
A Flexible Framework for Volume Tracing

Stefan Maierhofer

sm@cg.tuwien.ac.at

Institute of Computer Graphics

Vienna University of Technology

Vienna / Austria

Abstract

In recent years, it has become inevitable to use volume rendering techniques to

create highly realistic, state-of-the-art images of a variety of di�erent phenomena.

Especially for the rendering of natural phenomena (i.e. clouds or �re), and the
depiction of medical datasets (i.e. computed tomographies), volume tracing is
very well suited. This paper discusses the simulation of light interacting with
participating media and presents a
exible framework, which allows for the
incorporation of many di�erent volume rendering properties into general purpose

rendering systems.

KEYWORDS: rendering, volume tracing, volume rendering, participating
media, natural phenomena, medical visualization, density functions, transfer
functions.

1 Introduction

\... in 10 years, all rendering will be volume rendering."

Jim Kajiya at SIGGRAPH '91 [Elv92]

Only time will show if in 2001 all rendering will be volume rendering. But even
today one thing can be said for sure: at least a signi�cant part of all rendering

already is volume rendering and will be much more so in 2001. Back in 1991, when

Kajiya made his statement, it took at least minutes, if not hours to produce volume
rendered images. Today it takes only seconds to produce images of comparable

quality and as stated in Moore's Law, computer capacity will increase further in
an exponential manner. Of course that does not necessarily mean that in some

years all volume rendering will be done in real-time, because additional computing
capacity is not only used to shorten rendering times, but also to render more

complex and more convincing scenes.

In volume rendering, images of radiatively participating media are created.

Participating media consist of a large amount of small particles, like water droplets,
soot or other suspended solids or individual molecules. Light passing through them

may be distracted in many di�erent ways. It may be attenuated by absorption, like

light passing through smoke. Participating media may also emit light like �re, or

light may be scattered by small particles. In clouds, for example, light is scattered

at a myriad of small water droplets.

Most rendering toolkits or frameworks have evolved over years and rendering

systems have been around for almost decades. Because volume tracing has not

been in widespread application for such a long time, only few general ideas exist

on how to integrate all the di�erent specialized volume tracing applications into

one general purpose rendering system or into existing rendering systems. The main

purpose of this paper is to outline a general,
exible framework for volume tracing.

In the next section some important concepts of volume tracing and its mathe-
matical foundations will be presented. In the 3rd section, the framework, allowing

for a
exible combination of di�erent volume data sources, density functions and

transfer functions, is outlined. The 4th section brie
y describes an implementation

of the framework as an integral part of the Advanced Rendering Toolkit (ART for
short) and �nally results are presented in the 5th section.

2 Fundamentals of Volume Tracing

2.1 Density Functions

The basic structure of participating media is de�ned by density functions f(x)
which return a scalar density value for each point x in space. Di�erent kinds of
density functions exist.

Procedural density functions are based on arithmetic expressions. Arbitrary
expressions can be used - constant, linear, quadratic and so on, as well as turbu-
lence, noise or other solid texturing functions. Excellent results can be achieved
by using procedural density functions to render natural phenomena.

Density functions may also be based on volume data sets, which are created

by a large number of di�erent methods and applications. Just to name a few:

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), �nite elements
simulations, sampled geological or meteorological quantities, . . .

2.2 Transfer Functions

In order to render participating media, renderable properties like absorption, emis-

sion and scattering have to be available. A problem however is, that in general,

absorption-, emission- and scattering-functions can not use scalar density values

directly. Therefore, function speci�c parameters, like the color of emitted light for
emission-functions has to be derived from scalar density functions. For this reason,

so-called transfer functions are used to map scalar density values to values that

can be used for rendering. I.e. in medical volume rendering systems, the density

function often depends on the type of tissue - transfer functions are used to color
di�erent types of tissue di�erently.

2.3 Participating media

Participating media may absorb, emit and/or scatter light. The simplest partic-

ipating medium only absorbs light. That means that light passing through the

medium is attenuated depending on the density of the medium. Max [Max95]

derives the following equation for a light absorbing participating medium

I(s) = I0 exp

�
�

Z
s

0
� (t)dt

�
(1)

which gives the light intensity I(s) at distance s. I0 is the light intensity at s = 0

where the ray enters the volume. � (t) denotes the extinction coeÆcient at position

t in the medium, which gives the fraction of light that is absorbed rather than let
through.

A good example for light-emitting media are hot particles in a
ame. The

amount of light which is emitted along a ray can be described by

I (s) = I0 +
Z
s

0
g (t) dt (2)

where g(t) is called the source term. I0 is the amount of light which enters the
medium. The integrated emission along the ray is simply added to the light that
entered the medium from the outside.

Real particles both absorb and emit light, so the equations for absorption and

emission have to be combined. Max derives an equation which gives the intensity
at the eye

I (D) = I0 exp

�

Z
D

0
� (t) dt

!
+
Z
D

0
g (s) exp

�

Z
D

s

� (t) dt

!
ds (3)

Because participating media consist of small particles, light is not just re
ected
or refracted by the medium, but scattered. That means that at arbitrary points,
light is scattered in di�erent directions. The way light is scattered is de�ned by so-

called phase-functions. In order to understand phase-functions, another term has
to be de�ned. The particle albedo of a participating medium gives the fraction of

the extinction which represents scattering rather than absorption. Clouds or snow,

for example, have a very high albedo and therefore appear very bright. Soot, in

contrast, has a very low albedo and therefore it appears very dark.

Phase functions describe the way light is scattered by a participating medium.
They return the fraction of light which is scattered from the lightsource into the

eye. Two di�erent classes of phase functions can be distinguished - isotropic and

anisotropic phase functions. In an isotropic medium, light is scattered uniformely
in all directions, whereas in an anisotropic medium, scattering depends on the

angle between the incident and outgoing direction of light. I.e. certain kinds of fog

tend to scatter more light back to the lightsource than in the forward direction.

This phenomenon is called backward-scattering.

In a medium with low albedo and low density it is unlikely that a ray of light

is scattered more than once before leaving the medium. Therefore it is suÆcient

to consider only light that is scattered from the light source directly into the eye.

In the simplest approach it is assumed that light reaches the particles from a

distant lightsource (or lightsources) and is not blocked by objects or absorbed by

the participating medium. Max gives a general shading rule for this approach:

S(X;!) = r(X;!; !0)i(X;!0) (4)

where i(X;!0) is the incoming light reaching X
owing in direction !0. r(X;!; !0)

is the BRDF (bidirectional re
ection distribution function) which describes which
fraction of the light coming in from direction !0 to point X is re
ected in the

direction of !. A rule especially suited for volume rendering is

r(X;!; !0) = a(X)� (X)p(!; !0) (5)

where a(X) is the particle albedo, � (X) the extinction coeÆcient and p is the

phase function describing the directionality of the scattering. The term S(X;!)

can simply be added to the source term g

g(X) = e(X) + S(x) (6)

where e(X) is the direct emission at position X and S(X) the in-scattered light
at position X. If the source term is de�ned this way, equation 3 can be used to
handle direct emission as well as scattering.

The above approach is quite simple, but does not account for shadows. Clouds,
for example, often appear darker on the side which is opposite to the sun, because
the clouds itself absorb light and shadow themselves from the sun. In order to

handle shaded scattering, equation 3 has to be re�ned. Max [Max95] presents a
solution, where a shadow-feeler is sent to the lightsource for each point X along
the primary ray. Then, the amount of incoming light at each of these points along
the primary ray is diminished using the absorption value along the shadow feeler.

To render even more accurate images, multiple scattering e�ects have to be

taken into account. This means, that light is scattered more than once before it

reaches the eye. In participating media with high albedo, like clouds, the in
uence

of multiple scattering cannot be ignored. Modelling multiple scattering is a very
demanding task - the problem is comparable to the radiosity problem, but instead

of surfaces which can receive light from all other surfaces, volume elements receive

light from all other volume elements. In order to calculate multiple scattering
e�ects, di�erent methods have been presented to calculate approximate solutions

[RT87], [KV84], [Max95], [Sta95].

2.4 Calculation Methods

In the course of implementing a volume tracing algorithm, it is necessary to eval-

uate the integral equations for absorption, emission and scattering. The problem

is, that for all but the most trivial scenes, this can not be done analytically. The
only possible solution is to evaluate the equations by means of numerical methods.

The simplest numerical approximation to an integral
R
D

0 h(x)dx is the Riemann

sum
P

n

i=0 h(xi)�x. The interval [0;D] is divided up into n equal segments and for

each segment a sample xi is choosen. The length of a segment is �x = D=n.

If shaded rendering is used, it has to be considered, that the sourceterm g will

also include a Riemann sum to approximate the absorption and emission properties

of the \shadow feeler" between the sample point and the lightsource.

If the number of segments is chosen too low, aliasing e�ects may occur due to

undersampling of the underlying density functions. Undersampling will result in

striped images (similar to Mach-Bands) and loss of detail.

Participating media may also be incorporated into rendering systems using

global illumination, yielding some of the most impressive computer generated im-

ages produced so far. Important work has been presented by Jensen [JC98], [Jen96],

as well as Lafortune [LW96].

3 A Flexible Framework

A framework for volume tracing [Mai99] can be split into a number of distinct
building blocks. It is essential that the interfaces between these blocks are accu-
rately de�ned, so that they can interact smoothly and eÆciently. The basic building
blocks can be identi�ed as

� density functions

� transfer functions

� phase functions

� participating material

Additionally, the framework should also meet the following design criteria:

� Seamless integration into an existing rendering system

� Assignment of participating media to objects of arbitrary topology

� Participating materials have to handle arbitrary combinations of absorption,

emission and scattering functions

� Absorption-, emission- and scattering-functions have to handle arbitrary

combinations of transfer functions

� Transfer functions may be based on arbitrary combinations of density func-
tions

� Density functions may be based on arbitrary types of data

� Standardized interfaces (i.e. procedural density functions and volume data

sets should have the same interface)

� Modularity (adding new types of functions without interfering with the rest

of the framework).

3.1 Density Functions

The interface of density functions consists of a single function getDensity(X),

which simply returns a scalar density value for each point X in space. Procedural

density functions [Per85] (i.e. noise, turbulence, checker, . . .), volume data sets

(di�erent interpolation �lters can be used [MN88] [ML94]) and density emitters

[Ebe93] will be mapped to this single interface function. Because it would be rather

boring if only one density function at a time could be used, it has to be possible

to combine di�erent density functions. Therefore, a set of arithmetic functions

has to be provided to be able to add, substract, multiply and so on on, di�erent

density functions. Of course these arithmetic operators are implemented as density

functions themselves. With this approach, expressions of arbitrary complexity can

be constructed.

3.2 Transfer Functions

Transfer functions in our framework use color-maps as well as special algorithms

like iso-surface or region boundary algorithms to map scalar density values to ren-
derable properties. Again, only a single interface function is needed - getColor(X),

which returns a color for each point X in space, using the underlying density func-
tion. In order to combine di�erent transfer functions, 2 additional functions, taking
transfer functions as arguments and presenting themselves again as transfer func-

tions, are used.

The �rst transfer-function-combination-function is called GeneralT ransfer. It
is quite powerful and allows for the combination of an arbitrary number of transfer

functions with associated weights. The values at each point X are scaled by their
associated weight and then summed up. The result is a new transfer function which
is a weighted sum of other transfer functions:

GeneralT ransfer:getColor(X) =
nX
i=1

wi(fi:getColor(X))

where wi is the weight associated with the i-th density function and fi is the i-th

transfer function.

The second functions is calledMappedTransfer and allows for the selection of

a single transfer function out of a set of transfer functions, depending on the value

of a density function. This sounds quite complicated, so here is an example: if a
density function cloud is used to model a cloud, then perhaps it would be a nice ef-

fect to use di�erent emission or scattering functions for the cloud depending on the
density at a point X. MappedTransfer functions are de�ned similar to color maps.

Given a density function d(X) and a number of (densityi; transferfunctioni)-

pairs, the mapped transfer functions return an interpolated color value:

MappedTransferd(X)=di(X) = colori

or, for in-between values, colors are again linearly interpolated:

MappedTransferdi<d(X)<di+1(X) =
di+1 � d(X)

di+1 � di
colori +

d(X) � di

di+1 � di
colori+1

3.3 Phase Functions

In the framework, phase functions are embedded in so-called scattering functions.

Scattering functions are based on a density function and a phase function, whereas

the phase function de�nes the amount of light that is in-scattered into the viewing

direction at a point X and the density function de�nes the albedo at this point

X. Di�erent phase functions can be used: isotropic scattering, Lambert scattering,

Henyey-Greenstein scattering, Mie scattering, The simple interface to phase

functions is getColor(X). Because in our framework phase functions act the same

way as transfer functions (returning a color) they also can be combined the same

way, using GeneralT ransfer and MappedTransfer functions.

3.4 Participating Material

What kind of interface is needed to seamlessly incorporate a participating material

into a general purpose rendering system. Of course this depends largely on the

rendering system. However, some general guidelines can be outlined. Usually, a
rendering system will already possess some kind of general material class, which
has some basic properties like colour and refraction index. In addition, it will make
available some kind of function used to communicate with the rendering algorithm.

Given a segment of a ray, the basic functionality of such a function is usually

to return a value which represents the illumination along the given segment, as
well as a �lter value, which is similar to the extinction in volume rendering and
determines how much illumination is absorbed along the ray segment. In order to
succesfully integrate a participating material into a rendering system, the material
class \simply" has to implement all methods necessary to communicate with the
rest of the rendering system.

The core of the participating material class is an algorithm which is able to eval-

uate all material properties along a given ray. That means it has to determine the
amount of absorption and emission (direct emission as well as in-scattered light).

This can be done, for example, by ray-marching, which is simply an algorithm

which integrates material properties along the ray using a Riemann approxima-
tion.

The Ray Marching algorithm subdivides the ray into equal segments and takes

a sample of the participating materials properties for each segment. The segments

correspond to the segments used in the Riemann approximation. As a result, the
integral of the participating materials properties along the viewing ray can be
approximated by the sum of the sample values multiplied by the length of one

segment (see Figure 1).

4 Implementation

The
exible framework for volume tracing has been implemented as a part of the

\Advanced Rendering Toolkit" (ART for short), which is being developed at the

Viewing Ray

Participating Material

... ray marching step

... sample point

emission

absorption

Figure 1: Ray-Marching

Institute of Computer Graphics in Vienna. ART is a set of Objective C Libraries
that provide a wide range of functionality suitable for graphics applications. The
ART libraries do not deal with the user interface, they provide classes and methods
starting with primitive graphics objects like vectors, points and matrices up to
classes that make it possible to de�ne complete three dimensional scenes and a

number of di�erent methods to manipulate and render these scenes.

5 Summary and Results

In this paper, a
exible framework for volume tracing, which allows for the arbi-

trary combination of di�erent density functions, transfer functions and phase func-
tions in a participating material, has been presented. Participating media have ab-

sorption, emission and scattering properties and are rendered using a ray-marching
algorithm. The framework has been implemented as an add-on to the Advanced

Rendering Toolkit. Participating media can be integrated seamlessly into \conven-
tional" scenes. No restrictions whatever apply. Density functions can be de�ned

by means of procedural density functions (like in solid texturing), density emitters

and volume data sets. Di�erent kinds of �lters may be applied to volume data
sets (Mean, Gaussian, Laplace, . . .) to improve data quality before rendering. Fur-

thermore, isosurfaces and region boundaries of volume data sets may be rendered.

Finally, di�erent types of volume data interpolation can be used. Transfer functions
can be designed by combining arbitrary numbers of transfer function \primitives"

like constant-, colormap-, general- and mapped transfer functions. Constant trans-
fer functions may be used to model homogenous-atmosphere-like participating me-

dia. Colormap transfer functions are used to map density values to arbitrary color

maps. General- and mapped transfer functions can be used to combine arbitrary

Figure 2: Absorption, Scattering and Shaded Scattering: a cloud, composed out

of noise, tubulence and a spherical density emitter is shown. The left cloud only

absorbs light, which results in a black-smoke-like appearance. The second cloud has
been rendered using absorption and scattering, yielding a more natural appearance.
Finally, in the right image, shaded scattering has been used.

Figure 3: Volume Data Sets (kidneys, section of a human head, Courtesy VisMed-

Project): the left image has been rendered using trilinear interpolation, as a result,
no distinct voxels can be seen. The second image showns the same data-set using

Levoys isosurface algorithm. The third image has been rendered using shaded

scattering.

Figure 4: Natural Phenomena: Two candlelights, one quite turbulent
ame and
some smoke rising from a burned match. Although both the candlelights and the

ame are rendered using emission, these media do not act as light sources, which

results in a somewhat unrealistic lighting of the scene.

numbers of transfer functions. Di�erent kinds of phase functions are used to de�ne

scattering characteristics of participating media. Isotropic, anisotropic, Lambert,
Henyey-Greenstein and Mie scattering have been implemented. Although some

very realistic images of natural phenomena and di�erent types of volume data sets

can be rendered, some ideas would deserve further investigation in future work:
More sophisticated density functions may be examined, for example, physically
based models to create more convincing images of natural phenomena. Wavelength

dependent scattering functions should be implemented quite easily because ART

itself already is able to perform wavelength-dependent rendering. Furthermore,
right now, participating media do not act as light sources even if they possess an

emission property. This shortfall could be circumvented by means of participating

media as volume light sources, or by means of global illumination modells. Global
illumination models also would be useful in rendering e�ects like volume caustics

and indirect lighting by participating media.

References

[Ebe93] D. S. Ebert. Design and animation of volume density functions. The Jour-
nal of Visualization and Computer Animation, 4(4):213{232, October{

December 1993.

[Elv92] T. Todd Elvins. A survey of algorithms for volume visualization. In

Computer Graphics, volume 15, pages 194{201, August 1992.

[JC98] Henrik Wann Jensen and Per H. Christensen. EÆcient simulation of

light transport in scenes with participating media using photon maps. In

Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings, Annual

Conference Series, pages 311{320. ACM SIGGRAPH, Addison Wesley,

July 1998. ISBN 0-89791-999-8.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Xavier

Pueyo and Peter Schr�oder, editors, Eurographics Rendering Workshop

1996, pages 21{30, New York City, NY, June 1996. Eurographics, Springer
Wien. ISBN 3-211-82883-4.

[KV84] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densi-

ties. In Hank Christiansen, editor, Computer Graphics (SIGGRAPH '84

Proceedings), volume 18, pages 165{174, July 1984.

[LW96] Eric P. Lafortune and Yves D. Willems. Rendering participating media

with bidirectional path tracing. In Xavier Pueyo and Peter Schr�oder,
editors, Eurographics Rendering Workshop 1996, pages 91{100, New York

City, NY, June 1996. Eurographics, Springer Wien. ISBN 3-211-82883-4.

[Mai99] Stefan Maierhofer. A
exible framework for volumetracing. Master's

thesis, University of Technology Vienna, 1999.

[Max95] Nelson Max. Optical models for direct volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics, 1(2):99{108, June 1995.

ISSN 1077-2626.

[ML94] Stephen R. Marschner and Richard J. Lobb. An evaluation of recon-

struction �lters for volume rendering. In Proceedings of the Conference
on Visualization '94, pages 100{107, October 1994.

[MN88] Don P. Mitchell and Arun N. Netravali. Reconstruction �lters in com-

puter graphics. In John Dill, editor, Computer Graphics (SIGGRAPH

'88 Proceedings), volume 22, pages 221{228, August 1988.

[Per85] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer

Graphics (SIGGRAPH '85 Proceedings), volume 19, pages 287{296, July
1985.

[RT87] Holly E. Rushmeier and Kenneth E. Torrance. The zonal method for
calculating light intensities in the presence of a participating medium. In

ACM Computer Graphics, volume 21, pages 293{302, July 1987.

[Sta95] Jos Stam. Multiple scattering as a di�usion process. In Eurographics

Rendering Workshop 1995. Eurographics, June 1995.

