
Remote VRML browser control using EAI

Milan Kubec, Jiri Zara

<xkubec,zara>@fel.cvut.cz

Departament of Computer Science and Engeneering

Czech Technical University

Prague / Czech Republic

Abstract

The paper describes an implementation of experimental system, which allows

multiple users to cooperate within one VRML world. The program is built up

on architecture client/server. A Java applet is used for communication between
several users connected by a network. The applet uses the External Authoring

Interface (EAI) to in
uence/control a VRML world in a browser embeded in a
HTML page.

Keywords: VRML, EAI, Java, Applet, client/server

1 Introduction

Recently we can hear words "collaborative systems" very often. It is such a system,
where multiple users are engaged in particular shared activity, usually from remote
locations. This kind of cooperation is very useful, e.g., two or more people in

distant locations are able to develop or consult their work without travelling and

wasting time and money. Up to now this kind of systems are mainly textually or

2D (drawings) oriented. Another approach is to allow users to share interaction in
3D. VRML and platform independent programming language Java were chosen to
achieve this goal. The internet provides the communication background.

The aim of this project was to �nd out the way, how to remotely control VRML

browser and particular parameters of the VRML scene, because it plays the main

role in such collaborative systems.

The structure of this paper is organized as follows. The External Authoring

Interface is discussed in Chapter 2. The implementation of the experimental sys-

tem is described in two following sections. Applet implementation in Chapter 3
and server implementation in Chapter 4. Implementation details are described

in Chapter 5. The last two chapters contain discussion on the future work and

conclusion.

2 External Authoring Interface for VRML

EAI [3] de�nes an interface between a VRML world and an external environment.

It contains a set of functions of the VRML browser that the external program can

call to a�ect (or get parameters from) the VRML world. This contribution deals

only with interface between a Java applet on a HTML page and a VRML world

opened in a viewer embeded in the same page. There are some other interfaces

such as COM or IPC based.

2.1 Access methods

EAI uses the existing VRML event model to access nodes in the scene. This model

is based on sending and receiving events (eventOuts, eventIns). We can use four

methods of accessing VRML worlds:

1. accessing the functionality of the Browser Script Interface [5], which is

used by built-in script nodes. These functions provide a mechanism to get
or set browser state. Functions such as getName(), getCurrentSpeed(),

loadURL(), createVrmlFromURL(), addRoute() are available.

2. sending events to eventIns of named nodes inside the scene.

3. reading the last value sent from eventOuts of named nodes inside the scene.

4. getting noti�ed when events are sent from eventOuts of named nodes inside
the scene.

The �rst three access methods are conceptually identical to Script Authoring

Interface, as described in ISO Standard [5]. The only di�erence is the way of

obtaining the reference to a node through which its eventIns and eventOuts can

be accessed. A script node can get a pointer to a node de�ned by DEF and USE
statements (called instancing). An applet has no access to instancing mechanism,

it has just a method to get the pointer to a node de�ned by DEF statement only.

The last access overcomes the problem, that ROUTE statement cannot be used

for sending events from VRML scene to an applet. The applet has to implement

a registered method which is to be called when speci�ed eventOut occurs (i.e,
callback mechanism).

2.2 Access to nodes

Only nodes, which are named using VRML statement DEF can be accessed by an

applet. Once the pointer to a node is obtained, it's easy to access all eventOuts,

eventIns and exposedFields of the node.

An instance of class Node can be obtained by function getNode() of the
class Browser. This instance is used to get access to desired �elds of the node.

Calling getEventIn() method of class Node returns EventIn object, when passed

appropriate event name. The method getEventOut() returns an EventOut object

when passed event name. Also exposedFields can be accessed either by passing

name of exposedField itself (e.g., rotation), or by passing name of corresponding

event (e.g., set rotation for eventIn or rotation changed for eventOut).

2.3 Sending events

Once an instance ofEventIn class is obtained, an event can be sent to it. EventIn is

abstract class so the cast to appropriate EventIn subclass is needed. This subclass

contains a method for sending events of given type. If a VRML scene contains the

folowing node:

DEF SCALER Transform { ... }

the scale can be set to values (1.0, 2.5, 1.0) from applet like this:

Node scaler = browser.getNode("SCALER");

EventInSFVec3f scale =

(EventInSFVec3f) scaler.getEventIn("set_scale");

float sc[3] = { 1.0, 2.5, 1.0 };

scale.setValue(sc);

2.4 Reading events

Once an instance of EventOut is obtained, a value of event or exposedField can
be read. Since EventOut is abstract class it needs a cast to appropriate subclass
which contains method for getting events of given type. Current value of scale �eld

can be read like this:

EventOutSFVec3f scale =

(EventOutSFVec3f) scaler.getEventOut("scale_changed");

float current_sc[3] = scale.getValue();

2.5 Being noti�ed

Another feature of EAI is to be noti�ed when an EventOut is generated from the

scene. In this case the applet must subclass the EventOutObserver class, and

implement callback() method. The advice() method of EventOut is then passed
the EventOutObserver. Whenever an event is generated for that eventOut the

callback() method is invoked and passed the value and timestamp of the event.
The advise() method is also passed a user de�ned object. The value of this object

is passed to the callback method and can be used by programmer to pass user

de�ned data to callback. It allows to handle events from multiple sources, the
source is distinguished just according to this value. The following example shows

how applet is noti�ed when position �eld of ProximitySensor is changed:

public class VRMLApplet implements EventOutObserver {

public void callback(EventOut event,

double timestamp, Object userdata) {

// process new values of event with respect to userdata

// userdata helps to distinguish among events

}

sensor = browser.getNode("PROXIMITY");

position = (EventOutSFVec3f)

sensor.getEventOutSFVec3f("position_changed");

position.advise(this, new Integer(1));

// number (1) is passed to callback method as userdata parameter

}

3 Applet implementation

The applet has to be placed into the same HTML page where the VRML browser
window is, it is the only way how external program can communicate with an
embeded VRML world. The applet provides interaction with user, communication

with VRML scene and network communication with server. HTML page is divided
into two frames, there is identi�cation of applet mode (described later) in upper
frame. VRML world together with applet are located in lower frame.

 informatory frame

 VRML browser
window

applet
 Java

lower fr.

upper fr.

Figure 1: HTML page layout

3.1 Security restrictions

Applets by default cannot execute certain kinds of tasks from security reasons.
Networking issues belongs to this kind of tasks too. Applet is not allowed to make a

connection to computer other than it came from. To work around this restrictions

we have used a client/server [2] model. The server runs on the same computer,
which applet came from. All executed applets connect themselves to this server and

then their mutual communication is possible. This approach has some drawbacks,
two mains are: communication is slower than it would be among directly connected

applets, and the server must be invoked before applet communication starts.

3.2 Applet modes

Due to di�erent kinds of actions performed by applet, we divide operations of

applet into modes in our implementation. The �rst mode is called Master, in

this mode a user controls the world and all other participants can watch his/her

activity, there is no limitation on user's actions. All actions (movements) are sent

to server and then forwarded to all participants.

The other mode called Slave enables user either to watch actions of Master

(submode called Tracking) or to work with VRML scene locally and indepen-

dently (submode called Self control). No actions are sent to server. There is one

limitation, when user watches actions of Master in submode Tracking, no in-

teraction with VRML scene is allowed. The reason will be explained in section

Problems & Future work. Upper frame shows current mode and submode. Titles

can be: Master, Slave/Self control or Slave/Tracking.

3.2.1 Changing modes

Switching between applet modes is ensured by applet GUI. A user can changeMas-

ter mode only by clicking Release button. Then mode is changed to Slave/Self

control and the mode of next connected participant (chosen by cyclic shift) is
changed to Master. Then server listens to this new Master and sends recieved

messages to other participants. This is the only way how a participant can get
control of VRML world.

Once the applet is in Slave mode a user can switch between Self control

mode and Tracking mode (Self control button or Tracking button).

3.3 Applet GUI and control

Applet GUI consists of window for informing users about actions performed by
applet. Then user has buttons to control applet. Buttons Front View , Top View

and Side View sets de�ned Viewpoints in scene. Button Set Viewpoint adds current

view as new Viewpoint to scene (then user can set this Viewpoint using VRML

browser GUI). Clicking on button Release disconnect applet from server and causes

changing applet mode to Slave/Self control. Button Tracking is active only in

mode Slave, clicking this button causes changing mode to Slave/Tracking and
disables all GUI elements for controling scene (even in VRML browser). Title

of button is changed to Self control, then clicking it causes changing mode to

Slave/Self control and enables back control GUI elements. Functions of Help

and Exit buttons are obvious from their names. Exit button is enabled only in

mode Master, because server listens only to applet in this mode.

Text �elds under text area and buttons informs user about current position
and orientation of view. This works in all modes and submodes.

Figure 2: Applet GUI

3.4 Getting and sending parameters

Parameters of position and orientation are sent from Master applet to server
to be forwarded to all participants. Applet gets these parameters from Proxim-

itySensor (see section 5.1) by implementing EventOutObserver interface and its
method callback(). Method advice() is called by two eventOuts: position and

orientation. Applet doesn't send all new parameters immediately, but only when
accumulative chages of their values exceed certain thresholds.

3.5 Users motion in the scene

When a user tracks actions of Master applet in Slave/Tracking mode, all re-
cieved parameters of position and orientation from server are set to current View-
point. This Viewpoint has empty description �eld to be invisible in browser's list of

Viewpoints and it is bound to VRML browser when switching to Slave/Tracking

mode.

3.6 Applet in HTML page

The HTML �le containing embeded wrl and class �les has one required seman-
tic. Field MAYSCRIPT means that the applet can get the VRML plugin browser

object instatnce from the browser. This method should be functional in Netscape

Navigator and Internet Explorer as well.

<EMBED SRC="VRMLScene.wrl">

...

<APPLET CODE="VRMLApplet.class" MAYSCRIPT></APPLET>

4 Server implementation

The server is intended to realize communication among applets. This is by principle

a multithreaded task, the server consists of three threads. Server must run on the

same computer which sends the applet and must be invoked before establishing

�rst connection.

4.1 Establishing connection

Main thread listens on de�ned socket, which is known to all applets. When applet

connects to this socket server stores its new socket number into internal structure.

After second applet connects and its socket number is stored, two other threads

are started. One thread which provides forwarding messages from one applet to

the others (this thread has maximal priority). The other thread provides service of

removing socket numbers of disconnected applets from internal structure of server.

HTTP
Server

EAI
Server

Applet started

mode:
Master

mode:

mode:
Slave/Self control

Slave/Tracking

HTTP
 RQ

 HTML
 class, wrl

position, orientation

position, orientation

Applet

Applet

Applet

PC

PC

PC

PC

Applet started

Applet started

position, orientation

initial commuication

Figure 3: Establishing connection and forwarding

Server sends an order number to each new connected applet. From this number

the applet can decide if it should act like Master or Slave applet.

4.2 During forwarding

Server forwards all recieved messages. When it recieves a message about releasing

Master mode, it hands over the control to next applet (in cyclic order) and starts

listening to this new Master applet socket.

4.3 Disconnecting

Only applet which is currently in modeMaster can be disconnected and removed

from server structures, because server listens only to this applet. In this case the

server sends message to next applet (in cyclic order) that it become Master.

5 Details

5.1 Mandatory content of *.wrl �le

Since the applet can access only nodes named by VRML statement DEF, there

are some mandatory named nodes required in base shared *.wrl �le.

� NavigationInfo named INFO,

used for setting parameters of the scene, such as type of navigation or speed

of viewer.

� ViewPoints named FRONT VIEW, TOP VIEW, SIDE VIEW,

these nodes are used by GUI of the applet, to help user navigate in the scene.

They should show the entire scene from front, top and side views.

� ViewPoint named SETTING VIEWPOINT,

position and orientation are sent to this node in mode Tracking.

� ProximitySensor named PROXIMITY,
applet gets the position and orientation from this node, its bounding box

should cover whole scene.

� Group named ROOT,
main node for entire scene, all other nodes should be childrens of this node.

The node is necessary if programmer wants to access all nodes in the scene.

5.2 Implementation and compilation

Both applet and server were implemented in language Java and compiled us-

ing JDK 1.1.5 (because of support in web browsers). Java uses an envi-
ronment variable called CLASSPATH to look for classes. This variable should
be set to contain classes: vrml.external.Browser, vrml.external.Node,

vrml.external.field.*, vrml.external.exception.*. These classes are usu-

ally stored in zip �le in VRML browser home directory (name of this �le for VRML

browser Cosmo Player is npcosmop211.zip or npcosmop21.zip, depends on ver-
sion). This implementation was tested only on platform Windows using Netscape

Navigator 4.07 and Cosmo Player 2.1.

6 Problems & Future work

We discover some problems during implementation of this system. The VRML

scene during setting parameters position and orientation seemed to be jumping. It

is caused by setting each of these parameters separately. When the position is set,

new orientation should be set immediately too, but there is no function for setting

more parameters at the time. Then there is a moment when these parameters

doesn't coresponds each other. This will be solved by couple of functions called

beginUpdate() and endUpdate() from new proposal for EAI ISO Standart.

Another problem was with setting parameters for Viewpoint node in mode

Slave/Tracking, because if user moved with scene during tracking, new position

and orientation were added to current position of scene. This was manifested like

uncontroled moving of scene, until a new Viewpoint was chosen from list. According

to this all interaction with scene is disabled in mode Slave/Tracking.

Using Back button and then Forward button on web browser causes new start

of applet and server adds to its structure a new socket, but the last socket is still

there. It means that if server hands over to such unowned socked, communication

stops.

There are many things to improve. Applets sends only information about cur-

rent viewer position and orientation. The system might send whole VRML events

to be more
exible. Then applet doesn't respond to closing of web browser so

server doesn't �nd out about exiting some applet, this should be improved too.

For real application of this system should be worthy to think of another model of

choosing next controling applet. Another drawback is that there is �xed VRML
�le in HTML page, so users cannot choose own scene.

7 Conclusion

Described implementation shows how to take advantage of Java applet and VRML

in di�erent way than usual. Remote control of VRML world is very interesting
issue. It can be used in many di�erent tasks.

Currently the system doesn't work like real collaborative system. It allows

users very few functions to perform. Only one user at time can actualy work with
a VRML scene. The other participants just watch and wait to be chosen. On the
other hand, the implementation provides good working basis for future extensions

of Java platform and VRML cooperation.

References

[1] Flanagan, D.: Java in Nutshell, A desktop quick reference { Java 1.1 , Second

edition, O'Reilly, 1997.

[2] Java Tutorial , Sun Microsystems, 1998.

http://java.sun.com/docs/books/tutorial/

[3] Marin, Ch.: Proposal for a VRML 2.0 informative annex, External Authoring

Interface, Silicon Graphics Inc., 1997.

http://cosmosoftware.com/products/player/developer/eai/

[4] Aktihanoglu, M.: VRML 2.0 EAI FAQ , 1998.
http://members.xoom.com/muratak/eaifaq.html

[5] VRML 97 Speci�cation

http://www.vrml.org/Specifications/VRML97/

[6] Hartman, J., Wernecke, J.: The VRML 2.0 Handbook { building moving worlds

on the web. Silicon Graphics Inc., Addison Wesley, 1996.

