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Abstract

This paper considers the problem of liquid flow simulated in a tube using a simplified graphics
model capable of fast rendering. A liquid model is represented by a set of particles whose position,
speed and acceleration are derived from Navier-Stockes equations. The equations are solved by
explicit numerical integration in discrete time steps. Finally, each particle used in the model is
represented by a sphere or a metaball for smooth visualization of liquid surfaces.

1. Introduction

A simple water system has a tree topology structure without cycles while connections between
nodes are peace-wise linear. The orientation of small linear segments is considered to be arbitrary
in a 3-D. The focus of this paper is on a fluid flow in a linear peace segment. It is an initial problem
where the fluid speed at the beginning of a tube is proportional to a pump power. As the fluid
particle moves further from the pump its speed decreases or eventually particle can not move any
further. Such places are good candidates for the installation of an additional pump.

2. Mathematical Model

Let Ω  be a Lipschitz continuous bounded domain of Rn  (set of a real n- dimensional vectors) with
boundary ∂ Ω .

In Cartesian coordinates O x x x{ , , }1 2 3  the velocity of flowing particle in Ω  can be written
by the following Navier-Stokes equations:

u: ,Ω × →0 T Rn ; p T R: ,Ω × →0
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where the position u = ( ,..., )u un1  is a vector function of a time and is the velocity of the fluid,

µ >0 is its kinematic viscosity (assumed to be a constant), ∇ = + +2
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... ,    p  is its

kinematic pressure and f = ( ,..., ),f fn1  (n = 3)  represents a density of body forces per unit mass

(gravity, for instance). We set p
P=
ρ

 (kinematic pressure), where P  is a pressure in a fluid and ρ

is a density. The simplified model used in our simulation assumed Ω  as a tube and constant
kinematic pressure on each point of Ω  in every time.
We say that the solution of Navier-Stokes problem is transitional flowing of fluid if this solution is
changing with any time (it is  time dependent, (2.1)).

2.1. Approximation With a Finite Differences

2.1.1. Definitions:

We define D( )Ω  to be a linear space of functions infinitely differentiable and with compact
support on Ω . Now, let D' ( )Ω  denote the dual space of D( )Ω .

Let α α α= ∈( ,..., )1 n
nN  andα α =

=
∑ i
i

n

1

. For u  in D' ( )Ω , we define ∂ α u  in D' ( )Ω  as follows:
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For m N∈ (positive integer numbers) p∈R  and 1≤ ≤ ∞p , we define the Sobolev space:

{ }W mm, ( ) ( ); ( ),p p pv L  L   Ω Ω Ω= ∈ ∈ ∀ ≤∂ αα
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. When p=2, Wm, ( )2 Ω  is

usually denoted by Hm( )Ω , it is the Hilbert space for the scalar product:
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As D( )Ω ⊂ Hm( )Ω , we define H Dm Hm

0 ( ) ( ) ( )Ω Ω Ω= , i.e. Hm
0 ( )Ω  is the closure of D( )Ω  for the

norm   
 

.
,m Ω .

Let h = ( ,..., )h hn1  be a vector, where hi  - is step in direction xi  and 0≤ hi < ∞ .

     i) hi ih= ( ,..., ,..., )0 0

ii) R h is a set of points from Rn  of the type j j n n1 1h h+ +... , where ji  is from Z  (integer
numbers).

iii) The set σ h( )M = ( / , / )µ µi i i i
i
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 (Cartesians product of the intervals) is called a

block. Here we take M = ( ,..., )µ µ1 n .



     iv) σ h r( , )M - a class of type σ α
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v)ω h x M ( )  is a characteristic function of σ h( )M
vi) Denote δ ih   ( orδ i ) a finite-difference operator by
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  If j j j Nn
n= ∈( ,..., )1  is a multiindex then δ h
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vii) For each opened set Ω ⊂ Rn  and positive integer r we define the following sets:
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viii) Further define finite-difference operators ∇ih  , ∇ih  (simpler ∇i  , ∇i )
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2.1.2. Space Wh  :

The symbol Wh   denotes the staircase functions space with the elements:
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 are linearly independent, they create a base and generate the space

Wh . The dimension of this space is equal to n N h. ( )  and it is finite. Where N h( )  is number of

points M ∈Ω
o

h

1

. This facts give us that the numbers of base elements is equal to dimension of Wh

2.1.3. Scalar products:

It is important to define the following scalar products for the variation interpretation of our
problem:

i) ( , ) ( ) ( )u v u v= ∫ x x dx
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         D x D xih h i hu u( ) ( );=   for triangulation.
We have the following relations:

i) ( , ) ( , )δ δih h ih h i iD Du w v w→
ii) (( , )) (( , ))u w v wh h h →

     iii) ( , ) ( , )f w f wh →
Due to these relations we can approximate Navier-Stokes problem.

2.1.4. Form bh :

The transitional in the Navier-Stokes equations will be expressed by the form
b b bh h h h h h h h h h h h( , , ) ( , , ) ( , , )' ''u v w u v w u v w= + , where
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3. Numerical Solution

The existence and uniqueness of the solution of problem (2.1) can be found in [6] or [1]. Idea of the
numerical solution of (2.1) is based on the division of domain Ω  and the time interval <0,T>. The

division of the domain Ω  can be represented with the space Ω
o

h

1

.

3.1. The Time Axis Division

Let us choose a positive integer N . Let k
T

N
=  be the corresponding time-step, and tm = k m.  for

m N= 1,..., . The solution uh hT W: ,0 →  and ( )m k t mk− ≤ ≤1  we have u u uh h
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 Ω .  After this time axis division we can rewrite the

Navier-Stokes problem into the discrete form:
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(3.1) The variation interpretation of Navier Stokes problem

In the equation (3.1) the π h
m   is a pressure at the time ( )m k t mk− ≤ ≤1  expressed by
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The equation (3.1) has N  solutions for each m N= 1,..., . The solution uh
m  approximates the

solution u( )t  of the problem ((2.1) see [6]). on the interval ( )m k t mk− ≤ ≤1 .

3.2. Algorithm Arrow-Hurwicz

We construct two sequences uh
m r

hW, ∈  ; π h
m r

hX, ∈  ( Xh - function space with the elements (3.2). For
the base of this space look at the chapter 4) to solve equation (3.1).
The algorithm starts by arbitrary elements uh
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Where ρ α,  are constants satisfying the inequalities:

0 2 2< < +ρ αµ αµ/ ( )n

Inequality (3.4)

for n =2 or 3 (the dimension of the space Rn ).
Theorem 3.1:   Let ρ α,  be constants satisfying (3.4) then :
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 in X Rh /  (it is the factor space)

The existence and uniqueness of solution (3.3): uh
m r

hW, + ∈1  solving (3.3) is in [6].

4. Triangulation

The domain Ω  can be very complicated and one needs to approximate Ω .   The best way for
approximation Ω   is a triangulation of the domain Ω .  Let be Ω  subset R2 . Assume that we have
an inaccurate triangulation ℵ1 of Ω . Then we applicate the following algorithm 4.1.

4.1. Algorithm

 i) Each side of a triangle from ℵ1 is divided to k  the same parts. So we get (k -1) points on the

each side of the triangle and k2  new triangles.
ii) By the correct connection (see pic.4.1.) of points we get the finer triangulation   of  Ω .



(pic. 4.1.)        (pic. 4.2.)
              k =3              Triangulation of Ω , where Ω  is a rectangle

We want to know a basis of the spaces Wh  , Xh  to solve equation (3.3). The centers of all

sides of the triangles we call knops. One triangle has three knops Pj k k
j

k
jP P, , ,( , )= 1 2  for k=1,2,3 ; (j

mean the number of a triangle). Denote all knops from triangulation by the numbers i Nm= 1,...,

and Pj k
i

k
j i

k
j iP P, ,

,
,
,( , )= 1 2 .

Now we define function ω  i .  It represents a plane defined by the three points ( , ),Pj k 1 ; ( , ),Pj l 0  for

l = 1 2 3, ,  and k l≠   (where Pj k, =Pj k
i
, ) for all triangle from the triangulation including knop i . For

other triangles ω  i  is equal to zero. It is easy to check that ω  i  creates the base of Xh  for

i Nm= 1,..., . If n=2, then the set { }( , ),( , ); ,...,ω ω   i i mi N0 0 1=  creates the base of space Wh .

5. Animation Flow

Now, we take domain Ω  as a rectangle and we divide it, approximately, to 1mm2  rectangle parts.
The triangulation includes triangles with 1mm, 1mm, 2  long sides, approximately. The solution
of Navier-Stokes problem found by the previous method is defined on these triangles. We denote
the speed uh  (the solution of  (2.1)) in the centroid of triangle by A. The centroid representate all
points in the triangle. Let define metacircle for every triangle, with center in centroid of this
triangle. The animation shows a fluid flow in a pipe and also its outlet. By the other words:   The
animation shows a that metacircle (metaballs) flow with the calculated speed vector. For this
animation it is need to specify the function f :

Let have a pipe parallel to axis X. (see the picture (5.1)). In the picture the high of
pipe is L, andα  is a lead angle from earth. The gravitation and lead angle is acting to each
molecule from fluid. From that we have f = ( sin , cos )g gα α .



(pic. 5.1.)

In the first case we take the viscosityµ = 0 01. , pressure p=105 2Nm−  in every triangle, which
describe water. If we would like to animate the flow of a mercury then we set: µ = 0 03.  and

p=105 2Nm− .
One result:

(5.2) The velocity of fluid at point (i) of pipe with a time 0 and with continuously changed angle
(in an one dimension, n=1).

The mass of the metacircles in a pipe is displayed by method described in [4] and each metacircle
has evaluated velocity from Navier Stokes equations.



6. Conclusion

This paper shows one method for the generating of a nearly realistic animation of the fluid flow in
Lipschitz continuos domain. To solve (2.1) it is necessary put all base elements (see the part:
‘Triangulation“) of space Wh   instead of the vector vh  and all bases elements of space Xh  instead
of qh  into (3.3). Then we get Nm  equations with Nm  unknowns. This method can be applied in the
Virtual Reality, water-works or traffic engineering. Why in traffic engineering? In the concretized
model from the part  5 we can change the domain Ω  so that it will approximate some street from
city. So such changed model can show for example the rain water flowing away from the street. We
can see this situation in a computer simulation, before building the street. The simulation of water
flow in a mountain should prevent people before a flood. But, if we want very realistic simulation
we must solve a large system of equations. It needs many time to calculate the result.
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