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Abstract

3D reconstruction gained more and more interest in the last
years due to low-budget depth scanning devices and high-
performance graphics hardware. Several approaches were
developed in order to get accurate reconstructions in real-
time at high frame rates and opened up new applications
in the field of augmented reality (AR) and 3D scanning
by providing immediate feedback to the user. But since
measurements are corrupted with noise, registration of the
captured RGB-D images needs to be very accurate to get
high quality results. In this state of the art report, we will
review several registration algorithms that were developed
in the last years and compare their performance.

Keywords: State of the Art, Real-time, Registration,
RGB-D, GPU, Kinect, 3D Reconstruction, Comparison

1 Introduction

During the last years, increasing effort was spent in the
field of 3D reconstruction using depth cameras. The origin
of this rising interest lies in the availability of low-budget,
high-resolution depth sensors like the Microsoft Kinect.
One of the first and most prominent systems in this field
was KinectFusion, a 3D reconstruction framework devel-
oped by Izadi et al., (2011) and Newcombe et al., (2011).
This system is capable of producing highly detailed 3D
models from RGB-D images in real-time by integrating
the captured data into the volumetric data structure of Cur-
less and Levoy, (1996) in parallel on the GPU.

However, it has several limitations. In KinectFusion,
Izadi et al., (2011) and Newcombe et al., (2011) used a
full 3D volumetric grid to store the reconstruction. Since
GPU memory is quite limited, creating large scale recon-
structions was not possible. To overcome this issue, several
techniques to reducememory consumptionwere developed
including Moving Volume approaches (Roth and Vona,
2012; Whelan et al., 2012), fast data structures (Laine and
Karras, 2010; Zeng et al., 2012; Zeng et al., 2013) and
streaming algorithms (Chen et al., 2013). Recent work
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done by Nießner et al., (2013) came to the result that by us-
ing hash tables only relevant regions of the volume needed
to be stored leading to great advances in terms of perfor-
mance and efficiency.

The other major drawback of the initial KinectFusion
system is its registration algorithm. Before the captured
data can be integrated into the volume, it must be trans-
formed into the global coordinates system in which the
volume is specified. Therefore, an estimate of the six-
dimensional camera pose is needed. Unfortunately, even
small errors in the estimation cause significant drift in the
final reconstruction since those errors accumulate rapidly.
The origin of this problem lies in the uncertainty of the data
that is captured by the sensor. Usually, these data contain
noise whose exact nature is still unknown. So a perfect
registration is not possible and much effort has been spent
to obtain good reconstructions in the end.

The purpose of this state of the art report is to review
current approaches that tried to solve this problem. We
also investigate how well the solutions fit into our recon-
struction pipeline (Stotko and Golla, 2015) that is based on
the VoxelHashing framework of Nießner et al., (2013). In
particular, we will focus on:

1. Reviewing several approaches and explaining their
strengths and weaknesses

2. Analyzing how efficient they can be implemented on
the GPU

3. Comparing the different algorithms in terms of accu-
racy and efficiency

2 Problem Statement
Before we start to present and compare the different al-
gorithms, we first need to formally state the problem that
should be solved.

2.1 Preliminaries
In our settings, we want to reconstruct 3D geometry au-
tomatically and in real-time using a low-cost depth sen-
sor. Such sensors have been becoming popular in the past
years because they offer moderate reconstruction quality
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Figure 1: Example of an RGB image (left) and a depth image (right) captured by a RGB-D camera, taken from Henry
et al., (2012).

at a cheap price. The probably most prominent one is the
Kinect from Microsoft. Besides a depth image Id , it also
captures an RGB image IRGB at a particular resolution,
e.g. 640 × 480 in case of the Kinect:

IRGB : Ω ⊂ N2 → N3 (1)

Id : Ω ⊂ N2 → R (2)

We require these two maps to be time-synchronized and
aligned. Since the cameras have a small offset, some
sensor-specific transformations for aligning them may be
performed in a preprocessing step. Figure 1 shows an ex-
ample of such an RGB-D image. The 3D position v ∈ R3

of a pixel p ∈ Ω can then be computed by back-projection
as

v(p) =
(

px − cx
fx

Id (p) ,
py − cy

fy
Id (p) , Id (p)

)>
(3)

using the focal length f = ( fx , fy ) and the principal point
c = (cx , cy ) of the camera. On the other hand, the pixel p
into which the point v falls is computed as the projection

p(v) =
(

fx vx
vz
+ cx ,

fy vy
vz
+ cy

)>
(4)

These two transformations can also be written compactly
by considering the intrinsic camera calibration matrix of
the sensor

K = *.
,

fx 0 cx
0 fy cy
0 0 1

+/
-

(5)

and the projection operator

Π
(
(x , y , z)>

)
= (x/z , y/z)> (6)

Then, we can express the two projections by

v(p) = K−1 · Id (p) · (p , 1)> (7)
p(v) = Π (K · v) (8)

2.2 The Registration Problem

Our reconstruction pipeline is based on the system devel-
oped by Nießner et al., (2013). Like in their work, we
use an efficient hash table on top of a set of voxel blocks
to reconstruct the captured scene in a sparse volumetric
grid. To perform registration, we use ray-casting to extract
the implicitly stored isosurface from the volume and use
the resulting RGB-D image as an estimate of the model.
This image can further be processed for rendering by some
shading kernels.

Now, the only missing part is the registration algorithm.
Given newmeasurements

[
I (t+1)
RGB

, I (t+1)
d

]
at time step t+1,

we wish to find the new camera transformation matrix

T (t+1) =

[
R(t+1) t (t+1)

0> 1

]
∈ R4×4 (9)

consisting of a rotation R(t+1) ∈ R3×3 and a translation
t (t+1) ∈ R3. Since we also know this transformation
from the previous time step t, namely the current model[
Î (t)
RGB

, Î (t)
d

]
, this problem can be reduced. We only need

to align the two images to get our desired result. A success-
ful alignment will give us the incremental transformation
∆T . This optimization might be performed in global co-
ordinates which is usually done when dealing with points
clouds. But since we are trying to align measurements
from a camera, the local camera coordinates system at
time step t is the better choice and also used in some of the
approaches. Notice that the local system at time step t + 1
is moving and thus not very appropriate as a reference. In
this context, we have the following relation:

T (t+1) = T (t) · ∆T (10)

So we first move the new measurements by ∆T such that
they are aligned with the previous data in their respective
coordinate system and then transform them to global co-
ordinates using T (t) . Defining the transformation in this
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way, we get an intuitive meaning of the incremental trans-
formation by rearranging the equation:

∆T =
(
T (t)

)−1
· T (t+1) (11)

For any newly measured point given in the local camera
coordinate system at time t+1, we can infer its coordinates
in the local system at time t by applying the incremental
transformation.
In the following, we will discuss three families of regis-

tration algorithms: Iterative Closest Point, Normal Distri-
bution Transform and Sparse Methods.

3 Iterative Closest Point

Westart our discussingwith some popular approaches from
the family of the Iterative Closest Point algorithms.

3.1 KinectFusion ICP

The original registration algorithm used in KinectFusion
is a variant of the popular Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992; Chen and Medioni,
1992). In our setting, the vertex maps obtained by back-
projection of the depth maps describe the scene in the local
camera coordinate system at time t:

v̂(t)
i := v̂(t) (pi) (12)

v(t+1)
j := ∆T · v(t+1) (p j ) (13)

For simplicity, we omit the conversion to homogeneous
coordinates.
In KinectFusion, the newly captured RGB-D image at

time step t + 1 is now aligned to the current model at
time step t. It is rather important to distinguish between
frame-to-frame and frame-to-model tracking. The latter is
much more robust against noise since the model is very
smooth and contains much less noise than an input image.
Therefore, frame-to-model tracking is used in the ICP error
function:

Eicp =
∑
i

∑
j

wi j

〈
T · v(t+1)

j − v̂(t)
i

��� n̂
(t)
i

〉2
(14)

This formulation is the general point-to-plane error func-
tion which describes the quadratic distance of the point
T · v(t+1)

j to the tangent plane of v̂(t)
i that is defined by

its normal n̂(t)
i . The coefficients wi j describe the level

of correspondence between each pair. To find the global
minimum of this error function, the weights wi j and the
transformation T need to be optimized jointly. Unfortu-
nately this is an NP-hard problem, so in the ICP algorithm
the weights and the transformation are optimized sepa-
rately. The cost of this simplification is the loss of the
global optimum, only a local one can be guaranteed.

3.1.1 Finding Correspondences

Optimizing the weights wi j is further simplified using the
heuristic ICP performs. It is assumed that there exists a set
of correspondence pairs between the two points sets. From
this assumption, it follows that the weights are binary and
the error function can be simplified by using only one sum
over the correspondence set:

Eicp =
∑
i

〈
T · v(t+1)

i − v̂(t)
c(i)

��� n̂
(t)
c(i)

〉2
(15)

This has the great advantage that the complexity is drasti-
cally reduced of being only linear instead of quadratic.

The initial objective was to optimize the general error
function with respect to the weights. For our simplified
formulation, this problem has an intuitive solution. Each
term of the error is minimal if we choose for each point
v(t+1)
i the closest point v̂(t)

c(i) as the corresponding point.
KinectFusion further exploits the fact that these points

are generated from a camera with known intrinsic parame-
ters. Computing the correspondences is therefore done by
the projective data association algorithm (Blais and Levine,
1995). Here, the definition of closest point is not related
to being close in the three-dimensional space. Instead, for
each vertex v(t+1) (pi), which is defined in the local coor-
dinate system at time t + 1, we compute the vertex v̂(t)

c(i) at
time t that is at the same line of sight in the local system at
time t. This means, we first need to know the coordinates
of vertex v(t+1) (pi) in the other coordinate system by ap-
plying ∆T , then project it to pixel coordinates and use this
pixel pc(i) as a look up for the corresponding vertex:

v̂(t)
c(i) = v(t) (p(∆T · v(t+1) (pi))) (16)

An example of this procedure is shown in Figure 2. If
the two point sets are already perfectly aligned, then the

Figure 2: The Projective Data Association Operator. Cor-
respondence pairs are found by projection to the previous
camera coordinate system.
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correspondence coincides with the input vertex and thus it
is also the closest point in space.

3.1.2 Optimizing the error function

After having calculated the correspondences, the actual
error function can be optimized. So we wish to find a
rigid transformationT thatminimizes the error between the
correspondences. However, the rotation R of T has three
degrees of freedom but nine unknown values to optimize
for. In order to have aminimal representation, the following
one is commonly used:

ξ =
(
ω> , t>

)>
∈ R6 (17)

This vector can be transformed to the original matrix by

T = ξ̃ , ξ̃ =

[
exp [ω]× t

0> 0

]
(18)

For consistency with further approaches, we only consider
the exponential mapping of the rotation and directly model
the translation. Thiswill help us to compare the approaches
and will not affect the accuracy.
Since only small rotations are assumed, the exponential

mapping can be approximated linearly:

exp [ω]× =
∞∑
n=0

([ω]×)n

n!
≈ I + [ω]× (19)

By plugging this approximation into the error function and
rearranging the terms, one gets similarly to the derivation
of Low, (2004) the following result:

Eicp =
∑
i

*
,



v(t+1)
i × n̂(t)

c(i)
n̂(t)
c(i)



>

ξ +
〈
v(t+1)
i − v̂(t)

c(i)
��� n̂

(t)
c(i)

〉+
-

2

(20)

=
Jicp ξ + ricp


2

2
(21)

This is a standard equation system that can be solved by the
normal equation. The main advantage of such an equation
system here is the independence between the pairs of ver-
tices. Each row of the Jacobian and the residual can thus
be calculated separately in parallel which makes it very
suitable for a GPU implementation. In such an implemen-
tation, one would directly compute the components of the
normal equation:

J>icp Jicp =
∑
i

j>i · ji , J>icp ricp =
∑
i

j>i · ri (22)

ji =


v(t+1)
i × n̂(t)

c(i)
n̂(t)
c(i)



>

, ri =
〈
v(t+1)
i − v̂(t)

c(i)
��� n̂

(t)
c(i)

〉
(23)

Each summand is thus be computed independently in par-
allel and the total sum is then be obtained by a tree reduc-
tion. Since the memory cost is only linear in the number of

correspondences, the total memory consumption is man-
ageable. This property is very important since GPU’s have
only a very limited amount of memory compared to CPU’s.
Minimizing the footprint of such an algorithm is therefore
a very important task and is also indirectly a criterion for
being able to run in real-time.

In order to prepare for the next steps, we multiply both
the Jacobian and residual by −1. This does not change the
result but results in a nice notation:

ji = −


v(t+1)
i × n̂(t)

c(i)
n̂(t)
c(i)



>

=
(
−n̂(t)

c(i)

)>
·

[
[−v(t+1)

i ]× I
]

(24)

ri = −
〈
v(t+1)
i − v̂(t)

c(i)
��� n̂

(t)
c(i)

〉
=

〈
v̂(t)
c(i) − v(t+1)

i
��� n̂

(t)
c(i)

〉
(25)

Later we will come back to this point and show what this
reformulation actually means how it can be used.

The final step is to solve the equation system. Both com-
ponents of the normal equation are only six-dimensional
so this step is performed very efficiently on the CPU by a
Cholesky decomposition. Finally, the estimated parame-
ters ξ can be used to update the incremental transformation:

∆T ←

[
exp [ω]× t

0> 0

]
· ∆T (26)

As mentioned at the beginning, these steps must be per-
formed iteratively until either the error falls below a thresh-
old or a maximum number of iterations is reached. To
improve the result, typically a three-level coarse-to-fine
scheme is used where the images are step-wise filtered
and down-sampled to lower resolutions. During the opti-
mization, one starts at the coarsest level and then refines
the solution until reaching the finest level. This helps to
avoid local minima and guides the optimization towards
the global optimum. However, there is still no guarantee
to reach it.

3.2 Photometric ICP
The KinectFusion system was tested in several scenarios
and while the accuracy is quite high in smaller scenes, it
drops significantly on larger ones. Especially if the amount
of characteristic features is low, e.g. on walls, only using
the depth information is not sufficient to compute the cam-
era pose. Steinbrücker et al., (2011) andKerl et al., (2013b)
used the color information to overcome this.

Themain idea here is that if the camera has onlymoved a
little bit like it is shown in Figure 3, the appearance of scene
is the same on both images. Physically, thismeans the color
of an object is the same and therefore its reflectance be-
havior does not change. This results in the assumption
the whole scene mainly reflects perfectly diffuse and that
specular parts can be neglected. For mirror-like objects,
this assumption would of course fail, but usually walls, ta-
bles and most other objects can be approximately modeled
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(a) First input image (b) Second input image (c) Warped first image

Figure 3: Example of warping, taken from Steinbrücker et al., (2011).

in this way. So based on this assumption, the so called
photometric error can be formulated as

Ergbd =
∑
i

(
I (t)
g (w(ξ, pi)) − I (t+1)

g (pi)
)2

(27)

where I (t)
g , I (t+1)

g are the intensity images computed from
the RGB images at time steps t and t + 1. Special care
about the choice of the coordinate system has to be taken
here. As we will see later, we need to use the same system
as in the KinectFusion ICP. So unlike in the original paper,
we use this formulation to describe the error. The vector
w(ξ, pi) is the warped pixel and defined according to the
incremental transformation ξ :

w(ξ, pi) = Π (K · ξ̃ · ∆T · v(t+1) (pi)) (28)

Intuitively, the warp takes a vertex from time step t + 1
and transforms it into the local camera coordinate system
at time t. Then, it is moved according to the optimization
parameters and finally projected to pixel coordinates. A
correct alignment would move the vertex in such a way
that after projection the intensity value at the corresponding
pixel is the same as the one of the starting pixel.
Figures 3 and 4 show an example of this idea. Note that

the RGB image of the model is not used here since it is not
as precise as the captured one and therefore frame-to-frame
tracking is performed for the color values. To prepare for
the next step, the warped point is written as a mapping:

v(ξ, pi) = ξ̃ ·
(
∆T · v(t+1) (pi)

)
= ξ̃ · v(t+1)

i (29)

One important note has to bementioned at this point. v(t+1)
i

is the same point as in the KinectFusion ICP error and the
warping functionw is essentially themapping used to com-
pute the correspondences. Knowing this, the Photometric
ICP is in fact an ICP that operates on intensity images. The
error can now be rewritten as

Ergbd =
∑
i

(
d(ξ, pi)

)2 (30)

d(ξ, pi) = I (t)
g (Π (K · v(ξ, pi)) − I (t+1)

g (pi) (31)

Like in KinectFusion, one wants to apply the Gauss-
Newton method to solve the problem iteratively. This re-
quires that the error function needs to be linearized which
is done by a Taylor series of the parameters ξ :

d(ξ, pi) ≈ d(0, pi) +
∂d
∂ξ

(0, pi) · ξ (32)

=
(
I (t)
g (Π (K · v(t+1)

i ) − I (t+1)
g (pi)

)
+
∂d
∂ξ

(0, pi) · ξ

(33)

The first term is the current residual ri and states the dif-
ference in the intensity values under the current alignment.
The other term is the derivative of the energy with respect
to ξ , an 1× 6 matrix and the i-th Jacobian ji . By using the
chain rule the Jacobian can be is given as

∂d
∂ξ

(0, pi) =
∂I (t)

g

∂Π
·
∂Π

∂K
·
∂K

∂v
·
∂v

∂ξ
(0, pi) (34)

= ∇ I (t)
g ·

∂Π

∂(x, y, z)>
· K ·

∂v

∂ξ
(0, pi) (35)

Thus, one needs to compute the image gradient

∇ I (t)
g =

*
,

∂I (t)
g

∂x
,
∂I (t)

g

∂y
+
-
∈ R1×2 (36)

the derivative of the dehomogenization

∂Π

∂(x, y, z)>
= *

,

1
z 0 − x

z2

0 1
z −

y

z2

+
-
∈ R2×3 (37)

and the derivative of the moving point ∂v
∂ξ ∈ R

3×6 we
are optimizing for. We found that there exists a compact
formula for computing the last derivative. Gallego and
Yezzi, (2015) showed a nice derivation of this formula and
also considered the important case with ξ = 0:

∂v

∂ωi
(0, pi) =

∂ ξ̃

∂ωi
(0) · v(t+1)

i (38)

=
∂ exp [ω]×

∂ωi
(0) · v(t+1)

i (39)

= [ei]× · v(t+1)
i (40)

= [−v(t+1)
i ]× · ei (41)
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∂v

∂ti
(0, pi) =

∂ ξ̃

∂ti
(0) · v(t+1)

i (42)

=
∂ t

∂ti
(43)

= ei (44)

Here, ei is the i-th basis vector of the standard basis of R3.
More compactly, these derivatives can be written in matrix
form by

∂v

∂ξ
(0, pi) =

[
[−v(t+1)

i ]× I
]
∈ R3×6 (45)

And here we see the great similarity to the final formula for
the normal equation components of the KinectFusion ICP
given in equation (24). Also the residual term coincide
with the one given in equation (25). In both cases, we were
able to reformulate the problem such that it can be solved by
the Gauss-Newton method and thus calculate a Jacobian.
Here, the Jacobian is obtained directly by using the chain
rule while in the KinectFusion ICP setting it is derived
by using the small angles assumption. Now, we can also
state what the last reformulation means. The derivative
∂v
∂ξ (0, pi) of the moving point is also be present there and
the term before it, namely the negative transposed normal(
−n̂(t)

c(i)

)>
, is the derivative of the point-to-plane error.

To sum this up, the photometric energy can now also be
written like the point-to-plane energy:

Ergbd =
Jrgbd ξ + rrgbd


2

2
(46)

So we can solve it by the Gauss-Newton method in ex-
actly the same way as before. As mentioned before, Kerl
et al., (2013b) use a slightly different approach in the first
iteration of their DVO SLAM system. While the Jacobian
matrix is the same as here, they additionally weight it us-
ing some statistical distributions. The weights come from
the Maximum-A-Posteriori formulation and help to im-
prove the results. In their approach, this is a t-distribution.
Its covariance matrix is used for weighting but must be
computed beforehand. In addition, a motion prior is used

Figure 4: The warping function w shown here for a pixel x
is essentially a correspondence mapping, taken from Kerl
et al., (2013b). Note that in our setting the roles of two
images are changed meaning that red indicates the new and
green the previous measurements.

guiding the optimization to prefer small motions. So while
this variant can also be implemented efficiently, the au-
thors already state that approximately twice the run-time is
needed.

3.3 Combined ICP

So far, we showed two different approaches and their sim-
ilarities. While the photometric variant of the ICP avoids
the use of noisy depth data, it suffers from the assumption
that the surfaces reflect ideally diffuse. Fortunately, both
error functions use the same correspondences, are solved
in the same way, defined in the same coordinate system and
their limitations do not affect each other. Whelan et al.,
(2013) used these observations and combined the two er-
ror function so that all given information is used, the depth
and the RGB image. Basically, the two error functions are
weighted by a factor and then summarized to a combined
Jacobian matrix and residual vector:

Ecombined = Eicp + λ Ergbd (47)(
J>icpJicp + λJ

>
rgbdJrgbd

)
ξ = J>icp ricp +

√
λJ>rgbd rrgbd

(48)

The computation costs are of course higher than using
only one of the error terms. However, both have linear
complexity in time andmemory consumptionwhichmeans
that the total cost increases only by a constant factor. On
the other hand, one can exploit the similarities between the
two errors and speed-up the computation of the Jacobians.

This idea was further used in Kintinuous (Whelan et al.,
2015b) and ElasticFusion (Whelan et al., 2015a). Kintin-
uous is an extension of the KinectFusion system that use a
moving volume to allow large scenes to be reconstructed.
ElasticFusion drops the volumetric structure and uses sur-
fels for reconstruction. However, it still fuses measure-
ments and therefore combines the fusion principle from
the KinectFusion world with the surfel structure that is
typically used in the family of the Normal Distribution
Transform. Kerl et al., (2013a) also tried to combine both
error metrics. In the second and current iteration of their
DVO SLAM system, the Maximum-A-Posteriori approach
is again used to solve the problem. In a post-processing
step, all three systemperform loop closure to achieve global
consistency of the reconstructed model.

3.4 Generalized ICP

We continue our review of registration algorithms in the
family of the ICP approaches by some probabilistic vari-
ants. As already introduced, Kerl et al., (2013b) con-
verted the ICP energy into a Maximum-A-Posteriori prob-
lem. Similarly, Segal et al., (2009) presented a probabilistic
variant which they called Generalized ICP. The basic idea
is that the two sets of measurementsA,B, which we want
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Figure 5: Influence of the covariancematrices on the plane-
to-plane error, taken from Segal et al., (2009).

to align, are drawn from underlying sets Â, B̂ probabilis-
tically according to the normal distributions

v(t+1)
i ∼ N (v(t+1)

i opt , Σ
(t+1)
i ) (49)

v̂(t)
j ∼ N (v̂(t)

j opt , Σ
(t)
j ) (50)

This allows to model uncertainty in the measurements.
Therefore instead of minimizing an energy, a Maximum-
Likelihood estimate is computed:

T ∗ = arg max
T

∏
i

p(d (T )
i ) = arg max

T

∑
i

log
(
p(d (T )

i )
)
(51)

with distances

d (T )
i = v̂(t)

c(i) −T · v
(t+1)
i (52)

Now it is assumed that both points are drawn from inde-
pendent normal distributions, it follows that

d (T )
i ∼ N (0 , Σ (t)

c(i) +T Σ (t+1)
i T ) (53)

Using this observation, the optimization problem can be
formulated as

T ∗ = arg min
T

∑
i

(d (T )
i )> · (Σ (t)

c(i) +T Σ (t+1)
i T )−1 · d (T )

i

(54)

To solve this, one first needs to know what the covariance
matrices Σ (t)

c(i), Σ
(t+1)
i are. If we use for example the config-

uration Σ (t)
c(i) = I, Σ (t+1)

i = 0, the error functions reduces
to the point-to-point distance where the square of the Eu-
clidean distances between all point pairs is considered. In
a similar way, also the point-to-plane distance can be con-
structed from this formulation. Therefore, this approach
can be seen as a generalization of the standard ICP.
In order to define the so called plane-to-plane distance,

the covariance matrices are chosen in a way such that the
variance in the tangent plane is constant in every direction
but small along the normal direction. For a normal that
points along the x-axis, the covariance matrix would thus
be

Σi =
*.
,

ε 0 0
0 1 0
0 0 1

+/
-

, ε ∈ [0, 1] (55)

Other covariances can be created from this one by using
rotation matrices that map the normal to the x-axis. This is
also shown in Figure 5. Here, the covariance matrices are
visualized using ellipses and indicate uncertainty that is
high in the tangent plane but quite low in normal direction.

Generalized ICP only changes the energy formulation
and keeps the other steps unchanged. This means that the
correspondences can be computed in the same way as for
the other variants . However, the optimal transformation
must now be computed using the Conjugate Gradient al-
gorithm. Fortunately, there exist GPU implementations of
this algorithm and those only need to operate on the cor-
respondence set. Therefore Generalized ICP should also
be quite efficient and fast enough to be included in our
reconstruction pipeline. Since its optimization method is
different from the other ones, the performance in terms of
accuracy will be interesting, so we will compare this later
more carefully.

3.5 Direct Volume Matching
Another quite interesting variant of doing frame-to-model
tracking is to use the volumetric data structure of our 3d re-
construction framework directly. So instead of ray-casting
the model from the volume and matching the new RGB-D
image to it, one directly matches the incoming image to the
volume. Bylow et al., (2013) and Canelhas et al., (2013) in-
vestigated this possibility and adjusted the Gauss-Newton
solver to operate on the implicitly stored surface.

This surface is stored in the volumetric data structure
and represented by a function

Dt : Z3 → [−1 , 1] (56)

that maps voxels to truncated signed distance values. The
three-dimensional space is therefore discretized and a
signed distance field is constructed by this function. The
surface itself is encoded as the zero-set of this function. Ev-
ery time a new depth map gets integrated into the volume,
the signed distance function Dt is updated:

Dt+1(x) =
Dt (x) Wt (x) + dt+1(x) wt+1(x)

Wt (x) + wt+1(x)
(57)

Wt+1(x) = Wt (x) + wt+1(x) (58)

To align the new data, an energy based on the signed dis-
tance can now be formulated:

Evolume =
∑
i

(
Dt (ξ̃ · v

(t+1)
i )

)2
(59)

Here, the fact is exploited that the signed distance not
only gives a distance to the surface but also a direction.
Thus, one is able to distinguish whether the current voxel
is inside or outside the object. Like in the Photometric ICP
this distance can now be linearized by a Taylor expansion

Dt (ξ̃ · v
(t+1)
i ) ≈ Dt (v

(t+1)
i ) + ∇Dt (v

(t+1)
i ) · ξ (60)
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So we again can express the error in terms of a Jacobian
and a residual:

Evolume = ‖Jvolume ξ + rvolume‖
2
2 (61)

Unfortunately, this formulation has several drawbacks in
contrast to the previous ones. It is of course directly de-
signed for our pipeline and exploits it but from the compu-
tational point-of-view it is not very efficient.
First, we consider the formulation more carefully. The

signed distance is defined on discrete coordinate while in
the error function, the actual 3D position v(t+1)

i of a point
is inserted. This means that the signed distance must be
estimated using trilinear interpolation which requires eight
look-ups in the volume. In a full volume, this operation
would be very fast at the cost of the infeasible memory re-
quirements. To do this in our scenario, we need eight hash
table look-ups followed by eight access to the volume. One
could sacrifice accuracy by speed when only the distance
of the nearest voxel is used. However since drift is very
critical in this application, this is also not an option. Even
worse, the gradient of the signed distance function has to be
computed. Usually, this is done by finite differences. But
here, these are differences of trilinear interpolated values
so the cost is even higher.
We also see a general limitation of this approach. It

can only operate perfectly on full volumes. However, our
pipeline exploits the facts the empty space is not needed for
reconstruction and thus only stores a small region round
the actual surface, called the truncation region. Only if the
gradient and the residual are evaluated inside this region,
they are correct. Otherwise, we would have to prune them.
If the camera however moves quite fast, some important
parts may get out of this region and the performance of the
tracker would decreases rapidly. Therefore, we believe that
this approach will not give the best performance neither in
accuracy nor in run time.

4 Normal Distribution Transform

Up to now, we showed several approaches in the family of
the ICP algorithm. In the following, we will consider an-
other family of algorithms, the Normal Distribution Trans-
form (NDT) invented by Biber and Straßer, (2003). While
ICP algorithms directly align the two point sets, NDT
changes the representation of one point set to a mixture
of normal distributions and then tries aligns the other set
to this model.

4.1 3D-NDT

Whereas the original NDT algorithm only operated on 2D
data, Magnusson et al., (2007) extended the framework to
3D. Like in the 2D version, the data is subdivided into
smaller sets by a regular volumetric grid. In each cell Ci ,

the points falling in it are modeled by a normal distribution
N (µ j, Σ j ):

µi =
1
K

K∑
k=1

v̂(t)
k

(62)

Σi =
1

K − 1

K∑
k=1

(
v̂(t)
k
− µi

) (
v̂(t)
k
− µi

)>
(63)

where K is the number of points in the current cell Ci .
For a given point, thew likelihood that it is observed in the
model can be expressed by the probability density function

pc(i) (xi) ∝ exp *
,
−

(xi − µc(i))> Σ−1
c(i) (xi − µc(i))

2
+
-

(64)

Since the task is to align the two point sets, the likelihood
of all points of the new measurement should be high. Thus
a score function can be defined in the following way:

sp2d (ξ ) = −
n∑
i=1

pc(i)
(
ξ̃ · v(t+1)

i

)
(65)

The advantage of this formulation is that analytic deriva-
tives of the score function exist. Finding the optimal pose
ξ that minimizes this function is actually finding a pose
where the first derivative of the score function is zero.
Like in the original paper, Magnusson et al., (2007) also
suggest to use the Newton method and solve the following
equation system:

H ξ = −g (66)

Here, H ∈ R6×6 denotes the Hessian and g ∈ R6 the gradi-
ent of sp2d . In their paper, Magnusson et al., (2007) used
the axis-angle representation of a rotation where the angle
is considered separately and the axis is always normalized.
In this case, they optimized seven instead of six parameters.
However, this only leads to a slightly different Hessian and
gradient. To be consistent with the other approaches, we
use this formulation.

Now, we discuss the strengths and weakness of the 3D-
NDT. As a preprocessing step, the normal distributions
have to be constructed. Thus, all points need to be asso-
ciated to their corresponding cells in the regular grid and
the mean and covariance of each cell must be calculated.
Computing nearest neighbors might be problematic since
building search structures such as KD-Trees on the GPU is
complicated. Furthermore, the projective behavior of the
points is not further considered or exploited which makes
the model more general. On the other hand, some op-
timization potential is lost making the approach possibly
slower than others.

As stated in their paper, this representation is mush more
compact than storing and using all points. So from the com-
putational point of view, the change in the representation
introduces additional complexity but fortunately this only
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has to be performed on the fixed data set that is not mov-
ing. Nevertheless, we have to take this preprocessing into
account. Most computation steps including preprocessing
and matching can be performed in parallel on the GPU.
Like in the ICP approaches, a tree reduction can be used to
compute the Hessian and the gradient.

4.2 Color 3D-NDT
One big advantage of using normal distributions is that
they can be modeled in any dimension. That was the rea-
son for the extension to 3D and it is also the reason to
extend it to incorporate colors. Huhle et al., (2008) de-
veloped this extension. A straightforward extension would
be to convert colors to the L∗a∗b∗ color space, where per-
ceptual differences coincide to the L2-distance, and use a
6D feature vector consisting of the 3D position and the
color. Then, only the Hessian and the gradient have to
be adjusted and the solution is again found by the Newton
method. However, Huhle et al., (2008) observed that a
single normal distribution per cell is not able to model the
color distribution accurately.
To construct a better model, the authors suggest to use a

Gaussian Mixture Model (GMM):

pi (x∗) =
M∑
j=1

α j N (µ∗i, j , Σ
∗
i, j ) (67)

Here, x∗ refers to the color and x to the 3D position of a
point. So for each cell Ci , M normal distributions are com-
puted using ExpectationMaximization (EM)with an initial
guess calculated from k-means. These color distributions
are then used as weighting functions to the 3D-NDT algo-
rithm:

wi j (x∗i ) = exp *
,
−

(x∗i − µ
∗
c(i), j )

> Σ∗−1
c(i), j (x∗i − µc(i), j )

2
+
-

(68)

Having these weights, the mean and the covariance of the
3D positions of each color distribution are computed. Note
that in contrast to the standard 3D-NDT algorithm M nor-
mal distributions N (qi j, Σi j ) are computed for each cell
Ci . The score function is then given as

sp2d,color (ξ ) = −
n∑
i=1

M∑
j=1

wi j pc(i), j
(
ξ̃ · v(t+1)

i

)
(69)

where the probability density function is now defined as

pc(i), j (xi) ∝ exp *
,
−

(xi − µc(i), j )> Σ−1
c(i), j (xi − µc(i), j )

2
+
-

(70)

As in 3D-NDT, the score can be optimized by the Newton
method.

This approach inherits most of the properties of the un-
derlying 3D-NDTalgorithm. However, the amount ofwork
per cell is now much higher than before. Huhle et al.,
(2008) suggest to use M = 3 mixture models to guarantee
unique poses which requires 2 · 3 = 6 normal distribu-
tions per cell. However, these normal distributions have to
be computed by Expectation Maximization and k-means
which both can run in parallel on subsets of the data on the
GPU. Since the number of iterations varies for each subset,
some performance of the GPU might be lost. In addition,
the preprocessing step is much more costly and the com-
pactness of the model is also lower than before because
now 6 normal distributions per cell are used.

4.3 D2D 3D-NDT

Some years later, Stoyanov et al., (2012) came up with an
idea that is similar to the Generalized ICP. In the standard
ICP, the point-to-plane distance between two point clouds
is minimized and this was generalized to what Segal et al.,
(2009) called the plane-to-plane distance. Consequently,
the question arose whether it was possible to extend the
3D-NDT in the same way meaning that two sets of normal
distributions should be registered. The task is therefore to
find a transformation that aligns the two models

T (M (t+1)
NDT ) = {N (T (µi),T (Σi))} (71)

M (t)
NDT = {N (µ j, Σ j )} (72)

Distances between two probability density functions can
be defined in different ways. However, the standard L2-
distance between all possible points is a simple but reason-
able choice:

dL2 =

∫ (
p(x | M (t)

NDT ) − p(x | T (M (t+1)
NDT ))

)2
dx (73)

After rearranging the terms and applying some identities
of normal distributions, the L2-distance simplifies to

dL2 ∼
∑
i

∑
j

p(0 | T (µi) − µ j,T (Σi) + Σ j ) (74)

A new score function can now be defined:

sd2d (ξ ) = −
∑
i

∑
j

p(0 | T (µi) − µ j,T (Σi) + Σ j ) (75)

As a consequence of this formulation, the optimization can
be performed exactly in the same way as for the original
3D-NDT algorithm. Only the mean and the covariance
differ. Like Magnusson et al., (2007), the score function
is approximated by only considering the nearest normal
distribution for each of the transposed ones. Thus, the
matching here is faster than the standard 3D-NDT if the
size of the model is significantly smaller than the size of
the scan data. On the other hand, two models have to
be constructed in a preprocessing step resulting in some
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overhead. Similar to the ICP optimization, a coarse-to-
fine scheme improves the results by optimizing in different
levels of details to hopefully avoid local minima. While in
the ICP setting this can be done cheaply by calculating the
first levels of the Gaussian pyramid of the RGB-D images,
here all points have to be considered in each level making
the construction slower. Stoyanov et al., (2012) already
recognized that this step is more costly than the actual
registration so we have to consider this in our comparison.

4.4 Multi-Resolution Surfel Maps

More work was done to develop a model that allows cheap
matching like the D2D 3D-NDT and also incorporate color
information as in Color 3D-NDT. The result of this work
were Multi-Resolution Surfel Maps invented by Stückler
and Behnke, (2014). In their work, the authors extend the
probabilistic framework of the Normal Distribution Trans-
form by adding additional information.
First, a mean µ ∈ R6 and a covariance matrix Σ ∈ R6×6

on the shape and color are calculated for each cell. Inspired
by the Fast Point Feature Histograms (FPFH) by Rusu et
al., (2009), a descriptor h ∈ R12 is constructed and used
as an additional source of information for correspondence
finding. To achieve high frame-rates, the authors state that
the neighborhood relations between the cells are stored
explicitly, so the 26 neighbors can be found in constant
time. The surfel maps also provide a multiple resolution
structure by using octrees to implicitly support a coarse-
to-fine scheme.
In the registration stage, a score function is optimized

by first using the Levenberg-Marquardt method to get an
initial coarse pose estimate and then refining this estimate
by the Newton method. In particular, Stückler and Behnke,
(2014) used the same score function as inD2D3D-NDTbut
only considered correspondences with sufficiently small
L2-distance between the shape-texture descriptors. In a
post-processing step, they detect loop closures to further
reduce accumulated drift and improve results. We will
later discuss this concept more carefully later.

Figure 6: 2D illustration of the shape-texture descriptor,
taken from Stückler and Behnke, (2014).

So in principle, Multi-Resolution Surfel Maps are a con-
sequent evolution in the family of the Normal Distribution
Transform. Since they inherit most properties from their
predecessors, we only need to evaluate how efficient their
construction on the GPU can be. Originally, this approach
was developed and implemented on the CPU and the au-
thors already argue that they gained significant speed-ups
by using all cores of the CPU. However, to use the full
potential of GPU’s the whole process must run fully in
parallel. The only challenging part is the octree structure.
In the literature, there are many papers on GPU octrees
but the explicitly stored neighbors here are somehow prob-
lematic. While they are allowing us to get a constant time
lookup, they introduce a randomness in the memory look-
ups and additional memory costs. And since GPUmemory
is still quite valuable and GPU’s typically operate on co-
herent data, it is not directly clear how well a GPU imple-
mentation of Multi-Resolution Surfel Maps will perform.
However, we highlight again that this approach introduces
a lot of complexity. That is probably because this family of
algorithms can be easily extended to a full reconstruction
algorithm and is therefore more than a simple registration
algorithm.

5 Sparse Methods

Algorithms that are more oriented in the field of Computer
Vision use features to estimate the camera pose. So instead
of using all the data and minimizing an error function, one
only considers parts of the scene which are informative
and characteristic. This is reasonable since only very few
points in an image are characteristic enough to describe
the transformation like border points or points with a very
strong gradient. More generally, these points can be seen as
features and the task is to detect enough of them to robustly
estimate the camera pose. An example of detected features
is shown in Figure 7.

In the following, we will consider the approaches of En-
dres et al., (2012) and Huang et al., (2011). While the
basic idea is the same in both systems, they made different
decisions on the kind of features and how they are matched.
In particular, the RGB-D SLAM system by Endres et al.,
(2012) use the combination of SIFT, SURF and ORB fea-
tures. Since they argue that especially the SIFT features are
computationally demanding, a GPU-accelerated version is
used. After the features are matched, RANSAC is used to
compute the best rigid transformation. To reduce acciden-
tal accumulation of drift, the registration is performed on
the last three recent frame and seventeen randomly sam-
pled earlier frames. Finally, they detect loop closures and
optimize the pose graph to further reduce drift.

A similar technique is used by the fovis algorithm of
Huang et al., (2011). But they only rely on FAST fea-
tures and use a different inlier detection method. In-
stead of RANSAC, the problem is formulated in a graph
of consistent features. To get the best transformation, a
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Figure 7: Extracted features shown on the RGB image and the 3D point cloud, taken from Henry et al., (2012).

Maximal-Clique-Problem needs to be solved. Unfortu-
nately, Maximal-Clique is NP-complete, so the exact solu-
tion can not be determined efficiently. The authors there-
fore suggest to use a greedy approximation to solve the
problem in less time. To reduce drift, the registration
is performed against a reference key-frame instead of the
previous frame. It is a common technique and also used
in other approaches like in Multi-Resolution Surfel Maps.
For global consistency, loop closures are detected.
Unlike all previously discussed algorithms, sparse meth-

ods can not so easily be implemented on the GPU. Basi-
cally, that class of algorithms can be split into three steps.
First, features are computed. This can be done on the
CPU if they are fast to evaluate. For computationally more
demanding descriptors, like the SIFT descriptor, a GPU
version has to be used. In case of the SIFT descriptor,
there is such an implementation publicly available (Wu,
2007). Second, the features have to be matched to get a list
of pairs. Since the features are independent of each other,
this can be parallelized and speeded-up by only considering
a reasonably small search window. Third, the best trans-
formation from the pairs has to be found. While RANSAC
search the solution by randomly testing candidates, the
greedy approximation of Maximal-Clique iteratively im-
prove the found solution. Furthermore, the solver for the
transformation parameters ξ must be implemented on the
GPU in this case. This is non-trivial and special care has
to be taken here to avoid numerical instabilities. But since
this method is sparse, CPU versions can also be very fast.

6 Loop Closure
The last point we want to discuss are loop closures. In a
few previously considered algorithms, the authors try to
achieve global consistency by explicitly modeling this as a
loop closure detection problem. This is rather important
to prevent implausible reconstructions like it is shown in
Figure 8. The basic idea is to build a graph where the nodes
represent the camera poses ξi of some selected key-frames

and edges between them the incremental transformations
∆Ti j . In order to optimize the graph, the corresponding re-
construction representations of the key-frames are attached
to them. The optimization itself is usually performed by
the generic graph optimization framework of Kümmerle
et al., (2011) by minimizing a cost function based on the
key-frames.

In the DVO SLAM system of Kerl et al., (2013a) this
framework is used. Stückler and Behnke, (2014) also con-
sidered loop closures to improve their results. Fusion sys-
tems using loop closures that are closer to our pipeline
are the Kintinuous (Whelan et al., 2015b) and ElasticFu-
sion (Whelan et al., 2015a) system. While in Kintinuous a
moving volume approach is used and the pose graph con-
sisting of cloud slices of this volume is optimized after
detecting a loop closure, ElasticFusion uses a surfel-based
map representation and also overcomes the need of a pose
graph.

However, our VoxelHashing pipeline strongly exploits
the fact that the scene is static and thus culls all empty parts
of the volume away. This assumption is very restrictive and
even the loop closure systemofKintinuous can not be easily
used since it would require to deform at least a part of the
volume. Therefore, large parts of the hash table have to be
changed since voxel blocks are moving. This is a drawback
of our pipeline and nevertheless we include this strategy
into our evaluation to see how much results improve when
considering global consistency.

7 Comparison
In this part, we compare the discussed algorithms. For-
tunately, most of them use the RGB-D SLAM benchmark
by Sturm et al., (2012) to show their performance. The
measurements of the scenes contained in this benchmark
are real-world data and also ground truth trajectories are
available. In addition, they also define useful error metrics
like the absolute and relative pose error and provide a tool
for evaluation.
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Figure 8: Drift accumulates and gets visible if a loop is closed, taken from Kähler et al., (2015).

However since the benchmark contains many different
test scenes, each author of the presented papers have cho-
sen different subsets of the provided scenes making a direct
comparison impossible. Thus, we decided to compress the
collected results. So instead of simply listing and com-
paring the error values measured by the authors directly,
we use Won-Lost-Tables which are commonly used in the
field of Machine Learning to compare the performance of
learning algorithms. The main advantage is that they are
abstracting from the absolute results and only measure the
relative performance between two algorithms for the whole
dataset. In particular, for each paper we construct a table
that summarizes the results in a way that we can compare
each pair of algorithms and decide which one performs
better on the test set. Note that we have only done this
for papers where the respective authors have tested their
approach against more than one of the other approaches
we have mentioned in this report and also used enough test
scenes.

Constructing these tables is done in the following way.
First, we compute the mean error of each algorithm L:

ME(L) =
1
n

n∑
i=1

ei (L) (76)

From these means, one can now compute the quotient
ME(L1) /ME(L2) which states the relative mean error of
algorithm L1 compared to L2. This is our first measure-
ment and it is built for all pairs of algorithms. It compresses
the performance across all test cases and tells us howmuch
L1 is better or worse than L2.
The second measurement is constructed by evaluating

which algorithms was better at which test case. This means
that for each scene one determines if L1 has won, lost or
was equally good against L2 and accumulates this infor-
mation. As a result, one gets the number of wins, losses
and ties of L1 against L2 in the complete test set. Using
that information helps to interpret the relative mean error
since one large deviation can influence this value quite sig-
nificantly. On the other hand, the won/lost/ties statistic is

not affected from such deviations and thus helps us to give
better interpretations. The number of scenes on which the
approaches are evaluated is also implicitly encoded in these
tables by summing the wins, losses and ties.

In Table 1 we show the results of our comparison. Here,
the ICP variants KinectFusion ICP (Izadi et al., 2011; New-
combe et al., 2011; Nießner et al., 2013), Photometric
ICP (Steinbrücker et al., 2011), Combined ICP (Whelan
et al., 2013), Kintinuous (Whelan et al., (2015b)), Elastic-
Fusion (Whelan et al., (2015a)), Generalized ICP (Segal
et al., 2009) and DVO SLAM (Kerl et al., 2013a) are com-
pared. The NDT approaches are D2D 3D-NDT (Stoyanov
et al., 2012) and Multi-Resolution Surfel Maps (Stück-
ler and Behnke, 2014) and from the sparse methods fovis
(Huang et al., 2011) and RGB-D SLAM (Endres et al.,
2012) are chosen. To ensure an objective comparison, all
results are weighted equally.

First, we focus on the results of Whelan et al., (2013).
They introduced the Combined ICP and compared its per-
formance against the geometric and the photometric vari-
ant. In addition, they also evaluated the fovis system. From
the table, one can infer that the Combined ICP is much
stronger than the KinectFusion ICP and Photometric ICP.
This result is quite intuitive since the motivation of it was
that the strengths and the weaknesses of the two approaches
were different and a combination would help both parts to
perform better. Furthermore, Photometric ICP seems to
be also much better than the standard KinectFusion ICP
approach. Here, the much lower noise in the RGB images
allows the algorithm to be more precise. fovis performs
also very well and is on par with the Combined ICP while
having a slightly lower mean error. Experiments of Whe-
lan et al., (2013) also showed that especially in cases where
only few or no visual and geometric features are available,
like in corridor scenes shown in Figure 9, the combination
of depth and color data stabilizes the camera pose estima-
tion process and makes it very robust in such scenarios.

Next, we analyze the results of Multi-Resolution Surfel
Maps. Interestingly, this approach is considered to be
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Table 1: Won-Lost-Tables. If Lc and Lr indicate the column and row algorithms, then the lower triangle shows the number
of win-loss-ties of Lc versus Lr whereas the upper triangle indicates the quotient of the average errors ME(Lr ) /ME(Lc).

(a) Results built from Stückler and Behnke, (2014) using relative pose error (RPE) median

Multi-Resolution
Surfel Maps Photometric ICP Generalized ICP D2D 3D-NDT fovis

Multi-Resolution
Surfel Maps 0.667 0.646 0.699 0.859

Photometric ICP 18-3-1 0.968 1.049 1.288

Generalized ICP 19-3-0 12-10-0 1.083 1.331

D2D 3D-NDT 20-2-0 15-7-0 9-13-0 1.229

fovis 18-4-0 17-4-1 9-13-0 5-17-0

(b) Results built from Kerl et al., (2013a) using absolute trajectory error (ATE) root-mean-square error (RMSE)

DVO SLAM RGB-D SLAM Multi-Resolution
Surfel Maps KinectFusion ICP

DVO SLAM 0.629 0.791 0.114

RGB-D SLAM 8-2-0 1.256 0.182

Multi-Resolution
Surfel Maps 8-2-0 3-7-0 0.145

KinectFusion ICP 10-0-0 9-1-0 9-1-0

(c) Results built from Whelan et al., (2013) using relative pose error (RPE) root-mean-square error (RMSE)

Combined ICP KinectFusion ICP Photometric ICP fovis

Combined ICP 0.233 0.726 1.289

KinectFusion ICP 4-0-0 3.117 5.537

Photometric ICP 4-0-0 0-4-0 1.224

fovis 2-2-0 0-4-0 1-3-0

(d) Results built from Whelan et al., (2015b) using absolute trajectory error (ATE) root-mean-square error (RMSE)

Kintinuous DVO SLAM RGB-D SLAM Multi-Resolution
Surfel Maps

Kintinuous 1.494 1.010 1.024

DVO SLAM 0-10-0 0.676 0.685

RGB-D SLAM 4-6-0 6-4-0 1.014

Multi-Resolution
Surfel Maps 5-5-0 10-0-0 6-4-0

(e) Results built from Whelan et al., (2015a) using absolute trajectory error (ATE) root-mean-square error (RMSE)

ElasticFusion ElasticFusion
(no deformation) Kintinuous Multi-Resolution

Surfel Maps RGB-D SLAM DVO SLAM

ElasticFusion 0.236 0.355 0.053 0.358 0.356

ElasticFusion
(no deformation) 7-0-1 1.506 0.224 1.517 1.509

Kintinuous 6-2-0 5-3-0 0.148 1.007 1.002

Multi-Resolution
Surfel Maps 8-0-0 7-1-0 7-1-0 6.786 6.750

RGB-D SLAM 6-2-0 3-5-0 4-4-0 0-8-0 0.995

DVO SLAM 8-0-0 4-4-0 4-4-0 1-7-0 6-2-0

a reference algorithm in the literature since most of the
papers evaluated their approaches against it. Here, this has
the great advantage that if we assume that its performance
is the same across the papers, we are able to compare the

algorithms across this boundary. Stückler and Behnke,
(2014), the inventors of the Multi-Resolution Surfel Maps,
compared it to the Generalized ICP, the Photometric ICP,
fovis and D2D 3D-NDT on which it is based on. It is
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also not very surprising that Multi-Resolution Surfel Maps
outperform its competitors quite significantly in the number
of wins and also in relative accuracy. The main reason for
this is that none of the other algorithms explicitly model
a loop closure. So indeed the performance is better but
the algorithm is not a pure registration algorithm anymore.
We can also see that the Photometric ICP achieves very
good results and is most of the time better than the other
algorithms. This is again due to its design, it is the only
one except fovis andMulti-Resolution SurfelMapsthat uses
color information and is therefore better than the non-color
registration algorithms.
If we now compare Multi-Resolution Surfel Maps

against other algorithms implementing a loop closure sys-
tem, we see that its dominance is gone. A bit surpris-
ing are the results from Whelan et al., (2015a). Here,
the approach of Stückler and Behnke, (2014) totally fails
against all other algorithms by at least one order of magni-
tude. This is simply caused by two of the eight tests where
Multi-Resolution Surfel Maps probably computed totally
wrong poses resulting in a very high error. But even if we
only count the other six tests, the results are still not very
good. On the other hand, DVO SLAM seems to be very
robust and is either on par with or better than the other ap-
proaches. Its main advantage is the usage of both color and
depth data combined in a robust Maximum-A-Posteriori
formulation. However Kintinuous, which also used all the
available data, is accurate enough to be on par with it.
Here, we see another interesting effect. Even though the
Maximum-A-Posteriori model is much more general and
allows to weight each Jacobian and residual to be weighted
individually, this advantage can somehow be compensated
if a fused model that is much smoother and contain less

Figure 9: Reconstruction results of another data set, taken
from Whelan et al., (2013). From top to bottom and in
colors red, yellow, blue, green: KinectFusion ICP, Photo-
metric ICP, fovis, Combined ICP.

noise is used. While in KinectFusion, this seems to have
not a great impact, Kintinuous uses the advanced Com-
bined ICP and also models loop closures by deforming the
reconstruction. In that way, its performance is quite well.
However, further tests by Whelan et al., (2015b) showed
that DVO SLAM is in fact better and achieves better re-
sults. Nevertheless, it is interesting to see how a fused
model helps to find better poses.

Across all papers, KinectFusion ICP performs very bad
and is outperformed by all other algorithms. This is not
very surprising because most of its competitors have mod-
els that are more complex and use the data in a better way.
The sparse methods RGB-D SLAM and fovis also achieve
very good results and especially fovis is more accurate than
Generalized ICP, D2D 3D-NDT and the Photometric ICP.
ElasticFusion, probably the most advanced approach, beats
every other algorithm quite significantly and even with dis-
abled loop closure mechanism its performance is still very
good. This is in fact very surprising. Disabling loop clo-
sure detection removes the possibility to correct drift that
was accumulated during registration. Only if the estima-
tion of the camera pose is very accurate, loop closures get
less important. But in our scenario, the noise produced
by depth sensors is really problematic and thus we don not
expected such impressive results. The hybrid model that is
somehow in-between the classic volumetric approach and
the probabilistic NDT model seems to perform very well
and combine the strengths of both worlds.

7.1 Conclusion
Summarizing all results we can conclude that the most
powerful pure registration algorithm for our pipeline is the
Combined ICP approach. It is fast, accurate and achieve
very good results. If we consider all approaches, Elastic-
Fusion achieves the overall best performance and is still
good even if deformations are disabled. Its model also
seem to be better and more flexible than ours.

The main drawback of our pipeline is the dependence
on static scenes which makes it inflexible against defor-
mations. This includes the mentioned loop closures and
also dynamic scenes. Recently, Newcombe et al., (2015)
extended KinectFusion in this way to reconstruct moving
and deformable objects. ElasticFusion is also an example
of a more flexible system. All in all, we have discovered
interesting registration and reconstruction algorithms and
we hope that the report will help researchers to find new
ways to solve this hard problem.
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