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Abstract

In this paper, we present a method to generate a high res-
olution mesh from low poly mesh directly on GPU to re-
duce bandwidth overhead between GPU and CPU. We use
known methods such as subdivision surface, displacement
mapping and adaptive tessellation to generate more geom-
etry in certain parts where it is necessary. This method
is suitable for animation because small numbers of control
points are modified. The main aim of this work is effective
render a high quality mesh in the real time.

Keywords: Vector displacement map, Adaptive tessella-
tion, Feature adaptive subdivision

1 Introduction

Since the first GPU has been released, GPU performance
has been highly increased. Modern high-end GPUs can
render around 6 billion triangles per second [11]. Mem-
ory bandwidth and an I/O latency has been improved too,
but not as much as GPU render speed. What was not
limiting factor before, is now a performance bottleneck.
Transferring data between CPU and GPU is not a prob-
lem if a model geometry is static. In case of a model ani-
mation, modifying complex objects on CPU and updating
GPU buffers can be impossible for every frame [9]. Mo-
tivation is to transfer only small parts of data and calcu-
late model on GPU instead of transferring whole updated
model. These parts could be changed position of control
vertices or a changed sub-image of a displacement map.

Further motivation is to take advantage of adding de-
tail dynamically in certain parts of model. This allows
to change a complexity of a model according to its flat-
ness and a screen space area. There is a similar method
named LOD (Level of detail), which uses pre-generated
models in different resolutions, but that method requires
more memory and there is a problem in a continuity when
the resolution is switched.
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2 Background

This section describes methods to generate high detail
mesh from control mesh.

2.1 Subdivision surfaces

Smooth surfaces often occur in the nature. Traditional
method, polygon surface, requires many polygons to ap-
proximate a smoothness [4]. Geometric modelling of com-
plex models is problematic. In the past, memory for stor-
ing complex models was expensive. Using subdivision
surfaces it is possible save memory storage.

Subdivision surfaces are a curved-surface representa-
tion defined by a control mesh [2]. Subdivision surface
smooths initial model using recursive subdivision algo-
rithm [3]. Subdivision level depends on how many subdi-
vision steps are required. Subdivision step has two stages:
mesh refinement and vertex placement. Mesh refinement
subdivide every face and edge. Vertex placement set vertex
position according to subdivision rule. Position is calcu-
lated by linear interpolation of neighbour vertices.

Hypothetical surface created after an infinite number of
subdivision steps is called limit surface [2]. The limit sur-
face has often C2 continuity everywhere, except at extraor-
dinary vertices [10]. The most well-known subdivision al-
gorithm for quad meshes is Catmull-Clark.

Adaptive subdivision allows to use different subdivision
level on certain parts of mesh. Adaptive subdivision uses
flatness test to avoid subdividing flat parts of model [2].

In feature adaptive subdivision method, the limit sub-
division surface is described by a collection of bi-cubic
B-spline patches [8]. This is advantage because patches
can be rendered directly using hardware tessellation. In-
stead of uniform subdivision, where geometry complexity
grows exponentially, using feature adaptive subdivision,
complexity is close to linear [6].

2.2 Tessellation

Tessellation is the process of breaking patch into many
smaller primitives [11]. Patch is defined as set of control
points. Patch type can be line, triangle, quad, B-Spline,
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Bézier, etc. Tessellation factor controls fineness of patch.
Adjacent edges should have the same tessellation factor
because T-vertices could create a crack. Tessellation can
convert quads to triangles, but common usage is to add ge-
ometric detail. Tessellation is now hardware accelerated.

2.3 Displacement mapping

Displacement mapping is using with tessellation to add
high frequency detail with low memory I/O [7]. Instead of
creating a smooth surface with subdivision surface, using
displacement mapping it is possible make a rough surface.

A displacement map is a special type of texture where
the stored values refer to a displacement of a vector. A
commonly used type of displacement maps is the scalar
displacement map, where each value corresponds to a dis-
placement along the normal vector of a vertex. Scalar dis-
placement map is easy to compute since normal vectors
are cached. With vector displacement map it is possible
displace vertex to any direction. Vector displacement map
requires more memory than scalar because it uses all tan-
gent vectors - t, b, n.

3 Our Contribution

Our solution combines feature adaptive subdivision
scheme and displacement mapping with adaptive tessel-
lation. Solution scheme is shown in the Figure 3. We use
OpenSubdiv1 library, because it supports subdivision and
tessellation. An input for our program is a displacement
map and control mesh. The mesh contains vertex posi-
tions, UV coordinates and indices. The input model should
have a quad topology because we use a Catmull-Clark sub-
division scheme. Catmull-Clark scheme can produce un-
dulating artifacts (Figure 1). Faces should not overlap in
texture space because we need 0..1 to 1 mapping between
surface and texture space. The output is effective render-
ing of high resolution model.

3.1 Preprocessing

Input mesh is subdivided by feature adaptive subdivision
algorithm. Current implementation of OpenSubdiv pro-
duces only bi-cubic patches for feature adaptive refine-
ment2. Bi-cubic patches can approximate smooth surface
like subdivision scheme [5]. UV coordinates of thhe new
vertices are linearly interpolated from control points.

Input displacement map is filtered by Laplace filter
(Equation 1) with the aim to identify which parts require a
higher tessellation factor. Instead of filtering displacement
map it is possible filtering the normal map. The advan-
tage of doing this is that values in Laplace map depends

1http://graphics.pixar.com/opensubdiv/docs/
intro.html

2http://graphics.pixar.com/opensubdiv/docs/
subdivision_surfaces.html

Figure 1: Catmull-Clark subdivision can behave poorly on
triangle topology. Wireframe model is control mesh.

Figure 2: Example of displacement map and calculated
Laplace map. The Laplace map is used in adaptive tessel-
lation to affect tessellation fineness.

on displacement map strength. In the Figure 2 is example
of displacement map3 and calculated Laplace map.

D2xy =

0 1 0
1 −4 1
0 1 0

 (1)

We generate a normal map for correct lighting, be-
cause application of displacement map can change direc-
tion of normal vectors. Normal map is obtained using FBO
(Frame buffer Object). When we render the model and use
normal map, we apply the normal map shading in Frag-
ment Shader. This can reduce continuity problems when
adaptive tessellation is on. Model also looks more detailed
when it is low poly. We use two approach of generating the
normal map.

First approach is described in Algorithm 1. Model is
tessellated with high tessellation factor to get high quality
model, so we can use the normal map for different LOD.

3http://content.luxology.com/asset/exref/
fd5171e820982995daaf5e15db00955d.png
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Next, we apply displacement mapping. Calculating nor-
mal vectors is done by using Geometry Shader. This is
because Geometry Shader has access to all points in trian-
gle. Normal vector is obtained using cross product of two
vectors that lied on triangle. Normal vector is normalized
to unit length. Since all calculations are done in object
space, normal vector is transformed to tangent space. To
get normal map, whole model is rendered in texture space
and colors are set respectively to normal vector.

Data: BSpline patches, displacement map
Result: normal map
foreach patch do

tessellate with high tessellation factor;
end
foreach tessellated triangle do

apply displacement mapping;
calculate normal vector via cross product;
transform normal vector to tangent space;
set position to UV coordinate;
transform position from UV space to NDC

(Normalized Device Coordinates);
set normal vector as output color;

end
Algorithm 1: Generating normal map from a displace-
ment map.

Problem with this approach is that shading is naturally
flat. This is because whole tessellated triangle have the
same normal vector. Shading artifact depends on texel size
of tessellated triangle. Figure 4 shows shading aliasing,
where is normal map with different resolution applied.

Second approach uses linear interpolation of normal
vectors of vertices in tessellated triangle. In this approach
we do not use Geometry Shader. In the Figure 6 is de-
scribed how we get the normal vector of vertex P. We
use two near points PA and PB, where distance from actual
point P is e in direction t and b tangent vectors. Like in the
Section 3.3 we apply displacement mapping and calculate
new positions P′, P′B and P′A. Normal vector is obtained
with cross product of two vectors that lies on triangle de-
fined by vertices P′, P′B and P′A. Unlike, in the first ap-
proach all calculations are in tangent space, so there is no
need to transform the normal vector. Parameter e affects
blurriness of normal map (Figure 5).

3.2 Tessellation

For patches we use B-Splines, because they can approx-
imate smooth surface. It is important to have the same
outer tessellation factors along adjacent edges of patches.
Otherwise, cracks can appear. There is also problem that
patches can have different size. Two adjacent patches can
have the same subdivision level or level differs by one. In
the Figure 9 two cases are present, where T-vertices ap-
pears.

Feature
adaptive

subdivision

Generating
normal
map

Adaptive
tessellation

Displacement
mapping

Rendering

Handling
events

Changing
control
points

Changing
displacement
parameters

Changing
view/
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Figure 3: Overview of our method.

Figure 4: Shading aliasing of first approach of generating
normal map depends on displacement map size (from left
- 128×128, 256×256, 512×512).

Tessellation fineness of our solution depends on patch
level of detail TLOD, patch flatness TF and tessellation qual-
ity TQ. Tessellation coefficients TLOD and TF are used
because adaptive tessellation requires them. Initially we
measured TLOD as edge length in screen space. There was
problem if angle between patch edge and view vector was
small. It is shown in the Figure 8. To avoid this artifact
TLOD is calculated as l/w in center of edge, where l is dis-
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Figure 5: Parameter e (from left - 0.01, 0.02, 0.1, 0.2)
affects blurriness of normal map in second approach of
generating the normal map.
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Figure 6: Calculating normal vector n in tangent space
adding epsilon value e to P for vertices PA and PB on t
and b axis. P′, P′A and P′B are positions after displacement
mapping of vertices P, PA and PB. Normal vector is ob-
tained using normalized cross product of vectors dPB and
dPA.

tance of two corner points that lies on the edge. We use 14
tessellation factors 2 inner and 12 outer (Figure 7).

Inner tessellation factor for horizontal and vertical di-
rection is calculated as:

Tin = TLOD ·TF ·TQ, (2)

where:

• TLOD is average of l/w of middle edge points of patch
in screen space. l is distance between two corner
points that lies on patch edge in object space. l is
scale correction, so TLOD depends of patch size.

• TF is texture value in Laplace map of center patch UV
coord.

• TQ is global value of patch quality. Slow GPU should
has this value low.

Figure 7: Outer tessellation factors for B-Spline
patch used by Opensubdiv to avoid tessellation cracks.
tessOuterLo and tessOuterHi are used in case transition
edge (Edge connected with two smaller patch) [1].

Figure 8: Tessellation artifact caused by using adaptive
tessellation, where tessellation factor of edge is calculated
as distance of two corner points, lies on this edge in screen
space. Distance between corner points is small and edge
has small outer tessellation factor.
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a) b)

Figure 9: T-vertices occur in edge where patch has a) same
subdivision level, but different outer tessellation factor on
adjacent edge b) subdivision level that differs by one and
tessOuterLo, tessOuterHi tessellation factors are not the
same as tessOuter of adjacent edge of smaller patch.

Tin is rounded to nearest integer value and clamped, so
minimal value can be 1. This is because inner tessellation
with level less than 1 is undefined.

The easiest solution to avoid T-vertices is to set global
outer tessellation factor to a constant value and in case of
transition edge to double it. Problem with this solution
is that inner tessellation factors change over surface and
outer tessellation factor does not have to suit well. Our ad-
vanced method is based on simple idea that adjacent vertex
has the same UV coordinate. We use the same Equation 2
like on inner tessellation factor, but coefficients TLOD and
TF are calculated differently. For neighbour patches that
uses same subdivision level, TLOD is l/w of middle edge
point in screen space. Else TLOD is calculated as l/w of
center in edge for Lo and Hi segments. If adjacent patch
have the same subdivision level then TF uses UV coordi-
nate of middle point edge. In other case UV coordinate is
chosen with weight 1/4 and 3/4 of corner UV coordinates
because it is center of edge in smaller patch.

3.3 Displacement mapping

We use a vector displacement map. Tangent vectors - t,
b, n are calculated from barycentric patch coordinates and
patch parameters. Calculating a new position P′ of a vertex
in an object space is in the Equation 3.

P′ =

Px
Py
Pz

+ s ·

tx bx nx
ty by ny
tz bz nz

dr−o
dg−o
db−o

 , (3)

where:

• P′ is new position in object space after the displace-
ment mapping.

• P is an old position in object space before the dis-
placement mapping.

• t, b, n are unit tangent vectors defined in object space.

• s is a strength of displacement.

• d is a vector displacement value in displacement map.

Figure 10: Morphing animation using linear interpolation
of two displacement map.

Figure 11: Animation, where control vertex is changing.

• o is a texture value, where displacement is zero. For
unsigned displacement map it should be zero and for
signed displacement map it should be set to 0.5.

4 Results

We can animate model changing displacement parameters
or changing control points position. Our solutions can
with a small amount of control vertices change shape of
model (Figure 11). It is also possible to create morphing
animation with linear interpolation of two displacement
maps (Figure 10). Our solution uses adaptive tessellation,
so generated geometry is view dependent (Figure 12). In
our tests we use Nvidia GT 740M GPU and i7-4702MQ
CPU.

Generating subdivision surface from control mesh is
fast (Table 2) because we use feature adaptive subdivision
rather than uniform subdivision. Feature adaptive subdivi-
sion is usually faster than uniform because feature adap-
tive subdivision uses fewer patches than uniform subdivi-
sion uses quads (Table 1). This is because bi-cubic patches
can better approximate limit surface. However, quad uses
only 4 vertices instead of 16 in case of B-Splines. Model
complexity of feature adaptive subdivision grows linearly
instead of exponentially. CPU time is measured via high
resolution timer4 in beginning and ending of generating
function. OpenGL functions can be asynchronous, so
GPU time is measured using GL TIME ELAPSED query.

4https://msdn.microsoft.com/en-us/library/
windows/desktop/dn553408
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Figure 12: Generated geometry is view dependent.

Table 1: Geometry complexity of Feature Adaptive subdi-
vision and Uniform subdivision.

Control mesh Subdivision

level Feature
Adaptive

Uniform

Faces Vertices Patches Quads
1 4 3 28 256
1 4 6 64 4096
1 4 8 88 65536

406 450 3 442 25984
406 450 6 478 1,663 M
406 450 7 490 6,652 M
4697 450 2 8926 74848
4697 4678 3 11098 0,299 M
4697 4678 5 15442 4,790 M

Table 2: Generating subdivision surface from control
mesh.

Control mesh Subdivision

level
Feature

Adaptive
Uniform

Faces Vertices Generating
time [ms]

Generating
time [ms]

CPU GPU CPU GPU
1 4 3 1,62 0,018 0,016 0,004
1 4 6 1,71 0,019 0,767 0,001
1 4 8 1,74 0,017 11,42 0,017

406 450 3 1,79 0,003 9,139 0,003
406 450 6 1,80 0,065 649 0,002
406 450 7 1,86 0,064 2755 0,001

4697 450 2 1,73 1,024 231 0,001
4697 4678 3 1,72 3,670 110 0,010
4697 4678 5 2,14 5,865 1966 0,020

We use GPU Evaluator in feature adaptive subdivision, so
GPU time grows faster than CPU.

Table 3 shows that second approach of generating the
normal map is faster. We assume it is because first ap-
proach uses transformation to tangent space. In second
approach is one more pipeline stage - Geometry Shader.
Time of generating normal map depends mainly on model
complexity.

Table 4 shows generating time of Laplace map in differ-
ent resolutions.

In other test we compare render time between our
method with tessellation and drawing raw array of trian-
gles. We also test input memory size of our method and
polygon surface method. We would rather compare ren-
der time between our method and polygon surface, but all
connectivity information is lost. Our test model contains 4
control vertices with position and UV coordinate. Model
size in both axis is one unit. Input control of our method
mesh takes 0,1 kB. We used 128× 128, 256× 256 and
512× 512 RGB displacement texture. Displacement tex-
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Table 3: Normal map generating time.

Triangles Patches Texture size Time of
first ap-
proach
[ms]

Time of
second

ap-
proach
[ms]

7048 28 256×256 0,541 0,986
7048 28 512×512 0,618 1,048
7048 28 1024×1024 0,719 1,282

1,037 M 442 256×256 9,256 21,348
1,037 M 442 512×512 9,438 21,277
1,037 M 442 1024×1024 9,954 21,544

29,623 M 11098 256×256 186,671 451,689
29,623 M 11098 512×512 188,061 451,899
29,623 M 11098 1024×1024 191,264 455,060

Table 4: Laplace map generating time.

Texture size Time [µsec]
256×256 73
512×512 261

1024×1024 970

ture has size of 48, 192 and 768 kB. We capture generated
tessellated surface as transform feedback and draw again
with polygon surface method. Render speed is measured
using GL TIME ELAPSED between draw command. In
case that generated triangles is more than value around
9000 our method is faster. Maybe, it is because of the
memory overload. Number of triangles is obtained via
GL PRIMITIVES GENERATED query.

In Tables 5, 6 and 7 estimated mesh size is present, if
we used polygon surface method. We assume using uint16
index buffer, 32-bit float vertex buffer, 8 vertex attributes
(3 - position, 3 - normal vector, 2 - UV coordinate) and
triangle grid topology.

5 Conclusions

Our method allows to generate mesh from low poly con-
trol mesh. This method has some advantages: automatic
generation LOD, animation with changing small number
of control points, sculpting surface, faster animating, etc.
It is possible that out method uses less memory.

There are some artifacts: aliasing in the normal map,
continuity in adaptive tessellation, problematic UV map-
ping between closed surface and texture space. Future
work can try to avoid these artifacts.

Table 5: Generated geometry and render time (displace-
ment map 128×128)

Distance Triangles Our
method
render
time

[µsec]

Triangle
array

render
time

[µsec]

Polygon
surface
mesh

estimated
size [kB]

3,138 1258 53 19 27,0
1,722 3546 77 59 76,2
1,0 9834 158 187 211,3

0,513 11858 230 263 254,8

Table 6: Generated geometry and render time (displace-
ment map 256×256)

Distance Triangles Our
method
render
time

[µsec]

Triangle
array

render
time

[µsec]

Polygon
surface
mesh

estimated
size [kB]

3,138 1202 54 20 25,8
1,722 3312 81 58 71,2
1,0 9386 163 185 201,7

0,513 11412 233 261 245,2
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