
VRML parser in Java

Filip Sixta

E-mail: xsixtaf@hwlab.felk.cvut.cz

Czech Technical University

Faculty of Electrical Engineering

Deptartment of Computer Science and Engineering

Prague / Czech Republic

Abstract

A VRML parser in Java language, as a part of a specialized VRML browser

for blind people, is presented in this paper. The parser reads an input URL with

a VRML 2.0 scene description and creates an inner representation of the scene

tree structure and the list of event routes, used by the other modules of the

browser.

A part of the input �le analysing block contains also the management of the

event route list and the event queue. Therefore, this work includes not only the

parser, but represents a complete base-layer, called VRML API. It consists of

classes representing the entities of VRML, especially of the class Browser, whose

methods serve other modules for obtaining the inner structures and some basic

properties of the system.

There will be shown, how the inner scene structure is built from instances

of class Node, how the route list and event queue are managed, how these and

other VRML objects are speci�ed, how the input �le analyser works etc.

KEYWORDS: VRML, virtual reality, Java, parser.

1 Introduction

The goal of this work was to create an analyser of the dynamic virtual scene

describing language VRML 2.0. It was a part of so called project "Blind's

dog", which takes place in the Dept. of Computer Science and Engineering at

Czech Technical University, and whose goal is to create a complete navigating

system for blind people. The idea that led to the birth of this project is to

allow people handicapped in this way to browse virtual worlds. The project is

an attempt to provide them the advances of virtual reality, like conventional

VR-navigators provide to other people.

Obviously, the navigating system for blind people is noted for some di�erences

from that conventional. The weight is not laid on the output graphics processing

- instead of this, the system must have special module, that forms an audio

output information about the scene topology, the user position in the scene

(user's environment), his interactions with the scene and dynamic behaviour of

the scene etc.

Similarly to a general virtual reality browser, this system can be demonstrated

as a connection of specialized blocks for input scene analysing, scene-dynamic

Figure 1: The structure of navigating system for blind people

processing, topology analysis, user commands execution, output generation etc.

The rough structure of the browsing system is depicted in �g. 1.

It is obvious, that the input scene analyser represents the �rst module in the

scene processing pipeline. Its more detailed context is shown in �g. 2. The role

of the parser is to read and analyse the input �le (URL) describing a virtual

scene and to create the inner tree structure, used by other modules in the

system. To this structure also belongs the list of event routes used for the inter-

node communication and de�ned also in the input �le (as ROUTEs). However,

the parser treats the scene as static, i.e. with the inner structure creation it's

particular role ends, and the following changes and dynamic behaviour of the

scene objects is a matter of other modules (especially the simulation core).

Figure 2: The structure of the input �le analysing block

Due to the primary role of the parser implementation in the project, which

implies the need of designing a base-layer of the system, this work includes also

the implementation of route list and event queue managing functions. Via these

functions, these data structures are provided to the simulation core after the

input �le analysis.

2 VRML API

2.1 Motivation

Before the implementation of parser, an important step had to be made - to de-

sign a collection of classes and their methods, which provide functions of parser

and other input �le analysing module parts to various other modules of the sys-

tem. This collection is called VRML application programming interface

(VRML API), and represents the above mentioned fundamental layer. It in-

cludes a class for the browser itself, VRML-scene nodes, their attributes, routes,

events, �elds of all types etc. Because the system is implemented in Java lan-

guage, the VRML API can be covered by members of so called package vrml.

The VRML API presented here was inspired by the API described in VRML

2.0 speci�cation, appendix C - Java Scripting Reference. Although this interface

was designed for interacting of Script nodes with their associated scenes, a no-

ticeable part of it seemed to be suitable for any powerful VRML scene browsing

system. This holds e.g. for most of methods of the class Browser, class Event,

and whole package vrml.�eld, representing the VRML 2.0. data types.

Java Scripting Reference was not the only one source of ideas for designing

the VRML API. Very interesting, from this point of view, is JavaSoft's product

Java 3D API, which provides suitable VRML support. Unfortunately, this API

wasn't implemented yet, when this project and its parts started to be worked

out. Moreover, we tried to simplify the VRML API in the sense that all VRML

2.0 node types were represented by instances of the same class (named Node),

and di�ered by their attributes, while Java 3D API provides particular class for

each of the standard node types. Therefore our philosophy would be probably

broken by using this API. Another fault was, that Java 3D API has not very

suitable classes for primitive VRML 2.0 data types (�eld types).

For all these reasons, the use of Java 3D API was dismissed. However, some

parts of this API can be pretty exploited for other entities (not so exclusively

speci�c for VRML), such as geometry and mathematical objects, transformations

etc., but it concerns rather with some specialized modules (e.g. topology builder).

2.2 Package vrml and its function

Appendix A shows the hierarchy of classes of package vrml, in the context of

Java Platform 1.1.4 Core API. The implementation of classes with the names

typed in bold was the object of this work. There can be seen, among others, the

classes mentioned above: the class representing the interface of whole navigating

system (Browser), classes for resources and entities of VRML - nodes, proto-

types, routes, events, node attributes and data types, classes for the parser itself

(LexicalAnalyser and SyntaxAnalyser) and the system of exceptions, speci�c for

manipulation with all these classes.

2.2.1 Browser

First of all, let's look at the class Browser, which represents the core of the

API. It holds and provides information about the properties and the state of the

navigating system; especially it provides functions of the input scene analyser and

route-list and event-queue management. Browser's declaration is very similar to

that one described in VRML 2.0 speci�cation, section 4.7.10 - Browser Script

Interface, and both declarations considerably penetrate. The declaration of the

class Browser, with the simple explanation of the function of it's methods is in

the Appendix B.

The class is not static - the constructor Browser creates a particular browser

instance with it's own, independent properties, which implies the theoretical

possibility to use more browser instances in the framework of the navigating

system, and to switch between them.

In the scope of this work, the most important method is createVRMLFro-

mURL. This method gets a URL of scene description in VRML 2.0 and returns

the inner representation of the scene - as a list of pointers to root nodes of the

scene tree structure (or better forest structure). As a side e�ect of the creation

of the inner scene structure, there is also created the list of event routes. Inside

this method, the syntax analyser is initialized and the input scene description is

passed to it. One of the following chapters discusses it in detail.

2.2.2 Classes for VRML entities

Node, Attribute, Prototype, Route, Event, Field and their descendants are repre-

senting the VRML entities. This part of the article brie
y explains their sense.

The special attention, from the viewpoint of the semantics, should be given

to the classes Node, Attribute and Prototype. It could be seen, that there are no

speci�c classes for di�erent node types - all VRML scene nodes are represented by

instances of the same class named Node, including both the nodes of standard

type (Transform, Shape etc.) and the user de�ned. The only exception is the

Script node, which has it's particular class Script - the descendant of class Node,

because of it's speci�c properties.

The type of the node represented by the instance of class Node is indicated

by the type name (held by the object) and by associated list of attributes. In

this context the word 'attribute' means the node parameter, which can be �eld,

exposed �eld, input or output event. For attributes, there is class Attribute estab-

lished. Objects of this type are speci�ed by the kind (�eld, exposedField, eventIn

or eventOut), the data type (SFBool, MFNode etc.), the name (size, children,

fraction changed etc.) and in the case of �eld or exposed �eld the pointer to an

instance of some descendant of the class Field (as explained later).

When creating a new node, the node type and the attributes associated with

this node type must be known. In other words, there must exist the appropriate

prototype. Hence, there exists the class Prototype, which instances de�ne for

the respective node types the list of attributes and their default values. These

instances are created by the syntax analyser on the basis of the PROTO de�ni-

tions in the input �le. (As will be shown later, this holds also for the standard

node types.)

The routes - instances of the class Route - are determined by the sending

node and it's output event (a speci�ed eventOut) and the receiving node

and it's input event (a speci�ed eventIn). Routes are elements of the route list,

which is held by the browser, and which is a part of the inner scene representa-

tion. Analogously, instances of the class Event form the event queue. They are

determined by a sending or receiving node, respectively, a name and a time

stamp. Objects of both these types (routes and events) can be created, added

to and deleted from their respective sets, and their parameters can be obtained,

but they cannot be explicitly modi�ed.

The set of descendants of the abstract class Field represents all single (SF-)

and multiple (MF-) VRML data types. Instances of these classes contain values

of the appropriate type. Every class provides several methods for setting and

getting these values; types of the values passed into them and returned by them

are in most cases the primitive data types of the Java language. For example, if

the SFInt32 object inner value is set or get, the value of Java type int is passed,

in case of SFRotation, the four-tupple of
oat values is passed and so on.

3 The input �le analyser

3.1 Principles of the analysis

The most important part of this work is the syntax analyser of the VRML

scene description. The parser is based on the principle of recursive descend-

ing. The process of analysis is derived from the grammar de�ned in VRML 2.0

speci�cation, appendix A - Grammar, which is transformed to LL(1) grammar.

This transformation is made due to the easier implementation of the parser (the

analysis is then deterministic) and brings some little changes, as shown in the

following example:

Rules of the original grammar:

<mfcolorValue> -> <sfcolorValue> |

[] |

[<sfcolorValues>] ! two right sides start

with the same symbol

<sfcolorValues> -> <sfcolorValue> |

<sfcolorValues> ! the left recursivity

Corresponding rules of LL(1) grammar:

<mfcolorValue> -> <sfcolorValue> |

[<mfcolorValue'>

<mfcolorValue'> ->] |

<sfcolorValue> <mfcolorValue'>

The syntax analysis are performed by two classes of the package vrml - Syn-

taxAnalyser and LexicalAnalyser. The class SyntaxAnalyser provides a method

named vrmlScene, which is called from the Browser's method createVRMLFro-

mURL, and which responses to the starting symbol of the VRML grammar. From

this method, the methods for speci�c statements (such as node, proto or route

statement) are iteratively called, according to the content of the input �le.

Every non-terminal symbol in the modi�ed LL(1) grammar has it's appropri-

ate method in SyntaxAnalyser. The terminal symbols are considered to be the

lexical elements and they are read (parsed) by the lexical analyser. They

include keywords, braces, brackets, the point, identi�ers, numbers and strings.

Parsing of each particular statement results in creation of the appropriate

VRML object - especially the node-statement parser returns a representation of

a VRML node (namely the object of type Node) and the route-statement parser

returns a representation of a route (the object of type Route). The whole parsing

then results in the inner structure, consisting of the list of root nodes of VRML

scene and the list of routes.

The process of analysis is roughly illustrated in �g. 3. In this �gure, there

is denoted another important thing, touching the semantic knowledge of the

standard node types. Because of the uniform approach to both standard and

user-de�ned node types, both of them must have their prototypes. Hence, the

knowledge of the standard prototypes is achieved using the �le with the standard

PROTO-de�nitions, which is an inseparable part of the parser.

Figure 3: The process of the input �le analysis

3.2 The inner structure construction

The next example shows, how the inner tree structure of the VRML scene is

built up by the parser. Let's have the following VRML world �le fragment:

...

Transform {

translation 3 0 1

children [

DirectionalLight {

direction 0 0 -1

}

Shape {

geometry Sphere {

radius 2.3

}

}

]

}

...

The fragment is a node statement. Therefore, the appropriate method for

node parsing is called, when the identi�er 'Transform' is read. This method

calls sequentially the method for parsing node attributes and it consequently

calls parsing of the particular �elds. Each called method returns the appropriate

object (e.g. an attribute), while the calling method composes objects of higher

level (e.g. a node). Then the result of parsing the previous code fragment can be

depicted by �g. 4.

Figure 4: The inner VRML scene representation

3.3 Route list and event queue management

Important parts of the inner representation of the world are the list of routes

and the queue of events. None of them is returned directly by the method

createVRMLFromURL to the calling block, but they are members of Browser

instance and they are accessible by appropriate methods.

The route list is built up by the syntax analyser, which adds the routes to

it, as a result of parsing the ROUTE-statements. When the simulation core of

the browsing system has to simulate the event cascades, it searches through the

route list, to determine, how to pass the events between nodes.

The event queue is not so tightly bound to the parser - it is only a preparation

for the simulation core, which uses it for bu�ering events during processing the

event cascades. The class Browser provides these methods for the event queue

manipulation: addEvent, getEvent and getEventQueue. In the contradistinction

to routes, which form an unordered list, events form a queue, ordered ascendantly

by the time stamp - the absolute time value of the event rising moment. It is

guaranteed, that the getEvent method returns an event with the lowest time

stamp, every time it is called, and this event is immediately removed from the

queue.

4 Testing

For testing the capability of the parser, a set of scenes was created, using various

features of VRML. The tester was a simple program, which only let the parser

to read the scene and create it's inner representation and then it took this rep-

resentation and transcribed it to the text output. As better testers would serve

the other modules of the navigating system, but unfortunately, developing of

them did not proceed simultaneously with the parser. Therefore, only the mod-

ule for the topology processing was utilizable, in the time of testing the parser.

It processes, however, only the static information of scene. The best part for

testing would be probably the simulation core, which would test also the event

management perfectly, but it is currently being implemented.

The results of testing can be viewed in three levels:

1) Some scenes are not parsed at all, because they use features, which the

parser cannot process. This concerns in fact only the EXTERNPROTO state-

ments. The parser does not read other URL's during parsing of the scene, and

hence the external declaration is not known. Therefore, the parser cannot analyse

the node of user-de�ned type, because of missing it's prototype.

2) Some scenes can be parsed, but the inner representation is not proper -

the parser then serves only for the syntax control. This happens, for example,

when the scene uses the Script node. It is well read, but not interpreted, because

there is not implemented any scripting language interpreter. It also happens,

when there is a user PROTO-de�nition in the scene, i.e. the PROTO statement

with a non-empty body. The parser uses only the declaration of attributes in the

PROTO statement (the part in the brackets), which is su�cient for standard

node types; the body (the part in the braces) is read but ignored.

3) For the rest of scenes the parser works well and the inner structures are

built up completely and correctly. This concerns the node statements with any

standard node type except Script, the node instancing (DEF - USE), and ROUTE

statements. It concerns also the PROTO statements with an empty body, i.e.

only the declarations of attribute scheme.

5 Conclusion and future works

The VRML parser presented here was the �rst implemented part of a specialized

VRML browser. Therefore, it was necessary to create a basic platform, which

would connect this part with all those succeeding. VRML API serves as this

platform. Regarding the use of Java language, this API is represented by so called

package vrml, containing classes speci�c for features and entities of VRML.

The parser uses the VRML 2.0 grammar, modi�ed to LL(1) type in order

to make a deterministic syntax analysis of the input �le. The result is an inner

representation, containing the scene structure and the list of routes. VRML API

provides objects, which these structures are built from, and which allow other

modules of the system to manipulate with them.

Capabilities of the parser are limited, because not every feature of VRML

was implemented in the scope of this work yet. There are many things, that

should be worked out in the future. It includes e.g. the complete processing of

PROTO and EXTERNPROTO de�nitions. Very important, but also di�cult, is

the involving of any scripting language interpreter, in order to allow the Script

nodes to be processed.

In the next phase of the parser development, there will be created an opti-

mization mechanism, which reduces various unnecessary di�cult relations in the

scene structure, such as transformation hierarchies of the static parts of the scene.

It should be a precaution against the e�ciency losses of succeeding modules, such

as the topology processor.

There can be surely found other suggestions for the improvement of this part

of the browsing system. It is fairly dependent on the requirements of developers

of the other parts of the system and of the future users of the system.

References

[1] B. Melichar: Jazyky a preklady. Edition center of CTU, Prague, 1996.

[2] International Standard ISO/IEC 14772-1:1997 { VRML97 Speci�cation. The

VRML Consortium Inc. 1997.

[3] Sun Microsystems, JavaSoft: JDK 1.1.4 API Documentation. 1997.

Appendix A: Package vrml

class java.lang.Object

class vrml.Browser

class vrml.Node

class vrml.Script

class vrml.Prototype (implements java.lang.Cloneable)

class vrml.Route

class vrml.Event (implements java.lang.Cloneable)

class vrml.Attribute

class vrml.Field (implements java.lang.Cloneable)

class vrml.MField

class vrml.MFColor

class vrml.MFFloat

class vrml.MFInt32

class vrml.MFNode

class vrml.MFRotation

class vrml.MFString

class vrml.MFTime

class vrml.MFVec2f

class vrml.MFVec3f

class vrml.SFBool

class vrml.SFColor

class vrml.SFFloat

class vrml.SFImage

class vrml.SFInt32

class vrml.SFNode

class vrml.SFRotation

class vrml.SFString

class vrml.SFTime

class vrml.SFVec2f

class vrml.SFVec3f

class vrml.LexicalAnalyser

class vrml.SyntaxAnalyser

class vrml.DEFNode

class java.lang.Throwable (implements java.io.Serializable)

class java.lang.Exception

class vrml.InvalidVRMLSyntaxException

class java.lang.RuntimeException

class java.lang.IllegalArgumentException

class vrml.InvalidEventInException

class vrml.InvalidEventOutException

class vrml.InvalidExposedFieldException

class vrml.InvalidFieldException

class vrml.InvalidProtoNameException

Appendix B: Browser interface

public class Browser

f
public Browser();

public String getName();

public String getVersion();

public
oat getCurrentSpeed();

public
oat getCurrentFrameRate();

public String getWorldURL();

public Node[] createVRMLFromURL(String url)

throws InvalidVRMLSyntaxException, IOException;

public void addRoute(Node fromNode, String fromEventOut,

Node toNode, String toEventIn);

public void deleteRoute(Node fromNode, String fromEventOut,

Node toNode, String toEventIn);

public Route[] getRouteList();

public void addEvent(Node node, String eventName,

double timeStamp, Field eventValue);

public Event getEvent();

public Event[] getEventQueue();

public void setDescription(String description);

public void setStandardProtoPath(String path);

g

getName, getVersion:

- return the name and the version of the navigating system.

getCurrentSpeed, getCurrentFrameRate:

- refer about dynamic properties of the browser; not implemented yet

getWorldURL:

- returns a string with the URL of currently loaded world.

createVRMLFromURL:

- gets a string with URL of the scene description, parses it and makes the inner

representation. The method returns the list of root nodes of the inner forest

structure. Except this, it �lls the list of routes.

The method throws InvalidVRMLSyntaxException, if an error occurs during

parsing the scene. It can happen not only when there is a trespass against the

VRML syntax in the input scene description, but also when there is an unknown

node type (i.e. without preliminary PROTO-de�nition).

addRoute, deleteRoute:

- modify the list of routes (add and delete items). The arguments are attributes

determining the route.

getRouteList:

- provides the list of routes.

addEvent:

- adds an event to the event queue. The event is determined by the arguments

and is inserted to the queue with the respect to the timestamp.

getEvent:

- returns an event with the lowest timestamp and removes it from the event

queue.

getEventQueue:

- provides whole event queue and does not remove anything.

setDescription:

- sets the current description of the browser. There is no usage of this property

yet.

setStandardProtoPath:

- sets the path to the PROTO de�nitions of the standard VRML node types.

