PARSEC: Building the networking architecture for a
distributed virtual universe

Andreas Varga
sid@parsec.org
http://www.parsec.org/

Institute of Computer Graphics
University of Technology
Vienna / Austria

Abstract

Parseclfttp://www.parsec.orgfis a real-time multiplayer 3D space-combat game givingisiee the
possibility to explore a whole virtual universe. The Parsec universe consists of a network of servers on
the Internet, each representing a single galaxy containing multiplesgsiamsThe player carravel

between solar systems and galaxies. The underlying client/server networking architecture transparently
handles server transitions and tries to ensure best gamewelafpr low-bandwidth and high-latency
connections. A special masterserver keeps traek ainninggameserversand can beaised toeasily

find other players.

This paper first gives an overview of existing architectémeglistributedvirtual environments and
multiplayer games and thedescribeshe structure and special properties Rdrsec'snetworking
architecturejts advantages and drawbacks. Special attention is paid to performance and portability
issues.

Keywords: Distributed virtual environment, multiplayer game, client/server designatency,
bandwidth, scalability, portability.

1. Introduction

Recently a lot of work has been done to improve distributed virtual environments. These are networked
virtual reality systems, where multiple users can interactshaaedworld, connectediia anetwork of
workstations Eachuser sees his/hewn view of the simulationandall changes to the state of the
environment are distributed among the other participants. Téyetemscan be veryuseful for
research, and have successfully been used for military training and medical research.

However,the most impressive applicatiofor distributed virtual environments, idound in the
domain of online multiplayer games. These games are becoming increasingly popular lately, and many
people spend their time by pursuing a second life in some alternate realityghtaegesignerdave
the goal to improve the immersiveness of the simulated environmergahayicing the realism of
graphics andsoundeffects. Special carbas to betaken to efficientlyuse the available network
resources in order to distribute the current state of the world aafiguigyers. Certain tradeoffsave
to be made to ensure a minimum delay between the time of an action, and when this action is replicated
at the remote players screen.

There are several importadifferencesbetween generidistributedvirtual environmentsused in
research or professional simulations, and those found in multiplayer games:

» It has to be assumdtiat the clients are connecteding standardanalog modemswith a
bandwidth of28.8kbps.Although faster modems are alreactymmon, it issafe to assume a
lower speed, to compensate for such things as line noise.

» The computationatesourceghat areavailable torender images of the world on tléent's
screen are unknown and magstly differ from the hardware the game was developed on.
However we have to ensure that frame rates stay high enough to keep the game interactive.

* Realism of the simulation is not as important ssssooth game-play, yet the quality of the
graphics andgoundeffectshas to be high enough toake the player think he is part of the
simulated world.

» The game should be easy to understand, #tevald not be aeed to learn a lot alules. The
learning curve should not be too steep. It should be easy to join the game, find other players and
have fun.

All these aspectsave to bdaken into consideration if one wants deeate a multiplayer gambat
otherswill enjoy. In this paper weiill usethe game Parsec, an online multiplayer game currently
under development, to describe the detaildedign andmplementation osuch agame.Parsec is a
three-dimensional space-figgame,that can be playedia the Internet andwvill be distributed as
freeware. The networking architecture érsec is based oncéent/serverprotocol usingmultiple
servers, eachepresenting a single galaxy consisting nofiltiple solar systemsAll the servers
combined form a simulated universe, that players can travel in.

2. Related Work

In this chapter wavill describe some existing architectufes distributedvirtual environments and
take a brieflook at their special propertiesuch asscalability,and how thesesystemscompare to
Parsec.

2.1 Peer-to-peer unicasting systems

Designing a distributediirtual environmentusing peer-to-peer communication to distribute state
updateshetween clients, is &thernaiveapproach. It is easily understandattiat if N workstations
want to take part in the simulation, every state updatvemtthat happens on one workstatibias to
be distributed to N-1 other workstations. Therefore these systems usually do not scale very good for a
large number of simultaneous users, because the required effort 35 QéMerthelesghis approach
also has some benefits. Since no other entities (e.g. servers) except for the actual clients are required, i
is very easy to get the simulation or game up and running.

A lot of early multiplayer gamessedpeer-to-peer communicatide.g. DOOM,Descent,...), and
also Parsec has its own peer-to-peer mode, which is described in section 3.1.

2.2 Broadcasting and multicasting systems

Since scalability of peer-to-peer communicatiorieiss then desirable, many otheystems using
improved technologiegeredesigned. One ahe most common techniques e use of broadcast
messages. Probably the most well known of these systarabled SIMNET [4], and wassponsored
by the Defense Advanced Research Projects Agenaadtiesigned fomilitary training simulators
and is based on the IEEE DIS standard protocol.

A broadcasting architecture is basically still like a peer-to-pegnitectureput instead of sending
unicast messages &ach participatinglient, only a single broadcast message has to be sent for one
update. This reducethe number of required message update©tN), however in alarge-scale
distributed simulatiorwith severalhundredparticipants, there is an obviooserhead becausesvery
client has toreceiveand proces®ach state update. Since it is unlikely thttclients are directly
interacting with each other, there are a loiséless messaggansmitted. Playerahich are spatially
separated (either by long distances in the virtual space, or by other [srcieraswvalls) aresending
updates to each otheyenthough they cannot semach other, hendbese updates are noécessary
for rendering the next frame.

Therefore one of the main approaches to improve the scalability of a distritiied environment
is to get rid ofthose unnecessasfate updates. A natural extensfon broadcasting systemwhich
tries to remedy the scalability problem is thee ofmulticast communicationVith multicastingeach
participating client has to be part of a certain multicast groupwaindnly receivenetwork messages

that are destined for that group. Only those cliémas want to getipdates fromeach other are in the
samegroup. Bylogically partitioning thevirtual space, theumber of transmitted networkessages
can be greatly reduceMlPSNET[8, 9, 10],VERN [1] and [3] are example$or multicastingvirtual
environment systems, designed for military simulations.

Since multicasting is not commonly available in consumer network systems, there are no large-scale
multiplayer gamesusing this technique. Howeveimost older peer-to-peer gamesrtially use
broadcasting in certain situations (e.g. to find other clients on a LAN).

2.3 Client/server systems

Certainly client/server communication is tmstversatile way oflistributing state updates among a

large number otisers.The basic idea is that eaclient sendseach state updatenly to the server,

which thenhasthe responsibility to forward the information &i other clients.However,since the

server receives all state updates, it has a complete view of the world, and knows each players position in
the environment. It can therefore use special rules to decide which state updates are forwarded to which
clients, and this can be used to efficiently reduce the amount of network traffic required.

For example, a server can filter packets from client A to client Bogetwo clients are in separate
buildings, or otherwise separated fraachother. In this caselient B does noneed toreceive state
updates from client A and vice versa.

Additionally, if the virtual environment is spatially partitioned, multiple servers can be used, each of
which handles clients in one part of the worlthis can improve the scalability of thgystemeven
more. Distributediirtual environments designddr high scalability include th&RING system|6, 7]
and NetEffect [5]. These systerage able tdost simulations foseveralhundred oreventhousands
of simultaneous users. RING usasibility algorithms to filter state updatégtween clients that can
not possibly see each other.

Parsec uses a client/server protocol for playing with other people over the Internet.

3. The Parsec Networking Architecture

Parsec was solely designed to be a network game. Therefore its netveockiibgcture is a key part

of the game, and has undergone several major revisions. In this chapter we will give you an overview of
how Parsec clients communicate with each other on the network, and how we tried to solve some of the
common problems in distributedrtual environments. A more detailedescription of Parsec’s
networking architecture can be found in [11].

Parsec
Networking

Architecture _

Figure 1: The layered structure of Parsec’s networking architecture.

Figure 1 shows the layered structureéPairsec’snetworking architecture. The game logises the
game-code interface foassstate information to the protoctdyer, whichdefines theway clients
communicate with each other (peer-to-peer or client/server-based). Parsec cusesitlyee distinct
protocols:

» Peer-to-peer (see section 3.1)

* Slotserver
 Gameserver

The latter two protocols are client/server-based. The slotserver protocol is alieftmeenpeer-to-
peer mode and the gameserver mode. If this protocol is selected, Parsec clients will have to connect to a
server,but theactual game stateansmission is donkke in peer-to-peemode,i.e. the server is not
involved inthe game-play at alllhis mode is useful if onavants to play peer-to-peer gameih
people that are not connected to the same Ethernet segment (see section 3.2).

The protocol layer itselfisesany of theavailabletransport protocolgrovided by the operating
systemvia the packet API, to actuallyansport informatiorover thenetwork. Boththe protocol and
the packet API can be switched on the fly, to allowuber to choose his preferretbdefor network
play, e.g. peer-to-peer/IPX or gameserver/UDP.

Additionally TCP is used foinitial connectionestablishmentwith the serverand some other
communication tasks that are not time-critical.

3.1 Peer-to-peer roots

Since Parsec was planned and conceived in early 199 sthehoicefor a networking protocol was
peer-to-peer, because that wasat allgames at thaime havebeenusing successfullyAlso, online
multiplayer gaming on the Internet was motlely available,and did notcatch on in the mainstream
yet. Therefore the networking platform during development was an Ethernet-baseasloggWovell
IPX as packet exchange protocol. Sitleen, thepeer-to-peer mode of Parskas beenimproved,
stabilized and support for the UDP protocol has been added.

In peer-to-peer mode, each Parsec client perforspeeial initializationprocedurevhenstarting a
network game. Isends aertain number of broadcagtquests oithe networkandwaits for replies
from other clients. The clients then distribute lists containing their addeesseamong eaclother,
to ensurehat each clienhasknowledge ofall the others. This startup phase is ratlkemplicated,
because all kinds of error conditions that might occur have to be handiedjd@any inconsistencies.
Once the startup phase has been completed, each client will have built a list of the node addresses of all
other participating players. During the game it will continuously send state updatesddes inthat
list, and will also receive update packets from other clients.

Packet ID
Ship position, crientation
Header Current damage, shield status
Current directional and rotational speed

Create object (ship, laser, missile,...)
Kill object

Send chat message

Change player name

Figure 2: Structure of Parsec’s network packets

Parsec’s network packets (see figure 2) consist of two distinct parts: A fixed-size header containing
state information about tHecal ship,and avariable-size remote-evefist. Remote-events arthose
events thahappen in ggame,andwhich have to beeplicated at the remote-players workstation, e.g.
the creation of awobject, amissile shot, or the destruction ofship. If client A receives an update
packet from client B, it will:

» Update B’s position andrientation onA’s screen depending on the information in plaeket
header.

* Process the remote-event list in the packet, and re-create all the events that were initiated by B on
A’s machine, e.g. create a missile at B’s position if B shot a missile.

Each packet’'s header also contains an id number, that allows the receiver to filter out old packets. If
a packet is receivedhose id is smaller than that of an alreadgeived packet, the packetl be
ignored, since it modikely has beenreceivedout-of-order. Thiscan happen since an unreliable
transport protocol is used (IPX or UDP). See section 3.4.2 for a closer |bol &arsec isaffected
by packet loss.

3.2 Client/server protocols

The startup-phase of peer-to-peer mode is relying oalitity to send broadcagiackets, tdind all
participating clients for the game. However, it is usually qagsible tareceivebroadcast requests if
both the sender andhe receiver areonnected to the same Ethernet segment. It ipossible to
broadcastJDP packets to the whole Internet, therefpeser-to-peemitialization will not work. This
fact is a serious restrictidor peer-to-peemode,and to remedy this problem (andpmvide a next
logical step between normapeer-to-peer mode andreal client/servebasedgame), theslotserver
mode was introduced. A special slotserver is requireidh is responsible tonediate betweesingle
Parsec clients. A client sends a request for a "slot” to the serversBEa@thas aimited number of
slots available, which directly correspond to the number of players it can handle. If thdisdsvar
free slot for the client, it will acknowledge the slot request, and will transmit a list ofaunttesses of
other players (thosthat havealready beemjiven aslot) tothe client. If no freeslot is available, the
server will deny the client’s request and tell the player that he should try to join at a later time.

This procedure is an equivalent replacement for the peer-to-peer startup phase, andashesiit
completed, the client can commence glaene,just like in peer-to-peer mode. The serweill never
receive any game-state updates, and has no impact on game-play at all.

But this protocol does noeally allowfor aclient/server-based distributetttual environment, as
described earlier. This functionality is implemented in the gameserver protocol. The gantesemer
similar structure as the slotserver, since it also allows clients to connect and assignsltteior ahe
game, but this time it is also responsife the actuatransmission ofjame-state updates. Instead of
sending updates to all other clients, each client just sends a single update packet to the gameserver. Th
packet is received by the servand is (in themost simple case) just forwarded at other joined
clients.However,since the packet containing the updades totravel from client A to the server and
from the server to client B, it takes approximat@hce aslong for client B to receivahe packet as if
client A would have sent it directly (as is the case in peer-to-peer mode). Therefore if player A shoots a
missile at B, there is a delay time untivll know about thatemote-eventsually called the latency
time. Our goal is to minimizethis time asmuch as possible, but since it also depends on the
underlying network connection, we can only partially influence it. See section 3.4.1 for a closer look at
latency and how it affects game-play.

3.3 Client-side vs. server-side simulation approaches

In an idealdistributedvirtual environment, thetate of the simulatioshould beexactly the same at
each client. This means that all the entities that are part of the stanldd be irnthe exact samstate,
at the exact same position with the same properties. However to achieve this goal, an enormous amount
of data needs to be transferred between the clients, to fully describe the state.
In Parsec, there can blezens oimissiles, ships, extra objects goalticle systems present at the
same time. Since we can not transfer the complete state inforrfatialhthese entitieseveral times
in a second, we only send remote-events that indicate that an entity has been created that the state of a
entity haschanged or that the entihasdied andshould beremoved. It then is theesponsibility of
each client tacontinuously updatéhe state of the local representation of each object. In many cases,
these state changes are predictable, e.g. an extra object is rotating at a constant speed and a missile flie
at a constant speed. So once a missile has been created, there is no need to rbstimsi¢ions of
the missileover the networksince thepositioncan be predicted on the client-side. Thereforecaile
this technique client-side simulation.
The problemwith client-side simulation is that it isot guaranteethat each playeseesthe exact
same picture of the environment bis screenSmall differences can beésible, thatare caused by
such factors aesetwork latency (objects might appear at wroelgtive positions), and packdbss
(some objects or events might be missing at some clients).
To remedy this problem, it is possible to use server-side simulation. In thitheasrvehasftull
control over thestate of thevorld, andeach state change is exclusivelgne bythe serverThis is

necessary to ensure a consistesthavior of allentities in the simulation. So if a playshoots a
missile, the client tells the server about this event, and then the server creates the missile, and notifies all
connected clients about its creation. In a strict server-side simulation appegeciihe position
updates of the missile as it flies along its path are calculated by the server and sent to the clients.
The main problem of client/server distributed environmaeurits server-side simulation is theaich
action that the player performs, is delayed by a certain amoumh&fdepending on the network
latency. If this time exceeds a value of about 100ms, the human brain will notice a very adalaying
between the action and its visual feedback.
As described earlier in this section, Parsec uses a strict client-side simulation agpaohantity
in the game is controllednd owned by thelients,and the servedoes notkeep track of the world
state. However, we plan to move certain critical state control to the server, to mn@e&onsistency
problems that might occur.

3.4 Problems in an Internet-based multiplayer game

3.4.1 Latency

One ofthe mainproblems inall real-timennetworked games is the concept of latency. Naee to
assume that a large number of people playing Parsec are connected to the server with a standard analo
modem, which increases the problem of latezsn moresince those modems usualigveinternal
buffers and usspecialcompression and error correction schemes. These atid total amount of
time it takes for a UDP packet to arrive at its destination.

Games usingerver-side simulation are much more affectedlabgncy, because the server is
responsible for performing all state changes. This meeshe playewill feel the game is lagging
behind his own actions. This is usually called perceptible lag, and can make the game unplayable.

Parsec does not suffer froperceptiblelag, because of its client-side nature. A missile appears
immediately after firing, at least on the screen of the local plelgvever it ispossiblethat a missile
misses its goal, although the player aimed very accurately. Since collision detection with trghiarget
is performed by the client of the target player, this can happen if the saigdtasalreadymoved on,
before the packet (containing the missilotremote-eventhasreached the target client. this case
the state of the world d@vo different participating clients is naxactly the samdyecause of the
latency time. This problem can be solved by implementing collision detection on the server.

Even though high latency times are bad, it is even worse if they fluctuate [2]. The variance of latency
should bdow, otherwise the playewill have ahardtime getting accustomed to thdelay, since the
human brain can adapt to a moderate de&ween actiomnd consequence onlythat delaytime is
constant.

In order to reducdatency in a game adistributedvirtual environment, weshould try toavoid
introducing additional delays in ttsmftware, since whave nodirect influence on the latency of the
network connection. Therefore whould not buffestate update®r later sendingput try to send
them as soon as possible. For modem users it has proven to becnhgwoedioturn off compression
and error correction.

3.4.2 Packet loss

Another major problem in modem-based multiplayer games is pladseSince modem connections
are farfrom beingideal, packets can bkost atseveralstages of transmission. Parsec uges UDP
protocol forgame-state updates, which is unreliable, thereforehzezdo betaken toresendcritical
information.

As describedkarlier, Parsec’snetwork packetsonsist oftwo distinct parts, the packet header
containing important state information of the local ship (position and orientation) arehtbie-event
list which contains state updatésr events thahappen duringhe game. If a packetith an empty
remote-event list is lost, the result is not dramatic. Safidearsecclients perform linear interpolation
for all ship orientations, all shipasill keep flying at a constant speeditie direction they had before
the packetoss. As soon as mew packet (whicltontains an up-to-date ship-state of gender)
arrives, thanterpolated position and orientation tbe ship might differ fromthe actual state ahat
ship, therefore it is not wise to just overwrite the interpolated state with the received one. Instead Parsec
tries to smoothlymovethe ship fromthe incorrect interpolategosition tothe correcone, in afixed

amount oftime (this can be adjusted)his ensureghat no”jumping” of ships isvisible, and to
guarantee smooth trajectories.

In a strict server-side simulation approach, paldstwill cause the simulation wuspenduntil a
new packet arrives, or if packietss happensonstantly at a fixed ratée.g. 30% ofall packets
transmitted are lost), it will cause the game to stutter.

3.4.3 Bandwidth requirements

Since wehave toassume players to lmnnectedwith a standard 28.8kbpmodem, theavailable
bandwidth for sending UDP packetsth@ server is usuallyery much limited. We thereforbave to

take care to ensure smooth game-play over these connections, because we can not expect the player t
be connected via Ethernet or other high-speed networks.

In an ideal modem situation (no protocol overheads fiteeJDP and PPPlayers), weshould be
able to transmitoughly 28,800/10 2,880bytes (10 includeshe start- andstop-bit used irserial
communications). If we want to send state updates at a rate of 30ka) waly have2,880/30 = 96
bytes tocram our state into. Currently, the size &farsec’spacket header containing the state
information is 112 bytes, which is already larger, and we didn’t even include a remote-event list yet.

To reduce the bandwidth requirements of the network communication, we can basically change two
parameters: The size of the packet, and the rate at which packets are sent. The latter one is easier to dc
because we definitely should not need to send a packet every time the state of a ship has changed.

In Parsec we use\ery simple form of dead-reckoning, 9, 10]. A client only sends gacket if
either a remote-event has happened, if the player has changed the ship orientation, rotation or speed, o
if a specified amount of time has passed since the last packet was sent. In mostlvageayér just
flies with a constant speed ithe same direction, nepdates need to Isent,sinceall clientswill be
able to interpolate its position from the last known state data.

4. The design of a universe

The first approach irParsec’snetworking game-play, was tmaveone single largespace, were all
participating players meet and have fast-paced combat. In peer-to-peer mode this worked fine, since the
number of players was always limited to 4. However, after the client/server architecture was introduced
this did notmean thathundreds ofclients can now play together. Although it wa@ssigned to be
scalable from aechnical point ofview, it is often not useful tdet a single server handldozens of

clients, because game-play will suffer if too many players are present.

We therefore decided to structure the virtual space, and came up with the idea of natural partitioning
via solar systems. In this scenario, a gameseneagusalent toone or more solasystems forming a
galaxy. This haswo advantages: We camovefrom a singleserver, to aystem ofmultiple servers,
and still offer alarge playground for hundreds of players. Wan therefordimit the number of
players per server to a reasonaldkie (depending on the computing and netwoekources of the
server), to improve game-play.

All solar systems are interconnected by stargates. If such a stargate leads into a soldnatyistem
handled by a differergerver, theplayer flying throughthe gatewill be automatically disconnected
from the old server and reconnected to the new one. Except for a small delay, theviplangmotice
that he has moved to a new server.

4.1 The masterserver

Playing a networkedameusually means finding other players wivant to participatdirst. In the
past, a game session had to be planned beforehand. This is @hplaifers are geographically close
to each other. In this case scheduling a game beginning time, and finding other platyergéone is
usually not an issue.

However, the most common situation is a single pléyatjust wants to plaghe game. He might
be anywhere on the globe, and needs to find other players that want to plapeogoossible solution
to this problem would be the introduction of chatrooms or a public fdiemgxample Internet Relay
Chat (IRC). However this would require the playeh&we anRC client installedand thenecessary
knowledge to use it.

A different solutionthat is commonlyused isthe concept of masterservers. These are special
servers, that normal gameservers conmecto announce theiavailability. The masterserver can

therefore maintain a list of currently runniggmeserversand provide potentiaplayerswith this list.

The player can then choose a gameserver from the list, and connect therenithptlag other players

on that server. Whenever a gameserver starts up or shuts csemalst a message ttee masterserver

to inform it about its existence. It also tells the masterserver how many players are currently connected
and how many players asflowed as a maximum. The masterserver maintains an internal list of all
gameserversand creates akTML file of this list, which is dynamically updated. An httgerver

should be running on the masterserver host, to enable users to download the list with any standard web
browser.

Figure 3: Hierarchical structure of the Parsec universe

Each stargatenly knows its destination solar system but nothing akenteraddressesSince
theseaddressesan change, aservers can be down temporarily, the masterservegsisonsible for
connecting players to their desired destination. If the masterserver dethat suitableserver, the
jump will be refused. In this case, the corresponding galaxy is currently not reachable via stargates.

5. Implementation details and portability

Our current implementation of Parsems natively onWin32 (Windows95/98/NT), MacOS, Linux

and DOS. We support 3D hardware-accelerators using the Glide API by 3dfx, and the OpenGL API.
Networking support is a substantial part in Parsec.sifgortpacket exchangea Novell's IPX

protocol on Win32MacOSandDOS (for peer-to-peer games onLAN), as well asUDP/IP (for

both peer-to-peer andient/servergames) orall platforms excepDOS. Certain criticalfunctions in

Parsec’s client/server protocol, such as the connection establishment with a server, are done via TCP/IP

to ensuraeliability. In the following wewill describeParsec’scode structure imletail, and how we

tried to achieve high portability, even though the target platforms are rather different.

5.1 Subsystem structure

All networking code is written in a C-likubset ofC++. This meanghat weuse thingsike C++
comments and inline variable declaration but we do not use classes, templates, and the like. In
order tostill be able to determine whickubsystem asay, function belongs to we encode this
information in the function name itself.

We use aather strict naming conventidor module and function nameBvery module name of
the networkingsubsystem startwith the NET_ prefix (e.g., NET_RMEV.C, whichcontains all
remote-eventfunctions) if itsimplementation is the samfer all target systems. Ifthe module
implements a specific functionality but timaplementationdiffers from system to system iteame
starts with the Nx_ prefix where x denotes the targesystem. Forexample, UDP function
implementations for Win32 are contained in NW_UDP.C, whereas the corresponding
implementationdor MacOS are contained ilNM_UDP.C. These modules export thexact same
interface, that is, the caller always uses the same function name, although the actual impleméintation
be quite different for each system.

Every interfacdunction of the networkingubsystem startwith either theNET_ or the NETs_
prefix. Theimplementation oNET _ functions ighe samdor everysystem,.e., these functions are
not system-dependent. Their implementation is portable code ths¢dsforevery targesystem. For
this reason these functions are always bound staticaliy+t# NET_ functionswould be non-virtual

member functions. Forexample, utility functions like NET_FetchPlayerName() belong to this
category.

The implementation oNETs_ functions,however,differs from system to system and tHigt is
already announced by their function name. The caller doesn't know which implemeniatamtually
be called at run-time. First, for each system the implementatitinalways be different, although the
function namewill be the same. Furthermore, if dynamic binding is enalfleal a compile-time
switch) the implementation may be switched at run-time. For example, the abstract interface specifies a
NETs_SendPacket() function whosaplementation is differenbon, say,Win32 and Linux, and,
moreover, whose implementation is different depending on whether a UDP or an IPX packet should be
sent. Nevertheless, this is entirely transparent for the caller. Whereaiket@NETs_SendPacket() is
specified thiswill work correctly onevery system forwhateversubsystenmimplementation may be
currently active atrun-time, say,Win32/UDP, Win32/IPX, or Linux/UDP. NETs_ functions are
specifically named to announce this system-dependertbe waller. If dynamidinding is enabled
NETs_ calls will be routed through gump-table, although thismay be disabled transparently at
compile-time if on-the-fly subsystenswitching is not desired and tleverheadfor the indirect
function-calls is considered a performance issue. In C++ NETs_ funetaudd bevirtual member-
functions.

5.2 Portability

One of the major technicaproperties of Parsec is its high portabilitysing the code naming
convention described in the previous section passible to separate system-dependede from
fully portable codeFor example, thanodules containing themplementation of the pack&Pl for
IPX are called ND_IPX.C for DOS, NW_IPX.C for Win32 and NM_IPX.C for MacSBice these
three operatingystems usalifferent APIs to provide access to IPXservices, allthree modules
implement the same functions, but differently.

This approach worked fine for IPX, because IPX is only used for the peer-to-peer protocol, and the
IPX modulefor DOS wasfinished before iwas ported toNin32 and MacOS. However the other
parts of Parsecsetworking code thatisethe IP suite ofprotocols (TCP/IP andUDP/IP) where
written for Win32, MacOSand Linux simultaneously. These three operasypgtems uselifferent
APIs to provide access to IP servicg8VinSock onWin32, OpenTransport oMacOSand BSD
sockets on Linux). Fotestingpurposes duringlevelopment it wasecessary tdave different OS
versions of the network code available (the server code was wnittiarLinux, and the clientsvhere
tested with Win32 and MacOS).

Maintaining three different versions of the packet and protocol API code during development would
have been a very demanding task. Therefore we decidesetacommon APIfor all IP-basedcode.

We used acompatibility library that implements th&/inSock APl on MacOS, and a library
containing wrapper functions to work around differences between BSD sockets and WinSock.

For example, the BSD sockets API uses the close() system call to close a socket, however WinSock
requiresthe programmer tosethe function closesocket() to do the same thing. A wrapper-function
called Close() (note the upper-case character)wiisten, thattransparently calls the correct function
to close a socket.

Using this method we were able to write code that immediately onall three operating systems,
with only very minor differences. Although an additional layer (albeit a very thin one) was added to the
networking code, no noticeable slowdowns have been encountered.

6. Conclusions and future work

We have presented Parsec, an online multiplayer game who aims to offer gamers around the planet the
possibility to explore a distributed virtuahiverse,and giving them thepossibility tocreate their own
galaxies and solar systems.

We havedescribed thdechnicalproperties of a distributedirtual environmentand the obvious
problems that appear if a large number of participants interactshiarad simulation of a world. We
tried to offer an insight in the natural differences between distributtel environmentdor research
or military training and those found in state-of-the-art multiplayer games. Although the techniques are
similar the details of implementation are vastly different, and special attbatoto bepaid to ensure
satisfying game-play for all participants.

In the future we will continue to improve Parsec, its networking architecture and the visual quality of
the game itself. We hope to release a playable version of Parsec later this year, and there is still a lot of
work to do, until the universe will be online. We hope to incorporate discrete and progesssioé
detailsfor our spacecraft and othabjects, toensure highrealism, whilekeeping the amount of
polygons to rendelow. We areplanning toimplement a situation-dependent musistem and
support for 3D position-dependesvund effects. Furthermore weant to incorporatenew ships,
weapons anémprove game-play in general by balancing the impaetedpons angjive the player
better control over his ship.

By releasing both the server (for a widkriety of platforms) and thgame itselffor free, wehope
to attract a lot of people, either playing the game or maintaining a gameserver. As the gamvdiserver
be configurable in a lot of ways, each server administreisthe chance to makas or hergalaxy a
unique experience for players from all over the world.

7. Acknowledgments

I would like to thank Markus Hadwiger for creating thitial peer-to-peer networking architecture of
Parsec and for the section about the subsystem structure which he designed and implewsulted. |
also like to thank himand thewhole rest of the Parsecteam (namely ClemensBeer, Michael
Wogerbauer,Alex Mastny and StefarPoiss) fortheir greatwork, encouragement andupport.
Additional thanks to Gerd Hesina for proofreading ttaper,andall the online gamers out there on
the Internet for contributing great ideas and useful suggestions.

8. References

[1] Blau, Brian, et al. Networked Virtual EnvironmemCM SIGGRAPH Special Issue on
1992 Symposium on Interactive 3D Graphics, Cambridge ppA157-164.

[2] Blow, Jonathan. A Look at Latency in Networked Gan@sme Developeissue 7/98,
pp: 28-40.

[3] Broll, Wolfgang. DistributedVirtual Reality for Everyone — a Framework for

Networked VR on the InterneProceedings ofthe IEEE Virtual Reality Annual
International Symposium 199pp: 121-128.

[4] Calvin, J., DickenA., etal. TheSIMNET Virtual World Architecture.Proceedings of
the IEEE Virtual Reality Annual International Symposium 1998 450-455.

[5] Das, Tapas K.Singh G., et al. NetEffect: A Network Architectuf®r Large-scale
Multi-user Virtual WorldsProceedings of ACM VRST 199: 157-163.

[6] Funkhouser, Thomas ARING: A Client-Server System for Multi-User Virtual
Environments.Symposium ornteractive 3D Graphics, April 1995, Monterey, CA
USA, pp: 85-92.

[7] Funkhouser, Thomas A. Network Topologidsr Scalable Multi-User Virtual

Environments. Proceedings ofthe IEEE Virtual Reality Annual International
Symposium 199Gpp: 222-228.

[8] Macedonia, MichaeR., Zyda, Michael J., et al. Exploiting Realityith Multicast
Groups: A Network Architecture for Large-scale Virtual Environmeatsceedings of
the IEEE Virtual Reality Annual International Symposium 199%, 2-9.

[9] Macedonia, MichaeR., BrutzmanDonald P., et al. NPSNET: A Multi-player 3D
Virtual Environment over thénternet.Symposium ointeractive 3D Graphics, April
1995, Monterey, CA USAgp: 93-94.

[10] Macedonia, MichaeR., Zyda, Michael J., et aLNPSNET: A Network Software
Architecture for Large-Scale Virtual EnvironmerRsesence 3(4) Fall994, pp: 265-
287.

[11] Varga Andreas, HadwigeWarkus. The Parsec NetworkingArchitecture. Available

from http://www.parsec.org/netdocs/

