3D models generator simulating a grow of natural objects
for virtual reality

Lukas Szemla
xszeml00@stud.fee.vutbr.cz

Department of Computer Science and Engineering
Brno University of Technology
Brno / Czech Republic

Abstract

The goal of this work is to design and prove basic principles of fractal generating
of natural plant objects like trees, bushes, etc. This work discusses one possible
way of creating models of plants based on L-system gramatics and deformation
functions development. Whole work is intended to be a support for virtual reality
systems.

KEYWORDS: natural object, plant, skeleton, L-system, grammar, SDL,
deformation functions.

1 Introduction

Grow simulation generator of 3D models of natural objects is tool for creating
models of natural plants. This document presents one possible solution of this
problematic.

If you want to simulate some real scenery, e.g. landscape, you will probably
want to use realistic looking models of plants. To create a good working generator
of those plants, which will produce models of good quality, is not easy task when
you think about variety of natural plant objects and it pays to devote care to
design strong principles of creating plant models. That is a reason why I have
consecrated my work to this problem.

Methods for modeling and generating models of plants should be effective,
easy to use and, at once, strong enough to ensure satisfactory quality of produced
models which will not be very hard to visualize. Full 3D models are required for
needs of virtual reality and not only set of 2D structures simulating 3D model. It
is is unacceptable because those set of 2D structures has not important features
which are necessary for good 3D visualisation (shadows, prespective, etc.)

Process of plant design and generating is divided into two phases. So called
skeleton of natural plant object is designed in phase one. Problem of skeleton
design is discussed in section 2. The skeleton is developed into final representation
of model in phase two. Methods of skeleton development are described in section 3.

2 Skeleton design

2.1 What the skeleton is

Skeleton of natural plant object is an abstract object which determines space lay—
out of future model (that means its dimensional proportions). Skeleton also tells
about dependences of individual parts of plant model. Skeleton consist of parts
called compponents which are its elementary indivisible units. Skeleton determines
character and fundamental look of future model and that is why it’s so important.
One must consider carefully skeleton design to obtain model of good quality.

Figure 1: Skeleton of simple straw.

2.2 Methods of skeleton design

There are more ways how to design skeleton of plant model. I have created desrip-
tion language based on Lindenmayer systems (L-systems). This language is called
SDL (Skeleton Description Language) and this paragraph is discussing principes of
skeleton design using SDL. L-systems come from formal grammars and they offer
simple and strong enough mechanism for modeling living orgamisms in general. It
is necessary to bring this formalism into use. This document is not intended to ex-
actly explain how does L—systems work. For further information about L—systems
see [1].

As mentioned in section 2.1 skeleton consists of components and determines
their dependences. Components are elementary indivisible units but they do not
need to have the very same features. That is why it is useful to divide skleleton
design into two parts. Features of components are specified in th first part and
their dependencies are described in th second part. I will talk about second part
at first.

2.2.1 Component dependencies description

Description component dependencies is part of skeleton design which is based on
L—systems. Grammar and its rules are used for determination of dependencies
between components. Rules of this grammar are consisted of nonterminal symbols
only. Each nonterminal symbol represents one component and rules describe their
dependencies. In other words, rules mean patterns which will be used for skeleton
construction. Deriving mechanism of this rules is the same as deriving mechanism
of formal grammars. That means that during proces of derivation the nontermial
symbol in output sequence is replaced by its right side of relevant rule.

Meaning of nonterminal symbols is rather different from meaning of nontermi-
nal symbols in formal grammars. Each nonterminal symbol represents one compo-
nent described by its features. Features of components will be discussed in section
2.2.2. It is necessary to understand features passing at this time. Relations of com-
ponents are described by rules of grammar of L-system. Master component stays
on left side of this rule and slave component (or components) stays on right side
of relevant rule. That means that during process of derivation slave components
will deduce their features from master component. For better understanding follow

this example. Let’s have a rules:
S - A

A — A

Derivation will proceed like this:
S—)A0—>A1 —>A2

Components Ay, A1, Ay, etc. are derived from the same nonterminal symbol but
they have another features. Nonterminal S (representing one compomnent) is start-
ing nonterminal symbol, as you can see, and its rule is used at first. Component
Ap will derive its features from component S in this step. Then the second rule
is used repeatedly so that component A; will derive its features from component
Ay, component Ay will derive its features from Ay, etc. Note that this process of
deriving is neverending and it is not important at this level of skleleton design to
stop it. This is a way how to simulate grow of plant because you can stop process
of deriving after different count of iterations.

It is usefull to change implicit master — slave relations of nonterminal symbols
sometimes. SDL enables this by using so called technique of branching. Branching is
technique for explicit change of nonterminal dependencies. That means that master
nonterminal for some slave nonterminal symbol on right side can be also found on
right side. It must be used two stack symbols to change master nonterminal for
one or more slave nonterminal symbols. This symbols are brackets (“(” and “)”).
I will demonstrate this facts on example. Let’s have a rule:

S — (A B(CD)E)

I use branching in this rule. Nonterminal S is master for nonterminal symbols A,
B and E. Symbol B is master for nonterminals C and D. Components repesented

Figure 2: Example of grow of skeleton.

by nonterminals A and B will be created during process of derivation at first, and
component B will be used as master for components C and D immediately after.
Technique of braching is good for creating more complicated branch structures
in one step of derivation process. For further informations see simple example in
section 2.2.4.

2.2.2 Component features description

As mentioned before, components represented by nonterminal symbols have some
features. You can read some facts about component features in this section. Fea-
tures are very important for model design and they determine character and look
of fututre model. Some basic atributes are needed to describe curves (for examle:
skeleton components are represented by curves) in 3D scene. SDL supports four
features at this time. There is begining of component, lenght, vertical and hori-
zontal angle of rotation. It is very important to know that feature of component
is specified as relative difference from master component feature. In other words,
all atributes of component feature must be considered as a value of variation from
relevant atribute of master component. This is one of the most important principle
of SDL. Now I can describe meaning of each component in this context.

Atribute of begining means location where slave component begins on master
component. Atribute of lenght determines lenght increment or decrement of slave
component with respect to master component and angles of rotation are deter-
mined in the same way. Absolute values of component features are determined
during process of derivation and we can talk about it as about the process of
interpretation in this context. Determination of absolute values of component fea-
tures is the main difference between derivation and interpretation, if we talk about
derivation we mean replacing nonterminals only.

SDL also offers methods to achieve variability of constructed models at this
level of skeleton description. This method is called mutating. You can delimitate
valid interval for some atribut values instead of one value only. One value from
this interval will be choosen accidentally in each step of process of interpretation.
One or more atributes of component feature can be signed as mutating, e.g only
atribute of horizontal rotation angle can be assigned for mutating. (see Figure 3)

Figure 3: Example of mututating.

2.2.3 Syntax of SDL

Exact specification of SLD syntax using grammar:

i

define {A
LB; A|}F
id [C

XD | NULL]
E]

XD

rules {G

H; G|}

id — > T

()

idKJ | e
I]e
#const_ver | #const_hor | e
numY

7 |e

num

N~NHM RNy 0Qwen
L S A A A A A A

I can write a few words about SDL syntax at this time. I do not want to be much
concrete because this work is not finished yet and some details can be changed. At
this time, SDL source is divided into two parts as mentioned in section 2.2. These
parts are called blocks. First block is introduced by keyword define. This block
is obligatory and you must describe component features in this block. First, the
name of nonterminal symbol is specified and then description of feature. Feature is
bounded by symbols [and]. You need to specify begining of component, length,
vertical and horizontal rotation angle in this order. You can specify feature either
as one value or as interval for mutating. This interval is described by middle value
and maximum deviation from middle value separated by symbol “:”. Second block,
that follows, is block introduced by keyword rules. This block is also obligatory
and you can describe component dependencies in this block. This is done by writing
rules. You specify left side of rule at first and then right side of relevant rule.
Only one nonterminal symbol can stay on left side of rule. Left and right side
are separated by symbol ->. You must use stack symbols and then to specify
master component even if you do not want to change implicit master — slave
component relation (see section 2.2.1). You can see some symbol in SDL grammar
as #const_hor, #const_ver or NULL symbol. Meaning of this symbol is topic of
evolution and future of this symbols is unwarranted.

il
R

Figure 4: Example of use of correction function.

2.2.4 Simple example

I will demonstrate all described facts on simple example. Figure 1 show result of
interpretation of following simple SDL source code in few generations.

// source for describing simple straw skeleton

define{
start[0,1,0,0];
straw[0.5:0.3,0.8:0.3,0,30:10];
}
rulesq
start -> (straw);
straw -> (straw);
}

3 Skeleton development

So far we know how to describe and create skeleton of natural plant object using
SDL. It is very important part of model design but it is not all what should be done.
As mentioned in section 2.1, skeleton of plant is an abstract object which can be
presented by curves. But real plants are not curves as we know. So it is necessary to
transform skeleton into more realistic looking model. This transormation is called
skeleton development or skeleton expansion. This section describes methods and
principles of skeleton expansion.

r

-+

«, ()™

J
Figure 5: Principle of magnetic function.

Basic idea in skeleton expansion is to transform curves to some 3D object and
then deform this object. The usable 3D object can be a cylinder with circular or
elliptic cut and it is called fibre in this context. Fibres are deformed by deformation
functions. There are three categories of deformation functions and each category
is defined to change another feature of fibre. This categories are contour functions,
magnetic functions and correction functions. Contour functions are aimed to bend
fibres without change of its cut. Magnetic functions are identified to change cut of
fibre. Idea of magnetic function is as follows. Fibre is made from limitless elastic
and magnetic material and its proportions can be changed by magnets. Several
magnets with different magnetism are placed around fibre’s cut (see Figure 5) and
this magnets change cut of fibre. Those rings of magnets are placed along whole
fibre and they change cut of fibre in all locations. Magnetic function is designed
to change basic shape of fibre. Correction functions are aimed to make deformed
fibre looking better (see figure 4). Correction functions cooperate with magnetic
functions and they roughen surface of deformed fibre. They are not intended to be
used for expressive change of fibre shape but to change its surface. Proper use of
deformation functions is highly recommended.

Technique of design of deformation functions enables us to have either flat or
solid fibres (see Figure 6 and Figure 7). It is left on author’s consideration, if he
whish to have flat fibres or not. So called materials are also created and mapped
during process of skeleton development.

Material determines final surface adjustment and it contains texture mapping,
light emission, transparency, etc. In addition, two types of fibres are distinguished
in plant model. They are

Figure 6: Example flat leaf fibres.

so called wooden fibres and leaf fibres. In other words, you can use another sets
of deformation functions, materials or prescribe flatness or roundness for each type
of fibre separately. That enables us to design different looking parts of plant that
have another features.

Figure 7: Example solid leaf fibres.

Design of deformation functions has also influence on quality of future plant
model. It is a proportion between number of used magnetic funtion and quality of
model. More magnetic functions in ring means better quality but those models also
consume more memmory. Consumption of memmory is still big problem because
models are either to big to be visualised so fast as we wish or they are not looking
so good.

4 Conclusion

This work is enganging in natural plants modeling and shows some of its bacis
principles. It is more ways how to construct models of natural plants. One of
them is using formalism of L-systems and I decided for this way which appears
to be usefull and perpective. My work is not completly finished and I have to
consider some principles of SDL language and I want to add new features like
cycles, possibility to define atributs of components as a functions or enable more
than one right side. I want also to improve some features of skeleton expansion
and deformation functions.

References
[1] Prusinkiewicz P. Lindenmayer A.: The Algorithmic Beauty of Plants,
Springer—Verlag, New York, 1990

[2] Prusinkiewicz P., Hanan J.: Lindenmayer systems, fractals, and plants,
Springer—Verlag, Berlin, 1989

[3] Mandelbrot B.: The Fractal Geometry of Nature., W.H. Freeman, New York,
1975

[4] Szemla L.: Generation of natural plant objects, Brno university of technology,
Brno, 1999

