. The simplest form is the single-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Structure of the symbol descriptor.

point-crossover, which selects a random crossover point
in both parent-chromosomes and creates the offspring by
swapping the genes after the crossover points. The number
of possible different children given the same set of parents
is limited by the number of valid crossover points.

Our operator uses a variation of the single-point-
crossover operator, adapted to tree structures. It selects a
random gene connection from the first parent, and chooses
another random connection from all compatible connec-
tions in the second parent, and exchanges the genes at
these connections. This operation is outlined in Fig. 2,
and presented in more detail at Algorithm 1.

3.1.3 Mutation Operator

Mutation allows the GA to explore the problem space out-
side the already existing population by introducing ran-
dom changes in ways that are very unlikely to occur by
using crossover operators alone. Our operator uses the fol-
lowing changes that arise intuitively from the tree structure
of the chromosomes:
• Grow: Adds a suitable gene as child of a random

gene and initializes the parameters. This doesn’t re-
place already existing genes.
• Cut: Removes a random gene and all child-genes.
• Permutate: Change the parameter values of a ran-

dom gene.
When the operator is applied, one of these changes is cho-
sen at random.

3.1.4 Selection Methods

The selection method is one of the central parts of GAs, as
it allows the algorithm to select good parents for the new
generation, while at the same time denying bad solutions
the chance to reproduce. This is usually done by selecting
the individuals according to their fitness values, with some
margin for error.

With a purely deterministic selection method the same
parents would be selected again and again, thereby lim-
iting the exploration of the problems space to the prox-
imity of the fittest individual of the initial population,
whereas a purely random method would lead to an entirely

Figure 2: The crossover operator. For a random connec-
tion in the first parent, a fitting connection in the second
parent is selected, and the offspring is generated.

undirected exploration, which decreases the probability of
finding a good solution considerably. There are several
possible selection operators, as compared by [1], but the
ones most widely used are roulette wheel selection and k-
tournament selection.

Roulette Wheel selection calculates the probability pi
that the individual i is chosen such that it is proportional to
it’s fitness value fi in relation to the overall fitness of the
population:

pi =
fi

N
∑
j=1

f j

(1)

The name stems from the informal description of the
method as a roulette wheel, where the size of each pos-
sible spot relates to the fitness of the individual occupying
it.

k-tournament selection consists of selecting k individ-
uals at random from the population, and choosing the indi-
vidual with the highest fitness value, i.e. letting them fight
in a tournament. This method is quite fast, and the selec-
tion pressure can be increased by increasing the size of the
tournament.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Algorithm 1 Crossover operator

procedure CROSSOVER(parent1, parent2)
while tries < Max Retries do

Point1 ← Random connection from parent1
C← SELECTPOSSIBLE(parent2, Point1)
if C is empty then tries← tries+1
else

Point2 ← random connection from C
child1 ← CLONEUNTIL(parent1, Point1.start)
child1 ← CLONEFROM(parent2, Point2.end)
child2 ← CLONEUNTIL(parent2, Point2.start)
child2 ← CLONEFROM(parent1, Point1.end)
return child1, child2

procedure SELECTPOSSIBLE(parent2,Point1)
for all Connections C in parent do

if C.end is possible Child of Point1.start then
// Count siblings, including the current one
S← Number of siblings with type of C.end
// Check if there can be more genes of this type
Dc ← PossibleChild (Fig. 1) of C.end
if DC.maxSiblings == S then

connections.add(C)
else

P← random percentage value
if P < Replace probability then

connections.add(C)
else

Cnew ← new connection
Cnew.start ←C.start
Cnew.end ← none
connections.add(Cnew)

return connections

3.1.5 Implementation Details

There is a large variety in the details of GAs, which differ
slightly in each implementation. The variants used for this
paper are as follows:

The Initial Population is created by repeatedly apply-
ing the grow-mutation operator to initially empty chro-
mosomes. The GA converges faster if the chromosome-
length of the initial population is comparable to the desired
target, but the length is self-correcting to a large extent.

A new generation is created by selecting two individu-
als from the population, and either applying the crossover-
operator or the mutation operator to both individuals.

Additionally we use elitism, whereby some individuals
with the best fitness values are copied unchanged to the
new generation, but are still used as parents for crossover.
This ensures that the quality of the solution never de-
creases, and can also improve the quality of the solution,
since good individuals are preserved and produce more

offspring. But if the population size is too small, this can
lead to stagnation.

3.1.6 Fitness function

The fitness function evaluates the quality of a single in-
dividual and assigns a fitness value to it. Since the GA
only optimizes the fitness value, the used fitness function
very much defines the visual quality of the solutions. It
also should not be defined too restrictive, to allow the GA
to explore non-optimal solutions. Additionally one has to
pay attention to the complexity of the function, since the
fitness calculation is often the most time consuming task of
a GA. There are many possible different fitness functions
for shape grammar, like evaluating the silhouette from a
certain perspective, or several volume-based approaches,
such as filling or avoiding a given volume.

We use a volume-based fitness function, where we gen-
erate the model using the derivation tree defined by a chro-
mosome, and compare the volume of the model to a given
target volume. The comparison is done by converting
the generated model into voxels using a basic ray-based
voxelisation method and counting the voxels. Then, with
vtarget as the number of voxels of the target volume, vinside
as the number of generated voxels that fall inside the tar-
get volume, voutside the number of voxels outside the target
volume, and voverlap as the number of voxels that are self-
overlapping within the generated model, the fitness value
f is calculated with

fgood = step(vinside,0,vtarget) (2)
fbad = step(voutside + voverlap,0,2 · vtarget) (3)

flength = step(l, lopt , lmax) (4)
f = α · fgood−β · fbad− γ · flength (5)

with α,β ,γ as weights. Furthermore l is the length of the
chromosome, and lopt and lmax are given parameters, since
it has been shown by [17] that including the length of the
chromosome in the fitness calculation is a good way to pre-
vent it from growing considerably, which would increase
the evaluation time.

Finally we use a step - function to provide a normal-
ization of the fitness value, based on the smooterhstep -
function defined in [13].

step(x,min,max) =

1 if x≥ max
0 if x≤ min

6t5−15t4 +10t3 t = x−min
max−min

(6)

This is the most time-consuming step of our implementa-
tion, but by using an efficient implementation on the GPU
and an variant of CGA-Shape previously used by [19], we
were able to keep the calculation time manageable.

4 Evaluation

To evaluate the method presented in this paper, we imple-
mented a framework using C++ and CUDA.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Basic symbols of the grammar and the generated
model using fixed values for the parameters.

4.1 Spaceship Grammar

The implemented grammar is inspired by [14], and is de-
signed to produce simple spaceships with wings. It pro-
duces axis-aligned boxes of varying sizes, and consists of
a start symbol S, and three terminal symbols B, W and T.
The rules are not explicitly required for this method, but
can be outlined as follows:

S → B
B → BB | BW | BT | ε

W → WW | ε

T → TT | ε

The three basic symbols relate to the following shapes:

• B: central spaceship-body, attached to the parent
symbol along the main axis.
• W: wings, mirrored at the main axis and attached

along the secondary axis.
• T: top, attached along the third axis.

A basic example is shown in Fig. 3.

4.2 Parameter Selection

The selection of parameters for a GA is a very compli-
cated task, since the parameters are interdependent, e.g. a
high mutation rate can produce good results, but only if the
population size is large enough. There have been various
attempts to optimize this selection, such as using statistical
models [4], or even using other optimization algorithms to
find the best set of parameters, which introduces the prob-
lem of finding parameters for that algorithm. Since the
execution time of our implementation is manageable, we
were able to find a good set of parameters by changing
one parameter at a time and comparing the results. The
parameters during our evaluation are fixed to the follow-
ing baseline, unless stated otherwise:

Population size: 50 individuals
Initial length: 10 symbols

Max. generations: 50
Elitism: 1 individual

First selection: roulette wheel
Second selection: k-tournament, size 10

Mutation prob: 30%
Mutation operator: cut/grow/perm. uniform distr.
Crossover retries: 3

Due to the simplicity of the grammar, the crossover op-
erator was able to produce an offspring reliably, with only
about 0.2% of all cases requiring at most two tries.

The parameters for the fitness calculation do alter the
look of the generated models, but do not alter the behavior
of the GA significantly. They were set to the following
values:

α = 1 β = 0.8 γ = 0.2
lopt = 40 lmax = 100

While the target can be an arbitrary volume, to ensure it
is reachable we created it using the same grammar with
a fixed derivation tree. The random number generator
(RNG) was the uniform distributed mersenne-twister im-
plementation provided by c++11 (mt19937). All the gen-
erated values are averaged over three discrete runs.

4.2.1 Selection method

The available selection methods are a roulette wheel se-
lection, a k-tournament selection of size 10, and random
selection. As shown in Fig. 4, using a semi-stochastic
method for at least one parent produces better results than
purely random selection, with tournament selection per-
forming better. The best results were produces by a com-
bination of tournament and roulette wheel selection, al-
though initially tournament selection for both parents in-
creases the fitness values slightly faster.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Selection Method

Tournament/Tournament
Tournament/Random
Roulette/Tournament
Roulette/Roulette
Roulette/Random
Random/Random

Figure 4: The fitness values with different selection meth-
ods.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

4.2.2 Population size

Since the GA recombines parts of already existing solu-
tions, a bigger population increases the chance to com-
bine two good parts to create a better solution, and it also
increases the probability that an individual already has a
good fitness value from the beginning, therefore increas-
ing the fitness of the solution immediately. Unfortunately,
an increase in the population size also increases the execu-
tion time significantly, which requires finding a trade-off
between speed and fitness. When increasing the popula-
tion from 10 to 500 individuals, as shown in Fig. 5, the
fitness increases as well, but after a size of 200 individ-
uals the increase is negligible compared to the increased
execution time.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Population Size

Size 10
Size 50
Size 100
Size 200
Size 500

Figure 5: The fitness values with increasing population
size.

4.2.3 Mutation probability

If the mutation rate is too low, the probability to pro-
duce beneficial changes is low as well, while a high mu-
tation rate can introduce disadvantageous changes to al-
ready good solutions. This can be mitigated to some ex-
tend with elitism, which can introduce another set of prob-
lems. When the mutation rate is increased from 0% (only
crossover) to 100% (only mutation) (shown in Fig. 6), the
fitness increases as well, although the difference is only
significant in later generations.

Using only mutation produces good results, but we
found in further evaluation that the effect diminishes with
a higher population size.

4.2.4 Elitism

Elitism allows the GA to explore the problem space sur-
rounding good solutions by keeping them unchanged from
one generation to the next, while still using them as par-
ents. A small elitism rate in a large population can lead
to a replacement of the elite in every turn, thus having no
impact at all, while a large elitism rate can lead to stagna-
tion. By changing the elitism rate from 0 to 45 individuals

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Mutation Rate

0% Mutation
1% Mutation
10% Mutation
30% Mutation
50% Mutation
100% Mutation

Figure 6: The fitness values with increasing mutation rate.

(90%), as shown in Fig. 7, we find that the use of 10 to 15
individuals (20 - 30%) produces the best results, although
the impact is not very significant. It does, however, ensure
a steadily increasing fitness value. We also found in fur-
ther evaluations that the impact of elitism is highest with
small populations, and diminishes with increasing popula-
tion sizes. And, as expected, keeping a large part of the
population as elite does decrease the quality of the result
significantly, and also leads to periods of stagnation.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Elitism Rate

No Elitism
2% Elitism
20% Elitism
60% Elitism
90% Elitism

Figure 7: The fitness values with increasing elitism levels.

4.2.5 Initial length

The length of the initial population was increased from 10
symbols up to 100 symbols (Fig. 8). Due to the influence
of the length on the generated model, this significantly al-
ters the fitness of the initial population, which in turn im-
pacts the performance of the algorithm. But we found that
the impact diminishes with increased generations.

4.2.6 Final parameters

Overall we found that the population size and the use of
any selection method other than random selection have the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

0 10 20 30 40 50
Generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Initial Length

Length 10
Length 20
Length 30
Length 50
Length 100

Figure 8: The fitness values with an increasingly compli-
cated initial population.

largest impact on the quality of the result, while other pa-
rameters have the most impact during the first few gener-
ations. Thus we were able to generate good results using
the following parameters:

Population size: 200 individuals
Initial length: 20 symbols

Max. generations: 50
Elitism: 30 individuals

First selection: roulette wheel
Second selection: k-tournament, size 10

Mutation prob: 30%
Mutation operator: cut/grow/perm. uniform distr.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Fitness Values

Final Parameters
Baseline Parameters

Figure 9: The fitness values for the baseline and final pa-
rameters.

The results of the baseline and the final parameters are
very similar (shown in Fig. 10), since the baseline parame-
ters already produce good results, but the final parameters
tend to perform more reliably. But because the bigger pop-
ulation creates a longer execution time, the parameters can
be optimized with regards to time for specific targets.

(a) (b) (c)

(d) (e) (f)

Figure 10: Targets and results of various runs: a and d are
targets, b and e were generated using the baseline parame-
ters, and c and f were generated with the final parameters.

Population Evaluation
(avg)

Crossover
(avg)

total

50 0.25sec 2ms 12.38sec
200 0.9sec 11ms 45.63sec

Table 1: Average evaluation and reproduction times per
generation, and the total duration for one run.

4.3 Performance

The results of the performance evaluation are shown in ta-
ble 1. Most time is spent calculating the fitness values,
while the time for generating a new generation is minimal.
But since most of the evaluation time is spent on generat-
ing the model from the derivation tree, this time could be
improved by moving the production system to the GPU,
and exploiting the inherent parallelism of GAs.

These values were achieved on an Intel Core i5-5200U
CPU @ 2.20GHz with 8 GB of RAM and a Nvidia
Geforce 840M.

5 Conclusion and Future Work

We presented a genome representation and genetic oper-
ators that are suitable for an application of GAs to con-
trol the derivation tree for shape grammars. Furthermore
we demonstrated the basic viability of this approach by
presenting the implementation for a specific grammar for
simple spaceships and a volume-based fitness function,
and evaluated the influence of the parameters required for
GAs.

A clear opportunity for future work is the evaluation of
this method with different, more complicated shape gram-
mars, since GAs generally tend to perform worse when the
complexity of the problem space increases.

Also is the volume-based fitness function very restric-
tive and limits the creative capabilities of GAs, therefore
a different approach for the fitness calculation might be

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

preferable, such as a image-based evaluations, as used suc-
cessfully by [14, 22].

Furthermore could an implementation of the algorithm
on the GPU improve the performance considerably, since
GAs and shape grammars are inherently parallel in nature.

References

[1] T. Blickle and L. Thiele. A Comparison of Selection
Schemes Used in Evolutionary Algorithms. Evolu-
tionary Computation, 4(4):361–394, 1996.

[2] J. Byrne, M. Fenton, E. Hemberg, J. McDermott, and
M. O’Neill. Optimising complex pylon structures
with grammatical evolution. Information Sciences,
316:582–597, 2015.

[3] C. M. De Jong Van Coevorden, A. R. Bretones, M. F
Pantoja, F. J. García Ruiz, S. G. García, and R. G.
Martín. GA design of a thin-wire bow-tie antenna for
GPR applications. IEEE Transactions on Geoscience
and Remote Sensing, 44(4):1004–1009, 2006.

[4] O. François and C. Lavergne. Design of evolutionary
algorithms - A statistical perspective. IEEE Transac-
tions on Evolutionary Computation, 5(2):129–148,
2001.

[5] J. H Holland. Adaptation in natural and artificial
systems. 1992.

[6] L. Krecklau, J. Born, and L. Kobbelt. View-
dependent realtime rendering of procedural facades
with high geometric detail. In Computer Graphics
Forum, volume 32, pages 479–488. Wiley Online Li-
brary, 2013.

[7] A. Lindenmayer. Mathematical models for cellular
interactions in development ii. simple and branching
filaments with two-sided inputs. Journal of theoreti-
cal biology, 18(3):300–315, 1968.

[8] P. Merrell and D. Manocha. Model synthesis: A gen-
eral procedural modeling algorithm. IEEE Trans-
actions on Visualization and Computer Graphics,
17(6):715–728, 2011.

[9] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings.
ACM Transactions on Graphics, 25(3):614, 2006.

[10] E. Murphy, M. O’Neill, E. Galván-López, and
A. Brabazon. Tree-adjunct grammatical evolution.
In Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1–8. IEEE, 2010.

[11] M. O’Neill, J. M. Swafford, J. McDermott, J. Byrne,
A. Brabazon, E. Shotton, C. McNally, and M. Hem-
berg. Shape grammars and grammatical evolution for
evolutionary design. Proceedings of the 11th Annual

conference on Genetic and evolutionary computation
- GECCO ’09, page 1035, 2009.

[12] Y. I. H. Parish and P. Müller. Procedural Model-
ing of Cities. 28th annual conference on Computer
graphics and interactive techniques, (August):301–
308, 2001.

[13] K. Perlin. Improving noise. In Proceedings of the
29th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’02, pages 681–
682, New York, NY, USA, 2002. ACM.

[14] D. Ritchie, B. Mildenhall, and P. Goodman, N.
D .and Hanrahan. Controlling procedural model-
ing programs with stochastically-ordered sequential
monte carlo. ACM Transactions on Graphics (TOG),
34(4):105, 2015.

[15] M Schwarz and P. Müller. Advanced procedu-
ral modeling of architecture. ACM Transactions
on Graphics, 34(4 (Proceedings of SIGGRAPH
2015)):107:1–107:12, August 2015.

[16] K. Sims. Evolving virtual creatures. In Proceedings
of the 21st annual conference on Computer graph-
ics and interactive techniques, pages 15–22. ACM,
1994.

[17] T. Soule, J. A. Foster, and J. Dickinson. Code Growth
in Genetic Programming. GECCO ’96 Proceedings
of the 1st annual conference on genetic and evolu-
tionary computation, pages 215–223, 1995.

[18] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch,
O. Deussen, and B. Benes. Inverse procedural mod-
elling of trees. In Computer Graphics Forum, vol-
ume 33, pages 118–131. Wiley Online Library, 2014.

[19] M. Steinberger, M. Kenzel, B. Kainz, J. Mueller,
W. Peter, and D. Schmalstieg. Parallel generation of
architecture on the GPU. Computer Graphics Forum,
33(2):73–82, 2014.

[20] G. N. Stiny. Pictorial and Formal Aspects of Shape
and Shape Grammars and Aesthetic Systems. PhD
thesis, 1975.

[21] G. N. Stiny. Spatial Relations and Grammars. En-
vironment and Planning B: Planning and Design,
9(1):113–114, mar 1982.

[22] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and
V. Koltun. Metropolis procedural modeling. ACM
Transactions on Graphics, 30(2):1–14, 2011.

[23] P. Wonka, M. Wimmer, F. Sillion, and W. Rib-
arsky. Instant Architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

	Introduction
	Shape Grammars
	Genetic Algorithms

	Related work
	Approach
	Genetic Algorithm
	Genome Representation
	Crossover Operator
	Mutation Operator
	Selection Methods
	Implementation Details
	Fitness function

	Evaluation
	Spaceship Grammar
	Parameter Selection
	Selection method
	Population size
	Mutation probability
	Elitism
	Initial length
	Final parameters

	Performance

	Conclusion and Future Work

