
Internet-Based Visualization of Basin Boundaries
for Three-Dimensional Dynamical Systems

Bernd Wallisch

Institute of Computer Graphics
Vienna University of Technology

Vienna / Austria

Abstract

One a pplication of surface-oriented visualization of volume data is the c onstruction of surfaces
between two different regions of the volume (e.g. iso-surfaces). For some a pplications, a binary
subdivision of the volume is not sufficient, for instance for the representation of basin boundaries in
the phase space of dynamical systems. Basins describe regions with the same long-time behaviour.
An extension of the known Marching Cubes algorithm is introduced, which works both with binary
and g enerally classified (at least t hree different classifications within a ce ll) data sets. For faster
surface c onstruction the original l ook-up table of the Marching Cubes algorithm i s used. The
algorithm supports both progressive refinement of surfaces by binary subdivision of data cells and
smooth transitions between models, which are differently refined. The adaptive subdivision depends
on the local properties of the surface. Binary subdivision for refinement of regions leads to a coarse
representation of the surface, therefore the vertices of the triangles are relocated after the surface
construction depending on the classifications of adjacent cells, in order to smooth the surface.

Keywords: dynamical systems, non-binary classification, adaptive representation

1. Introduction

An application of surface-oriented methods for volume visualization is the visualization of surfaces
separating distinct regions of the volume. This technique is mostly based on binary classification of
data samples in an inside a nd outside part by an iso-value, i.e. the separation of data sets by a
surface into two different regions depending on a c lassification. But t here a re a lso applications
where the c lassification into more than two different regions (general classification) is required.
Nielson et al. [16] mention the segmentation of different t issues or organ classes for medical
applications or materials classified by properties like solid, liquid or gas for physical simulation. A
visualization of more than two different regions is also required for the exploration of boundaries
between b asins within dynamical systems, for example the system discussed by Agiza e t al. [1].
This application is the main motivation for the presented p roject, but t he surface e xtraction
technique can also be applied to o ther data sets with a binary or general classification. The basin
boundaries of a dynamical system can b e c onsidered as s urfaces, which separate regions with
different long-time behaviour [17]. The problem with dynamical systems in this context is an
expensive c lassification function (iteration of a trajectory) and that t hese c lassifications do not
support further information about the position of the boundary.

Following requirements for basin boundary visualization can be listed:

• Fast surface construction for generally classified regions [4, 11, 16]

The surface c onstruction h as to be fast both for binary and g enerally classified regions. The
construction should only have local influence to support progressive refinement, since new points
are gradually inserted.

• Adaptive and efficient model representation [3, 10, 13, 15, 18, 24]

Because of expensive c lassifications we have to use a representation with as few as possible
classified points, i.e. we use more points for regions with a higher level of detail and fewer points
for r egions with a small level of detail. Further we have to store and reuse classified points. The
classification and the surface model have to be stored in a compact way, because of the expected
high amounts of data.

• Selective and smooth progressive refinement

We have to provide the possibility of selection criteria for progressive refinement and a high
number of intermediate representations. For the selective refinement t he user is able to choose a
region of interest by the actual view direction. The selected region is first considered for refinement
and is visualized with a higher level of detail than its surrounding. Other regions are considered, if
the refinement of the selected region to the currently highest level of detail is finished.

• Web-based interactive application [7, 8, 9, 14]

The use of the Internet is also connected with a limited bandwidth for data transmission, so we have
to reduce the data required to describe a model as far as possible. Therefore a c ompact data
representation for the transmission is necessary and only the changes between different models with
increasing level of detail are transmitted.

The basin v isualization is implemented in the platform-independent programming language Java
(JDK 1.2) with its 3D-extension Java 3D (Java 3D 1.1.1 Beta 1 for Direct X) which can be used for
providing 3D-graphics over the Internet [20].

2. Surface Extraction

There a re only few approaches for the visualization of generally classified d ata sets. These
approaches are not adequate for our application b ecause of a subdivision of generally classified
cells in many sub cells for a generalized Marching Cubes [11] or the use of tetrahedra for the
surface construction in [4, 16]. Therefore a modified Marching Cubes algorithm [6, 12] is used. The
progressive refinement is realized by a subdivision of a c ube into 8 equally sized sub cubes.
Different levels of detail are e xtracted d epending on the local curvature by different subdivision
depths.
The visualization of generally classified regions requires also double-sided triangles with different
front and back side c olors. Double-sided triangles can b e implemented with Java 3D using two
triangles with opposite normal vectors, opposite vertex order, activated backface c ulling and
different colors.

2.1 Binary Classified Cells

The original Marching Cubes algorithm classifies the eight vertices of a cell depending on their data
value a nd an iso-value a s inside (0) and outside (1). Every differently classified edge of a ce ll
contains an intersection point. The intersection points are points of the surface, which have to be
connected for triangulation. Exploiting symmetry 15 basic ca ses can b e identified out of 256
possible classifications of the 8 cell vertices. The 15 cases can be stored in a fast look-up table. The
exact position of a point on an intersected edge is calculated by linear interpolation between the two

vertices using iso-value. The normal vector on a surface point is calculated u sing central
differences. The Marching Cubes algorithm i s reused for binary cells (exactly two different
classifications within a ce ll) with some modifications. For the c lassification of a vertex the
classification function is used, which returns which basin a point belongs to. As only classification
information is available, we can also not calculate the position of the surface point and the normal
vector with the original methods. The position of a point is always located in the middle of an edge,
since we have no information about t he e xact position from the surrounding classifications. This
leads to coarse surfaces, which can be improved with surface smoothing. A more accurate position
of a surface point can be e stimated by checking the c lassifications along an edge, but it is more
costly. The normal vector of a point is calculated from the location of the corresponding triangle,
resulting in a single normal vector per triangle. This is sufficient information for flat shading, which
is also sufficient for the basin boundary visualization.

2.2 Generally Classified Cells

For the triangulation of generally classified cells (more than two different classifications within a
cell) the cell is disassembled into several binary classified cells. These binary cells contain only ver-
tices with identical and adjacent classifications from the general cell, the remaining vertices are
assigned to a so-called not defined region. These binary cells are independently triangulated with
the modified Marching Cubes algorithm. The triangulation of a general cell is the combination of
the triangulations of its binary dissection. This triangulation approach for generally classified cells
raises the problem of not defined regions and duplicate triangles. Not defined regions are visible at
lower resolutions, but are nearly invisible at higher resolutions. On the other hand their appearance
informs the user, that more detailed information on the junction of several regions is not available.
The duplicate triangles are caused by opposite but similar Marching Cubes cases at t he boundary.
The duplicate triangle has to be removed and the colors of the opposite triangle have to be updated.
The advantages of this method are a fast surface construction because of the reuse of the Marching
Cubes look-up table and its simplicity. Figure 1 shows an example for the surface construction of a
generally classified cell with the modified Marching Cubes. The example leads also to a duplicate
triangle.

D up lica te tr iang le

D is as sem ble

M C C ase 1

M C C ase M a rc h ing C ube s C as e

M C C ase 8M C C ase 5

A s sem ble

Figure 1 Example of general triangulation with duplicate triangle

2.3 Surface Smoothing

The results of the modified surface extraction are coarse, since the vertices are always located in the
center of an intersected edge. The shape of the surface around a vertex is influenced by the positions
of other vertices. Therefore a vertex can be relocated depending on the surrounding classifications.
A vertex on an intersected edge is influenced by the vertices in cells sharing this common edge.
Parallel edges have only a small influence, because they do not attract connected triangles (Figure
2a). Orthogonal edges attract t riangles in their direction and cause higher curvature a t t he
considered vertex (Figure 2b). This attraction has to be compensated in order to get a smoother
transition. Therefore the vertex is shifted in the direction of an intersected edge. Two intersections
in different directions neutralize each other, since every intersection is connected with relocation in
its direction (Figure 2c). Each edge is connected with 4 cells and is influenced by 8 edges, 4 in
positive and 4 in negative direction. The shift for an edge is relative to the sum of the intersections
with a sign depending on their direction. The shift for an edge can also be scaled by a user-definable
factor in order to adjust t he influence. This approach is a fast and simple method to smooth the
surface influenced by the surrounding classifications.

b) 1 in te rsection p oin t

d) 2 in te rsection p oin tsc) 2 in te rsection p o in ts

a) no in te rse ction po in t

sh ift

sh ift

sh ift

sh ift

sh ift0

+ 4

-4

in flue nc ing c la ss ifica tio n

in flue nc ing in te rs e c tion po in t

Figure 2 Principle of Surface Smoothing

3. Adaptive Surface Representation

The specified requirements like a daptive representation and p rogressive refinement are supported
by an octree as a hierarchical data structure. An intermediate node with 8 child nodes represents
every subdivision. The root node represents the whole data set as a cube. Therefore we have to
transform the data set, since it has usually not the same extent in all dimensions. The data set, which
has to be continuously defined in the domain, is transformed by scaling and translation into a cubic
domain with the range 0 to 2n. This domain makes both an easier subdivision and a fast calculation
with just integer arithmetic instead of f loating p oint possible. The c ubic domain is used for the
whole work within the octree like subdivision, surface construction, surface smoothing and so o n.
The domain is transformed into a domain with the original size relations for r endering. For effi-
ciency the octree is replaced by an octree forest t o achieve a minimum starting subdivision and in
order to avoid the traversal of these first levels. The octree forest is a three-dimensional array
(currently 8 8 8) with references to the corresponding root nodes of shorter octrees.
The c lassifications of the vertices have to be stored for r euse, because of expensive classification
functions. The storage in an array is inefficient, because of the adaptive representation. Therefore
the classifications are stored within the cell in a compact way. For efficiency several types of leaf
nodes are distinguished. There are simple and complex leaf nodes. A simple leaf node has the same

classification at all vertices and contains therefore no surface. Most of the leaf nodes are simple leaf
nodes and can be stored with only one c lassification. A complex leaf node c ontains at least t wo
different classifications and therefore a p art of the surface. A complex n ode ca n b e further
subdivided into binary and g eneral leaf nodes. A binary (leaf) node contains exactly two different
classifications, so we can store them with just t wo classifications and the corresponding Marching
Cubes case index. All classifications have to be stored just for the general node with at least t hree
different classifications. A complex node stores also a surface index to the triangles constructed
within the ce ll for later r eplacement during p rogressive refinement. The distinction b etween
different leaf node types results in b ig savings, since usually at least 90% of the leaf nodes are
simple or binary leaf nodes.
Simple nodes are not further r efined, since this would u sually only result in more simple nodes.
This method leads to savings because of fewer subdivisions and less memory consumption, but also
to missed surface parts. Missed parts of a continuous surface can be found by surface tracking. For
surface tracking all simple neighbours of a newly subdivided cell are checked. If a considered cell
has an intersected edge, which is adjacent t o the c hecked simple ce ll, also the simple ce ll must
contain this intersection point and a surface part. Therefore such simple cells are subdivided until
they have the same size as the considered cell. This method is restricted to surface parts, which are
connected to surface parts already found, which is in most cases sufficient.
A drawback of an octree is a difficult or expensive acce ss to neighbour cells of the c urrent
processed region. Therefore the leaf nodes of an intermediate node of the octree are stored in a
three-dimensional array, which works like a cache for leaf nodes in a part of the octree. Every entry
of the array refers to the corresponding leaf node. The number of entries for a leaf node depends on
its size, therefore larger cells are represented by more entries than smaller ones. Further for every
cell the reference point within an octree, the cell size respectively octree depth, the parent node and
the c hild index are stored. This information is implicitly stored in the octree a nd can only be
determined by an expensive traversal. The selection of the size of this array is essential for the
efficiency, since only a part of the octree can be held in this cache. Therefore the a rray size is
chosen to correspond to a progressive unit, an entity used by this approach for progressive
refinement.

3.1 Adaptivity Criteria

The goal of the adaptive representation is to represent sections with a level of detail, which depends
on the local shape (curvature) of the surface. Therefore fast heuristic curvature estimation is used as
well as consistency criteria, which guarantee a simple and fast triangulation and connection between
adjacent cells with different sizes.

3.1.1 Heuristic Curvature Estimation

A more e xact calculation of the c urvature is expensive, because we have to calculate the a ngles
between normal vectors of triangles of the investigated and adjacent cells. The curvature of the cell
is related to the angle between own and adjacent t riangles. This principle is reused, but every cell
has only one representative normal vector. The curvature is now estimated by the minimum angle
between the representative normal vectors of the c onsidered and the a djacent cells. The
representative normal vector of a cell is the average or normalized sum of the normal vectors of the
vertices. The normal vector of a vertex is calculated by the technique for discrete surfaces from
Th rmer et al. [21]. Vertices belong to the same surface, if they have the same classification and are
not separated by other classifications.

3.1.2 Consistency Criteria

The c onsistency criteria guarantee a simple and fast connection between cells with different sizes
and a c ompact representation, since this is a c ommon problem for all adaptive a pproaches. The
criteria do not have to be c onsidered for cells, which have only direct neighbours with the same
size, since a valid triangulation is possible with the Marching Cubes algorithm. For the check of the
consistency criteria the 6 faces of a ce ll are c onsidered. The different parts of a ce ll face with
smaller neighbours are shown in Figure 3.

Face Sub face Inn er ed ge Border ed ge

Figure 3 Face part designation of a cell face with smaller neighbours

A non-empty cell has to be subdivided, if any of the following rules is met.
• The depth difference between the cell and a non-empty edge neighbour is larger than 1.
• The cell cannot be triangulated neither with the Marching Cubes algorithm nor as an adaptive cell.
• The faces of the cell contain more than two different classifications.

A cell is valid for Marching Cubes triangulation, if all faces
• contain no intersection point at an inner edge.
• contain at most one intersection point at each border edge.

A cell is valid for adaptive triangulation, if all following rules are met.
• At most 4 faces of 6 have intersection points.
• Every inner or border edge contain at most one intersection.
• Every face contains either 2 or no intersections at border edges.
• Every sub face contains either 2 or no intersections.

The task of the adaptive triangulation is to connect t he surfaces of adjacent cells, if the Marching
Cubes algorithm cannot be applied. The closest intersection points on the faces of such a cell are
connected in order to obtain a contour. The consistency criteria guarantee a closed contour, so the
contour can b e ea sily triangulated for surface c onstruction. Figure 4 shows an example of an
adaptive triangulation of a cell with smaller neighbours.

a) C heck valid
 in tersec tion points

b) C on tour of in te rsection
 po in ts for storage

c) Trian gulation o f con tou r
 fo r rende ring
 Trian g le strip: 0 1 6 2 5 3 4

00

11

44

66

33

55

22

Figure 4 Example of an adaptive triangulated cell

3.2 Progressive Refinement

The principle of the progressive refinement is to generate intermediate models with increasing level
of detail for viewing du ring the c reation of more acc urate data. The progressive refinement is
supported by a successive subdivision and an adaptive representation. There a re two combined
types of progressive refinement, smooth and selective refinement. Smooth refinement generates
many different models with different levels of detail in order to make smooth transitions between
the models possible. The selective refinement chooses a new region in the octree for the next
refinement depending on the c urrent view direction. All changes in this s ection, the so-called
progressive unit, and in adjacent cells are transmitted in one update. The progressive unit is a cube,
which corresponds to an intermediate node of the octree.

3.3 Efficient Geometry Representation for Storage and Transmission

The task of the geometry compression is a c ompact representation of the geometry. Geometry
compression is usually lossy like in [5, 19, 22]. The discrete positions in the octree and the limited
number of positions of intersection points within a cell make a lossless and compact representation
for efficient storage and transmission possible. A vertex within a Marching Cubes cell can be stored
in a compact way using the edge identifier, because there are only 12 edges within a cell (4 Bits).
There a re a lso 5 Bits necessary to store the shift (32 p ositions) of a vertex on the e dge. The
triangulation of a Marching Cubes cell can be stored with 7 Bytes (51 Bits) for the cell information
and 5 Bytes (35 Bits) per triangle. The ce ll information consists of the ce ll position, the size
respectively octree depth and the front and back side c olor. If we represent t he triangles by its
vertex positions then we need 38 Bytes per triangle for coordinates stored as floating point numbers
or 20 Bytes per triangle for short (2 Bytes) numbers.
The compression can be further improved if we distinguish the compression of binary (2 d ifferent
classifications) and g eneral cells (more than 2 d ifferent classifications). For binary cells just one
front and back side color has to be stored per cell. For general cells one front and back side color
has to be stored per triangle. Similar savings can be achieved with adaptive triangulated cells. There
are no normal vectors compressed or transmitted, since we calculate them from the location of the
corresponding triangle at the client.

3.4 Surface Construction Algorithm

The following pseudo code describes the principle of the surface construction and all its connected
techniques. Details about t he techniques are described in the previous or following sections. The
desired level of detail is controlled by a maximum number of subdivisions.

Initialize octree;
WHILE (true)
BEGIN
 IF (all progressive units refined)
 BEGIN
 IF (desired level of detail) stop refinement;
 ELSE restart refinement;
 END
 ELSE select progressive unit depending on view direction;

 FOR (all leaf nodes within progressive unit) /* Refinement */
 BEGIN
 IF ((leaf node is general node) OR
 ((leaf node is binary node) AND
 (curvature(leaf node) >= maximum curvature))
 BEGIN
 subdivide leaf node;

 surface tracking in non-empty children of subdivided leaf node;
 check consistency with neighbours;
 END
 END

 FOR (all leaf nodes within progressive unit) /* Surface extraction */
 BEGIN
 surface construction within leaf node;
 surface smoothing within leaf node;
 if (leaf node is on the edge of the domain)
 BEGIN
 construct domain boundary part from leaf node;
 END
 END
 transmit the symbolic surface representation of changed cells;
END

4. Domain Boundary & Cutting Plane Preview

The domain boundary visualizes the basins on the surface between the inside and the outside of the
specified data domain. The domain boundary can be considered as the cutting planes at the 6 faces
of the cube represented by the root node of the octree. For the construction of the domain boundary
the ce ll faces of leaf nodes at t he border of the octree a re used. A quadtree is used in order to
combine smaller homogeneous faces for an adaptive representation also of heterogeneous cells. The
domain b oundary provides a better overall view of basins, since it shows also the first region
corresponding to the c urrent viewing d irection, which cannot be recognized because of double-
sided surfaces.
The exploration of data sets makes it also necessary to generate two-dimensional intersections with
cutting planes. The creation of cutting planes is expensive, therefore a fast cutting plane preview is
supported for the selection of desired intersection locations. The preview for orthogonal cutting
planes is constructed from the classifications in the octree. The advantages are a reuse of expensive
classifications and an adaptive representation of homogeneous regions. For the c onstruction leaf
nodes are used which are intersected by the cutting plane. The classifications of the closest vertices
are projected onto the cutting plane. The influence of a classification on the cutting plane depends
on the c orresponding cell size. A classification has more influence in larger cells than in smaller
ones.

5. Web-Based Application

The basin visualization is designed to support also the application over networks like the Internet. A
surface-oriented approach is used instead of direct volume rendering, so the geometry have to be
only once constructed and transmitted for a data set. Since the approach is view-independent no
further information h ave to be transmitted over the network, if the view point changes. The
progressive refinement of the approach makes also an early, low-resolution preview of the results
possible. During p rogressive refinement only parts of the geometry have to be c hanged, so o nly
these changes have to be transmitted. The normal vectors of triangles do not have to be transmitted,
since they can b e ca lculated from the position of the triangles. The normal vectors have to be
calculated at the client, which is a drawback at slow clients. The network traffic can also be reduced
by the compact, symbolic representation of the geometry. It has the same drawback as the savings
from the normal vector calculation, since the calculation of the necessary geometry representation
has to be performed at the client.

6. Results

Image 1 shows the presented surface extraction applied on the dynamical system Game3D [1]. The
smaller basins are opaque and the larger surrounding basins are transparent displayed.

Image 1 Results of the surface extraction for dynamical system Game3D with different parameters

Image 2 shows the surface extraction without and with activated surface smoothing for an artificial
data set. The resulting smoothed image is not completely correct, but it is a fast approximation.

Image 2 Artificial data set without and with surface smoothing

Image 3 shows the second d ynamical system of Image 1 with a smaller function domain and a
transparent and an opaque domain boundary.

Image 3 Transparent and opaque domain boundary for dynamical system Game 3D

Image 4 shows a preview of a cutting plane through the dynamical system Quad3D, which is from
the authors of Game3D. The preview is much faster than a calculation of the cutting plane with the
same resolution.

Image 4 Preview and original cutting plane of dynamical system Quad3D

7. Conclusions

For boundary visualization of generally classified regions a modified Marching Cubes algorithm as
surface e xtraction technique was introduced. For triangulation generally classified cells are
subdivided into several binary cells. The surface construction is fast, because of reusing the original
Marching Cubes look-up table. A surface smoothing method is used to smooth the coarse Marching
Cubes surface, which is caused by the selection of triangle vertices in the center of an edge of a cell.
An octree is used for adaptive representation of homogeneous s ections of the data sets.

Classifications evaluated at cell vertices by an expensive c lassification function are stored in the
octree in a compact way. For a better overall view of the visualization the boundary at the border of
the octree is constructed. The octree is also used to construct a fast preview of an intersection of an
arbitrary orthogonal cutting p lane with the data set in order to select interesting locations for a
cutting p lane. Further information about t he basin v isualization project is available a t
http://www.cg.tuwien.ac.at/~wallisch/da/.

Acknowledgments

Lukas Mroz, Helwig Hauser, Robert. F. Tobler, “Master” Eduard Gr ller. This work was supported
by the BandViz project [2].

References

[1] Agiza, H. N., Bischi, G. I., Kopel, M., "Multistability in a Dynamic Cournot Game with
Three Oligopolists", Mathematics and Computers in Simulation 51, 1999, pp. 63 - 90.

[2] BandViz Project, http://www.cg.tuwien.ac.at/research/vis/bandviz/.
[3] Bloomenthal, J., "Polygonization of Implicit Surfaces", Computer Aided Geometric Design,

Volume 5, 1988, pp. 341 - 355.
[4] Bloomenthal, J., Ferguson, K., "Polygonization of Non-Manifold Implicit Surfaces",

Proceedings of SIGGRAPH '95, Computer Graphics Annual Conference Series, 1995, ACM
SIGGRAPH, pp. 309 - 316.

[5] Chow, M. M., "Optimized Geometry Compression for Real-time Rendering", IEEE
Visualization '97, 1997, pp. 347 - 354.

[6] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., Teeter, B. C., "Two algorithms
for the three-dimensional reconstruction of tomograms", Medical Physics, Volume 15,
Number 3, June 1988, pp. 320 - 327.

[7] Elvins, T. T., Jain, R., "Web-based Volumetric Data Retrieval", 1995 Symposium on the
Virtual Reality Modeling Language (VRML '95), ACM Press, 1996, pp. 7 - 12.

[8] Engel, K., Grosso, R., Ertl, T., "Progressive Iso-surfaces on the Web", Late Breaking Hot
Topics, IEEE Visualization, 1998.

[9] Engel, K., Westermann, R., Ertl, T., "Isosurface Extraction Techniques for Web-based
Volume Visualization", IEEE Visualization 1999, San Francisco, USA, pp. 139 - 146.

[10] Grosso, R., Greiner, G., "Hierarchical Meshes for Volume Data", Proceedings Computer
Graphics International '98, 1998, Hannover, Germany, pp. 761 - 769.

[11] Hege, H.-C., Seebaß, M., Stalling, D., Z ckler, M., "A Generalized Marching Cubes
Algorithm Based On Non-Binary Classifications", Technical Report SC-97-05, Konrad-
Zuse-Zentrum f r Informationstechnik (ZIB), 1997.

[12] Lorensen, W. E., Cline, H. E., "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm", ACM Computer Graphics, Volume 21, Number 4, July 1987, pp.
163 - 169.

[13] L rig, C., Ertl, T., "Adaptive Iso-surface Generation", 3D Image Analysis and Synthesis '96,
Graduiertenkolleg 3D Bildanalyse und Synthese, 1996, pp. 183 - 190.

[14] Mroz, L., L ffelmann, H., Gr ller, E., “Bringing Your Visualization Application to the
Internet”, Technical Report TR-186-2-98-14, Institute of Computer Graphics, Vienna
University of Technology, April 1998.

[15] M ller, H., Stark, M., "Adaptive Generation of Surfaces in Volume Data", The Visual
Computer, 9(4), 1993, pp. 182 - 199.

[16] Nielson, G. M., Franke, R., "Computing the Separating Surface for Segmented Data", IEEE
Visualization '97, October, 1997, pp. 229 - 233.

[17] Peitgen, H.-O., J rgens, H., Saupe, D., "Chaos and Fractals: New Frontiers of Science",
Springer-Verlag, 1992.

[18] Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J., "Octree-Based Decimation of Marching
Cubes Surfaces", Visualization '96, 1996, pp. 335 - 342.

[19] Sun Microsystems, Java 3D API Specification, Appendix B, "3D Geometry Compression",
http://java.sun.com/products/java-media/3D/forDevelopers/j3dguide/
AppendixCompress.doc.html.

[20] Sun Microsystems, http://www.javasoft.com.
[21] Th rmer, G., W thrich, C. A., "Normal Computation for Discrete Surfaces in 3D Space",

EUROGRAPHICS '97, Volume 16, Number 3, 1997, C-15 - C-26.
[22] Touma, C., Gotsman, C., "Triangle Mesh Compression", Proceedings Graphics Interface

'98, 1998, pp. 26 - 34.
[23] Wallisch, B., “Internet-Based Visualization of Basin Boundaries for Three-Dimensional

Dynamical Systems”, Master Thesis, Vienna University of Technology, 2000.
[24] Westermann, R., Kobbelt, L., Ertl, T., "Real-Time Exploration of Regular Volume Data by

Adaptive Reconstruction of Iso-Surfaces", The Visual Computer, 15(2), 1999, pp. 100 - 111.

