
Configurable Rendering Effects For Mobile Molecule
Visualization

Lukas Prost∗

Supervised by: Reinhold Preiner†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

Due to their omnipresence and ease of use, smart phones
are getting more and more utilized as educational in-
struments for different subjects, for example, visualizing
molecules in a chemistry class. In domain-specific mobile
visualization applications, the choice of the ideal visual-
ization technique of molecules can vary based on the back-
ground and age of the target group, and mostly depends
on the choice of a graphical designer. Designers, however,
rarely have sufficient programming skills and require an
engineer even for the slightest adjustment in the required
visual appearance. In this paper we present a configuration
system for rendering effects implemented in Unity3D, that
allows to define the visual appearance of a molecule in a
JSON file without the need of programming knowledge.
We discuss the technical realization of different rendering
effects on a mobile platform, and demonstrate our system
and its versatility on a commercial chemistry visualization
app, creating different visual styles for molecule render-
ings that are appealing to students as well as scientists and
advertisement.

Keywords: Molecule Shading, Mobile, Unity3D

1 Introduction

Mobile molecule visualization can be useful for many dif-
ferent groups e.g, scientists and students. Yet, every tar-
get group has their own requirements due to their different
purposes. Often it is up to a designer to create a visual
appearance that best meets those requirements. Designers,
however, rarely have the technical skills to realize their
design in a graphical rendering framework on their own.
An engineer has to build the design and alternate it every
time the slightest adjustment has to be made. As a result,
there are always at least two people required to maintain
an application’s update life cycle.

In this paper, we present a mobile molecule visualiza-
tion implemented in Unity3D, that allows to easily modify

∗lukas.prost@tuwien.ac.at
†preiner@cg.tuwien.ac.at

Figure 1: Exemplary screenshots of a commercial chem-
istry visualization app.

the visual appearance with the help of a JSON configu-
ration file. Designers can change the rendering by set-
ting parameters in these files e.g. which shaders to use
or where lights should be placed with no required pro-
gramming skill whatsoever. In the remaining paper, we
will demonstrate how to apply high quality rendering ef-
fects like screen space ambient occlusion, depth of field
and comic shading/outline rendering in a mobile commer-
cial chemistry visualization app (see Figure 1) and how to
make them configurable using JSON files.

The rest of this paper is structured as follows: Section 2
reviews some related mobile molecule visualization apps,
gives background in Unity and JSON, and discusses the
related work on the rendering effects used by our system.
Section 3 shows the JSON file that is used for appear-
ance parametrization and how the textual information is
used for molecule rendering. In Section 4 different render-
ing techniques are explained in more detail that are used
to visualize molecules. Finally, in Section 5 we present
some results and show different rendering styles that can
be achieved by our system.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Background and Related Work

2.1 Molecule Visualization Systems

NDKmol [3] is an open source visualization app for smart
phones. It supports many different visualization tech-
niques like bond and ribbon diagrams and has direct ac-
cess to the RCSP Protein Data Bank (RCSP PDB). The
rendering, however, looks very plain and scientific. RCSB
PDB Mobile [4] is a molecule visualization app that is offi-
cially provided by RCSP PDB. Because it is based on ND-
Kmol, it has the same visual appearance. Molecules [2] is
an alternative open source app that can load molecules di-
rectly from RCSP PDB. Unfortunately, it is only available
for iOS. Atomdroid [10] is an app for Android with a lot
functionality besides visualization. Among other things it
allows to build molecules and do trajectory analysis. The
last update, however, was 2012.

2.2 Unity3D

Unity3D is a free to use game engine which supports de-
ployment for many different platforms. A Unity3D project
consists of different scenes which be thought of as levels
in a game. They contain all elements, e.g. scripts and
models, and information, e.g. level architecture, required
to run the scene as a program. All objects appearing in a
scene are Game Objects (GO). A GO is the core element
of Unity3D and can be thought of a container for compo-
nents. The properties of a GO are defined by the compo-
nents that are attached to it. These components can e.g. be
a transform component, defining the GO’s position, orien-
tation and scale, or the camera component that enables the
GO to render the scene. Later in the paper we will show
how to manipulate a Unity-based system to define a GO’s
visual appearance using JSON config files.

2.3 JSON

The JavaScript Object Notation (JSON) [1] is an up-to-
date, easy to read file format for transferring data and is
mainly used in web development. It is lightweight and
widely supported. JSON is used in the presented system
to store visualization meta data. XML would have been
the other option, yet it was dismissed because it is ver-
bose and therefore not as legible as JSON. Data is stored
as name/value pairs. While the name is always a string,
the value store different types of data, ranging from sim-
ple types (number, string) to complex types like arrays or
objects. An array can contain values, arrays and objects.
Objects can store name value pairs. For more details about
JSON and its syntax, see the JSON specification [1].

2.4 Realtime Rendering Effects

Comic Shading One technique to shade objects with a
flat cartoon look is hard shading presented by Lake et al.

[15]. The shading is done by a texture lookup based on
the dot product between the normal vector and the light
direction, but without interpolation resulting in a shading
with few solid colors. Mitchell et al. [17] create a cartoon
look without hard shading by using a 1D lookup texture
and a modified Lambert lighting model. Vanderhaeghe et
al. [20] present an approach for creating stylized render-
ings (including toon shading) dynamically by composing
procedural primitives. A primitive describes a shading be-
havior and its parameters can be defined dynamically.

Outline Rendering Akenine-Möller, Haines and Hoff-
man [5, p.512] describe a heuristic method, that marks
surface points as part of an object’s silhouette if the dot
product between the view and the normal vector is close
to zero. Isenberg et al. [13] mark edges that share a front
facing and a back facing polygon relative to the viewer as
silhouette edges. Another approach presented by Akenine-
Möller et al. [5] is the halo or shell method. An object is
rendered by two passes, where the first pass renders the
front faces of an object and the second pass renders its en-
larged back faces. Kolivand and Sunar [14] detect silhou-
ette edges for shadow volumes by sending a ray for each
edge from the light source to one along this edge translated
end vertex of the edge. If the ray does not intersect with
any face of the object, the processed edge is a silhouette.

Ambient Occlusion The concept of ambient occlusion
(AO) and its benefits are described by Landis [16]. An
implementation is given by Pharr and Green [19]. A
technique that enables dynamic real time computation is
screen space ambient occlusion (SSAO) which first was
presented by Mittring [18]. It simulates occlusion from
nearby surfaces by using the depth buffer to approximately
reconstruct local geometry. To do so, random samples are
placed around each fragment’s view space position which
is then compared against the depth of the surrounding ge-
ometry using simple depth buffer lookups. The more sam-
ples are covered by the surrounding geometry, the more
the fragment is occluded. Filion and McNaughton [11]
describe an improved version of Mittring [18] by aligning
the samples on a hemisphere around the surface normal
reducing self occlusion dramatically.

Depth of Field Physically correct Depth of Field (DoF)
rendering is presented by Cook, Porter and Carpenter [7],
who simulate light distortion by ray tracing through a vir-
tual lens. Haeberli and Akeley [12] render the scene from
several slightly different view points and use the accumu-
lation buffer to blend the renderings together into a final
image. Demers [8] simulates DoF in screen space by sep-
arating the scene into layers based on the depth buffer. Af-
ter blurring these layers based on their depth, the scene
is composed back together resulting in a visual appealing
DoF effect. Filion and McNaughton [11] present an im-
plementation of this approach that uses five layers.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

3 Appearance Parametrization

In this Section we will demonstrate how we parameter-
ize the visual appearance of a molecule by a simple JSON
configuration file, and how it is integrated in a Unity3D
application to control its scene rendering.

Listing 1: Template for the JSON configuration file
{
"camera" : {

"orthographic" : <boolean> ,
"bgcolor" :

[<integer> , <integer> , <integer>] }
,

"mapping" : {
<<string> : <string>>*
"post_effects" : [<string>*] },

"shaders" : [
<{
"name" : <string> ,
"shader" : <string> ,
"properties" : { ... } },
}>*]

"lights" : [
<{
"type" : <string>,
"position" :

[<integer> , <integer> , <integer>],
"color" : [<integer> , <integer> , <integer>]

,
"intensity" : <float> ,
"shadow" : <string> ,
"strength" : <float> ,
"movable" : <boolean> ,
}>*]

}

3.1 JSON Config File

The whole visual appearance of a scene is stored in a
JSON config file (JCF). A template of its structure and
syntax is shown in Listing 1. Our configuration file has
four main name/value pairs:

• Camera has an object that stores a background color
and a boolean defining whether the projection is or-
thographic or perspective.

• Shaders stores an array of shader objects. A shader
object contains a name for the shader (name) and
the name of the used shader (shader). The first one
functions as a reference/id which is valid inside the
current JCF, whereas later one is the actual name of
the used shader inside the application. Moreover, a
shader object contains a property object storing pa-
rameters for each individual shader. The available
shaders are the Unity3D default shaders as well as
custom shaders described in Section 4.

• Mapping has an object with name/value pairs where
the name refers to an actual object in the scene
and the value is the reference to a shader object in
Shaders. The available scene objects depend on the
application. post effects stores an array of post pro-
cessing shader references that will be applied in the
order of the array.

• Lights stores an array that contains light objects. A
light object contains all properties of a light source
e.g, its type (point or directional), its position and
what kind of shadow it casts (none, soft or hard).

3.2 Integration in Unity3D

The system that applies the JCF described in Section 3.1 to
the Unity3D Scene consists of the three independent mod-
ules: a ShaderProvider, aCameraProvider and a Lighting-
Provider. The interaction of these modules with the core
entities of an Unity application is illustrated in Figure 2.

The ShaderProvider works with the data stored in
Shaders and Mapping. Every Game Object (GO) that will
be rendered requests a shader from this module, either
by specifying its defined type or by asking for a specific
shader reference. The ShaderProvider first checks if the
requested shader is available. If this is the case, it loads
the shader from the system, sets the properties stored in
the corresponding JCF shader object and then applies it to
the requesting GO. Besides providing shaders for GOs, it
can also provide post processing shaders for the camera.

The CameraProvider reads the parameters specified by
Camera in the JCF and modifies the parameters of the
Unity camera component accordingly. In a similar way,
the LightingProvider module processes the data given by
Lights. For each JCF light object a new light is placed in
the Unity scene.

Figure 2: Relation of the Config Loader Modules (blue) to
the Unity3D Scene Elements (orange).

4 Molecule Rendering Effects

In this section, we describe three major rendering effects
that are supported in our molecule visualization app, and
discuss their realization in a mobile real-time rendering
framework.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

4.1 Comic Shading and Outlining

To support a non-photo realistic, stylized look, a highly
customizable shader was implemented to provide a high
degree of visual variety to the designer. The shader does
actual hard shading and allows outline rendering in ob-
ject space. For the latter, both the dot product method and
the hull method of Akenine-Möller et al. [5] were imple-
mented. Both provide a good trade-off between perfor-
mance and results depending on the model.

Comic Shading To achieve an efficient comic style that
is easy to configure by a designer, we implemented hard
shading without texture lookup. Using a texture-based ap-
proach, the designer would have to provide a texture for
every single GO, which would not be possible just based
on a modification in the JCF. The basis for the brightness
calculation is a modified Lambert term, shown in Equation
1 [17]. The original Lambert reflection model is extended
by scale constant α , a bias β and an exponent γ .

(α(n̂ · l̂)+β)γ (1)

These constants can also be configured by the user in
the JCF and allow to modify the distribution of the hard
shading borders. To achieve a hard shading look, Equation
1 is discretized by clamping, resulting in the final shading
formulation:

(α +β)γ

s

⌊
s(α(n̂ · l̂)+β)γ

(α +β)γ

⌋
(2)

The subdivision parameter s defines the number of gra-
dients/shading borders and is again configurable by the
JCF.

Figure 3 shows examples of hard shaded atoms with dif-
ferent subdivision parameters s.

Figure 3: Comic shaded spheres (α = 0.5, β = 0.5 and
γ = 2) with s = {2,4,8} from left to right.

Outline Rendering For outline rendering [5], we need
to calculate the dot product between the view vector and
normal vector at each pixel. If the result lies below a spe-
cific user defined threshold (typically values between 0.25
and 0.5), the pixel gets rendered in a border color. Both
the threshold and the border color are parameters that can
be set by the user in the JCF. This algorithm is very effi-
cient because it adds only one additional dot product and
comparison evaluation to the pixel color. An outline of a
sphere rendered with this method can be seen in the upper
row of Figure 4.

The second outline rendering technique available in our
system is the hull method [5]. This method creates an
outline by first enlarging a model and then rendering its
backfaces. The enlarging is done by a vertex translation
along the vertex normal. To do so, the vertex and its corre-
sponding normal vector need to be transformed into view
space. Then, the vertex is translated along the x and the y
coordinate of the normal vector. The length of the transla-
tion defines the hull size and can be modified by the user.
This value depends on the size of the objects because it is
happening in view space. For the atoms, it is normally be-
tween 0.005 and 0.03. After the translation, the front faces
are culled and the back faces are rendered with the defined
border color. The results can be seen in the lower row of
Figure 4.

Figure 4: Outlines rendered with different methods. The
numbers show the dot product threshold (upper row) and
the hull size (lower row).

4.2 Screen-Space Ambient Occlusion

SSAO is a fast screen space effect suitable for mobile real
time applications, that can greatly enhance the visual qual-
ity of the resulting images. It uses the depth buffer as a
discretized representation of the scene, based on which it
estimates the ambient occlusion for each pixel in screen
space.

To this end, we first need to calculate the view space
position of the pixel. Samples are then placed around this
point by adding a set of predefined offset vectors to their
view-space position. Each new sample point is then pro-
jected back to screen space where their z-values are com-
pared to the stored depth at their target screen space posi-
tion (similar to shadow mapping). Each neighboring sam-
ple with a z-value larger than the stored depth increases the
ambient occlusion value of the center pixel. To keep the
ambient occlusion value independent of the number N of
used samples, it is normalized by N. Because this proce-
dure is repeated for every pixel with the same samples, this
process can also be seen as a convolution of the discretized
scene with a sample kernel.

For high-quality AO effects, Christensen [6] recom-
mends at least 256 samples. Yet, such a high sample count
is not feasible for mobile real-time rendering. Therefore,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Engel [9] presents an SSAO implementation that achieves
a moderate result with only 16 samples. Without further
regard, such a small sample count would lead to a visible
pattern of the sample kernel. For this reason, this tech-
nique randomly rotates the sample kernel for each pixel
using a random rotation matrix. Filion and McNaughton
[11] suggest using a random vector provided by a noise
texture instead of random rotation matrices. Each offset
vector of the sample kernel is reflected by this offset vector
resulting in a semi randomization of the kernel per pixel.
Since it is the most efficient SSAO variant, we choose this
random-vector-based technique for our mobile real-time
rendering system.

The randomization of the sample kernel reduces kernel
artifacts, but results in a coarse SSAO image. For this rea-
son, the buffer that stores the SSAO values are blurred with
a kernel that should be small enough (4x4 pixels) to pre-
serve borders as good as possible.

Finally, each pixel of the rendered scene is darkened
by its corresponding value in the SSAO texture. Because
these values lie in the interval [0,1], they can simply be
multiplied to the pixels color. The effect of SSAO on the
visual expressiveness of a scene is demonstrated in Figure
5.

Figure 5: Scene rendered without SSAO (left) and with
SSAO (right)

4.3 Depth of Field

Ray-tracing Depth of Field effects, as suggested by Cook
et al. [7], or accumulation of multiple render passes as
proposed by Haeberli and Akeley [12] would be too costly
for a real-time performance on mobile platforms. There-
fore, DoF is applied as a post processing effect based on
the method of Filion and McNaughton [11].

Based on the values in the depth buffer, the screen-space
representation of the scene is divided into five depth layers,
as shown in Figure 6. Each layer is defined by a range that
can be set by the designer in the JCF. A texel is assigned to
a layer if its depth value falls into the layers depth range.
The designer can define the five layers by setting the four
border depth values TR[0], TR[1], TR[2] and TR[3] be-
tween them. The relation between the TR values have to
be TR[0] ≤ TR[1] ≤ TR[2] ≤ TR[3].

The DoF effect is applied in four steps. The first step
separates the scene based on the given ranges into layer’s.
The near and the far layer are stored in two separate frame

Figure 6: DoF layers (l.t.r): near, transition near to focus,
focus, transition focus to far, far.

buffers. If a texel’s depth is an element of e.g. the near
layer, its color and depth are rendered into the near layer
frame buffer. Otherwise, the texel is rendered with the
camera’s clear color. The focus layer does not get stored
in a separate frame buffer. Instead, the unprocessed input
frame buffer is used. After the pixels are assigned, the near
and the far layer frame buffers are blurred with a separated
Gaussian. Finally, the layers are composed together based
on the same ranges as were used for their separation. If a
depth value is in the range of a transition layer, the result-
ing texel is determined by interpolating between the texels
of the two neighbor layers.

5 Results

Our configurable rendering system can be easily used by
people without any programming skills. An engineer has
to implement shaders in our system only once. After he
made them accessible for the configuration loader, the de-
signer can apply and modify them as he wishes. In the
following, we will give an example of four different de-
signs that can be produced in our system, and show their
performance on several mobile devices.

5.1 Visual Designs

Table 1 presents four different looks that were produced
in our system only by manipulating the JSON config file.
The table shows an outline of these config files, and il-
lustrates the resulting visual appearance on four different
molecules. The shader referred to as basic is the stan-
dard shader provided by Unity3D. The shader’s dofPost
and ssaoPost denote the post-processing DoF and SSAO
shaders, respectively. Finally, toon addresses the object
space comic shader.

Education The visual appearance for students was cre-
ated with a simple and flat design in mind. Flat and tactile
looking interfaces are currently modern and widely used.
Moreover, the design tries to support a visual gamification
to be appealing for this target group. To this end, comic
shading and outline rendering was used.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Advertisement Education Scientific Future

Fu
lle

re
n(

C
60

)
A

rs
en

ik
(A

s 2
O

3)
A

nt
hr

ac
en

(C
14

H
10

)
M

ag
ne

si
um

(M
g)

"camera" : { <...> },
"mapping" : {

"atom" : "advert",
"connector" : "advert

",
"post_effects" : [
"dof", "ssao"] },

"shaders" : [
{ "name" : "advert",
"shader" : "basic",
"properties" : {
"smoothness" : 0.15,
"metallic": 0.3 }
},
{ "name" : "dof",
"shader" : "dofPost",
"properties" : {
"layers" :

[0,0,0.7,0.9]}
},
{ "name" : "ssao",
"shader" : "ssaoPost"

,
"properties" : { }
}],

"lights" : [<...>]

"camera" : { <...> },
"mapping" : {

"atom" : "school",
"connector" : "school

",
"post_effects" : []

},
"shaders" : [

{ "name" : "school",
"shader" : "toon",
"properties" : {
"color" : [0,0,0],
"hull_size" : 0.45,
"outline_bias" : 0.0,
"scale" : 0.5,
"bias" : 0.65,
"exponent" : 1,
"steps" : 4 }
}],

"lights" : [<...>]

"camera" : {
"orthographic" : "

true",
...

}
"mapping" : {
"atom" : "science",
"connector" : "science

",
"post_effects" : []

},
"shaders" : [

{ "name" : "science",
"shader" : "basic",
"properties" : {
"smoothness" : 0.5,
"metallic": 0.2}
}],

"lights" : [<...>]

"camera" : { <...> },
"mapping" : {
"atom" : "future",
"connector" : "basic"

,
"post_effects" : ["

dof"] },
"shaders" : [

{ "name" : "basic",
"shader" : "basic",
"properties" : {
"smoothness" : 0.5,
"metallic": 0.2}
},
{ "name" : "future",
"shader" : "toon",
"properties" : {
"color" : [0,0,0],
"hull_size" : 0.0,
"outline_bias" : 0.0,
"scale" : 0.5,
"bias" : 0.65,
"exponent" : 1,
"steps" : 4 }
},
{ "name" : "dof",
"shader" : "dofPost",
"properties" : {
"layers" :

[0,0,0.7,0.9]}
}],

"lights" : [<...>]

Table 1: Different molecules rendered with different styles and summarized JCF defining the visualizations.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Advertisement To sell a CG-related product, its visual
output has to look as stunning as possible. Moreover, the
quality of the renderings used in advertisement directly re-
flect the public image of the company producing the soft-
ware. Therefore, SSAO as well as DoF are applied to the
rendering. By doing so, the molecule looks much more
plastic and ”realistic”.

Scientific For science, the visual appearance should
support the understanding of the structure of a molecule.
The rendering should avoid any additional effects that clut-
ter the image of a molecule. For this reason, standard shad-
ing was used without any effects and the camera uses an
orthographic projection. This aims at supporting the un-
derstanding of the structure of a molecule.

Future This look was created to demonstrate how object
types can be shaded differently. The visibility of the atoms
gets significantly enhanced by applying a bright comic
shader to the atoms and a dark basic shader to the con-
nectors,.

5.2 Performance

Performance data for the advertisement, education and sci-
entific look is shown in Figure 7 for a smart phone and a
tablet. The used smart phone was a OnePlus One with
a resolution of 1920x1080. The tablet data was gathered
from a Nvidia SHIELD TABLET K1 with a resolution of
1920x1200. The performance data was gathered by ren-
dering each example for a short period of time. The FPS
value was taken in short intervals. The final results for
each example are the average over the collected FPS val-
ues.

Figure 7: Performance data. Polygon number next to the
name.

The performance values indicate an expected depen-
dence on the polygon count of the model. The Educa-
tion and Science styles run at acceptable rates even for big
models. For all our models, the Advertisement style is the

computationally most demanding one, with under 10 FPS
on smart-phones. This can be attributed to the usage of the
Depth of Field effect. This performance is acceptable, as
this style is mostly meant for creating still shots used in
advertisement.

6 Conclusion and Future Work

We have presented a system that allows to define the vi-
sual appearance of rendered molecules only by modify-
ing parameters in a JSON configuration file. The syntax
and the structure of this file is simple to read and easy to
understand, such that even people without deeper knowl-
edge about rendering and shaders can change the visual
appearance of a scene easily. Since the shown system
reads the JSON file during run-time, the rendering style
can be changed fast without the need of rebuilding the ap-
plication. This supports prototyping with fast and easy ad-
justments. A GUI with live feedback would simplify the
process even more. This is left open for future work.

References

[1] Json specification. http://www.json.org/.
Accessed: 13-02-2016.

[2] Molecules. http://www.
sunsetlakesoftware.com/molecules.
Accessed: 13-02-2016.

[3] Ndkmol. http://webglmol.osdn.jp/. Ac-
cessed: 13-02-2016.

[4] Rcsb pdb mobile. http://www.rcsb.org/
pdb/static.do?p=mobile/RCSBapp.
html. Accessed: 13-02-2016.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman.
Real-time rendering. CRC Press, 2008.

[6] P. H Christensen. Global illumination and all that.
SIGGRAPH 2003 course notes, 9, 2003.

[7] R. L. Cook, T. Porter, and L. Carpenter. Distributed
ray tracing. SIGGRAPH Comput. Graph., 18(3),
1984.

[8] J. Demers. Depth of field: A survey of techniques.
GPU Gems, 1(375), 2004.

[9] W. Engel. Shaderx7. Charles River Media, 2009.

[10] J. Feldt, R. A Mata, and J. M Dieterich. Atomdroid:
a computational chemistry tool for mobile platforms.
J. of chem. inf. and modeling, 52(4), 2012.

[11] D. Filion and R. McNaughton. Effects & techniques.
In ACM SIGGRAPH 2008 Games, SIGGRAPH ’08.
ACM, 2008.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

[12] P. Haeberli and K. Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In
Proc. of the 17th Annu. CC on CG and Interactive
Techniques. ACM, 1990.

[13] T. Isenberg, B. Freudenberg, N. Halper,
S. Schlechtweg, and T. Strothotte. A devel-
oper’s guide to silhouette algorithms for polygonal
models. CG and AP, IEEE, 23(4), 2003.

[14] H. Kolivand and M. S. b. Sunar. New silhouette de-
tection algorithm to create real-time volume shadow.
In DMDCM, 2011 Workshop on, 2011.

[15] A. Lake, C. Marshall, M. Harris, and M. Blackstein.
Stylized rendering techniques for scalable real-time
3d animation. In Proc. of the 1st Int. Symp. on Non-
photorealistic animation and rendering. ACM, 2000.

[16] H. Landis. Production-ready global illumination.
Siggraph course notes, 16(2002), 2002.

[17] J. Mitchell, M. Francke, and D. Eng. Illustrative ren-
dering in team fortress 2. In Proc. of the 5th Int.
Symp. on Non-photorealistic animation and render-
ing. ACM, 2007.

[18] M. Mittring. Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 courses. ACM, 2007.

[19] M. Pharr and S. Green. Ambient occlusion. GPU
Gems, 1, 2004.

[20] D. Vanderhaeghe, R. Vergne, P. Barla, and W. Bax-
ter. Dynamic stylized shading primitives. In Proc. of
the ACM SIGGRAPH/Eurographics Symp. on Non-
Photorealistic Animation and Rendering, NPAR ’11.
ACM, 2011.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

