Implementation of a Feature-Preserving
Volume-Filtering Algorithm

Ivan Viola, Matej Mlejnek
{viola, mlejnek}@cg.tuwien.ac.at

Institute of Computer Graphics and Algorithms
Vienna University of Technology
Vienna / Austria

1 Abstract

In this paper the implementation of a new feature-preserving volume-filtering
technique is presented. The method is based on the minimization of a three-
component global error function penalizing the gradient and density deviations
and the curvature of the unknown filtered function. This method performs filtering
in the frequency domain. Therefore, an effective 3D Fourier transformation was
necessary to be implemented. We describe briefly the basics of the Fourier
transformation and its optimizations. The filtering method was implemented in
Matlab, Java and C. For the sake of clarity, we explain the reason why we have
implemented these three versions, as well as the problems that have arisen during
the implementation. We will describe the functionality of the analyzing tool
implemented in Java and the optimized algorithm in C. At the end we shortly
sketch some other application possibilities.
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2 Introduction

In image processing it is a fundamental problem how to reconstruct features (like
the original gradients) from sampled data. A typical example is the reconstruction
of medical data obtained as CT or MRI scans. The data can be sampled at regular
or irregular grids points. If we use direct volume rendering to visualize such a data
set, staircase artifacts can occur. In case of binary segmented data the staircase
aliasing is stronger than in case of gray-scale data, where the gradients can be
estimated more accurately. A binary volume can be obtained as a result of a seg-
mentation. The segmented data cannot be rendered directly, because the result
looks like built from Lego pieces. Therefore, various preprocessing techniques are
used to eliminate this aliasing. The classical method is convolution-based filtering.
Convolution-based methods have mostly local influence, because of the limited
support of the kernel function. Although filtering with a wide kernel causes de-
pendency on wider neighborhood, it is rather time-consuming and removes fine



details. There are several approaches for solving this problem. One research direc-
tion is interpolation oriented assuming, that accurate samples are available. The
sinc and cosc functions are considered as ideal interpolation and derivative fil-
ters respectively. These derivative reconstruction techniques based on windowing
are local methods as for practical reasons only a limited number of neighboring
samples are taken into account. Another approach for derivative reconstruction is
approximation oriented. Here it is assumed, that the sampled function is noisy,
which is typical, when some real physical properties are measured. The basic idea
is to estimate the inclination or the normal from a larger neighborhood. In order
to reduce staircase aliasing, several methods were proposed for normal computa-
tion especially in binary volumes. Contextual shading techniques try to fit locally
approximated plane or a biquadratic functions to the set of points that belong to
the same iso-surface. These methods are time consuming and limited to a certain
neighborhood. A rather new research direction is based on a gradient estimation
using 3D distance maps.

The new method we have implemented, designed by Neumann et al. [4] is a
general tool for filtering binary and gray-scale data sets. Figure 1 illustrates this
filtering technique on a CT scan of a human body.

Figure 1: Direct volume rendering of a human body using the original (a) and the
filtered (S = 1, G = 1) data (b).

Similarly to the distance maps, generated from binary volumes, this filtering
technique creates a smooth volume from gray-scale data. Unlike convolution based
filtering, the smoothing effect is global due to a global curvature minimization.
Feature preservation is the main characteristic of this novel filtering approach.
By globally penalizing large gradient deviations, important features and fine de-
tails like edges or iso-surfaces are preserved. The method is based on a quadratic
penalty function E. E is defined so that feature preservation and smoothing is



simultaneously possible. Therefore E consists of the following three components
summed over every sample point i:
e difference squared between filtered value fZ and original value f;

o difference squared between the gradient of the filtered value f; and the orig-
inal value f;

e the squared curvature of the filtered function f

The 1D case of the penalty function E has the following structure:

E= Z[(ﬁ — 4G (firr— fi)/2= gl + S (fin + fin —2f)% (1)

The weights S and G determine the relative importance of feature preservation
as opposed to smoothing. At the minimum location of the penalty function E the
partial derivatives according to all the N unknown values f; have to be equal to
zero, where 1 =0,1,2,..., N — 1:

OE(fo, f1, fo, -, fn-1)/0fi = 0. (2)

As penalty function E is a quadratic function, the partial derivatives are linear
functions of variables f;. Therefore, having all of these partial derivatives evaluated,
a large linear equation system is obtained with N unknown variables:

A-f=m, (3)

where A is a sparse coefficient matrix, and f is the unknown vector containing the
N samples of the filtered function. Vector m is derived from the original function
samples f; in the following way:

m; = fi — 2G - (giy1 — 9i1)- (4)

Matrix A, derived from the partial derivatives, is a band matrix defined by a
symmetric point spread vector p:
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In fact, the multiplication of f with coefficient matrix A is a convolution of the
unknown vector f with kernel p. Therefore, it is not necessary to use any computa-
tionally expensive linear algebra method, since a simple deconvolution leads to the
solution. Such a deconvolution can be efficiently performed in frequency domain.

Using fast Fourier transformation, the filtering algorithm consists of the fol-
lowing steps:

1. estimation of gradients g; using linear regression

2. non-linear operations on the gradient function g

3. calculation of function m using the modified g

4. M = FFT(m) - Fourier transformation of function m

5. P = FFT(p) - Fourier transformation of function p

6. F = M/P - deconvolution in frequency domain

7. f = INVFFT(F) - inverse Fourier transformation of F

3 Fast Fourier transformation

Fourier transformation is a tool which generates the spectrum of a signal yielding
a frequency-domain representation. Since this transformation is unambiguous the
original signal can be reconstructed from its spectrum by an inverse transforma-
tion. The Fourier transform F'(u) of a 1D function f(x) is defined as:

F(u) = / f(z) - ™2 dy, (6)
where u is a value in the frequency domain. The inverse Fourier transformation
for reconstructing f(z) from F'(u) is defined as:

f@)= [ Flu) e (7)
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which is rather similar, except that the exponential term has the opposite sign.
In the 3D case, the Fourier transform of a function f(z,y, z) is defined as follows:

F(u,v,w) = ///f(x,y,z) - 2 iue vy 02) gy d (8)

The inverse transformation is analogous to the 1D case.



3.1 Discrete Fourier Transformation

But the images are digitized, therefore we need a discrete formulation of the Fourier
transformation, which takes regularly spaced data values, and returns the coeffi-
cients of the discrete Fourier transformation as a set of equally spaced values in the
frequency space. This is done by replacing the integral by a summation defining
the discrete Fourier transformation (DFT). In 1D, it is convenient to assume, that
the series outside the range 0, N —1 is extended N-periodic, thus f(k) = f(k+ N)
for all k. The DFT of this series is denoted by F'(k) and represented by N samples.
The DFT is defined as follows:

N—-1
F(n) = Z f(k) - 2 kn/N - yhere n=0..N — 1 (9)
k=0

while the inverse DFT is:

1 N-1
= — Z F(k) - e~ 2mkn/N - yphere n=0..N — 1 (10)

The 3D DFT is defined by N;xNyx N3 samples in the frequency domain:
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The inverse transformation is analogous to the 1D case:
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The DFT can be applied to any complex series. The computational time is
proportional to the square of the number of points in the series. Instead of the
naiv implementation a much faster algorithm can be used, called FFT (Fast Fourier
Transformation) [2]. DFT requires at least N? multiplications to generate all N
of the coefficients F'(n). As it is explained in [5], the summation can be broken
into two parts, one over the even-numbered elements (kK = 0,2,4,...) and the
other over the odd-numbered elements (k = 1,3,5,..). In turn, each one of these
parts can be broken into its even-numbered and odd-numbered parts, and the
process can be continued, with careful book-keeping, until the summation has
become divided into 1-point Fourier transforms (which are identity transforms).
This repeated dissection of the series into even- and odd-numbered parts can be
implemented by reversing the bit-pattern of the addresses of the data elements.
After this is done, the required N values of F'(n) can be generated by making a
sequence of 2,4, 8, ...-point summations. Here the number of points in the series
is assumed to be a power of 2. Therefore we arrange always our data sets in



the middle of 2" zero pad. The complexity of the algorithm is O(N - log(N)).
For example, a transformation of 1024 points using the DFT takes 100 times
longer than using the FFT. Note that in practice comparing speeds of various FFT
routines is problematic. Many of the reported timings have more to do with specific
coding methods and their relationship to the hardware and operating system.
Usually the signal to be digitized is appropriately filtered before sampling to remove
higher frequency components. If the sampling frequency is not high enough the high
frequency components wrap around and appear in other locations in the discrete
spectrum.

Therefore we have to rearrange our data set after every Fourier transformation.
This can be done by dividing the volume data into eight parts (similar to the octree
subdivision) numbering them and storing them in the reverse order. The 2D case
is sketched on the figure 2.

Figure 2: Wrap around effect: the high frequency components wrap around and ap-
pear in other locations of the discrete spectrum. This can be solved by rearranging
the different parts.

The Fourier transformation is designed only for periodic signals. In image pro-
cessing one might need to analyze non-periodic signals as well. Then the whole
signal (e.g. row of pixels) is considered as only one period of the signal. This may
cause that the values at the end of the period are influenced by values from the
beginning. If we take a picture as an example, this means, there will be some
artifacts at the border. One effective solution is the use of zero-padding.

4 Motivation of various implementations

Our implementation was influenced by a lot of aspects. Generally we wanted to
implement the method in Java, because of its object oriented clarity and pro-
gramming comfort. Later, when we realized, that we need not only the algorithm



implementation itself, but also a kind of analyzing tool, we appreciated this deci-
sion, because of the simple GUI design in Java. The first task was to implement a
fast and efficient Fourier transformation. This is actually not a big problem, there
are lot of sources. The bigger problem was, how to check if the Fourier transfor-
mation really works, as it should. To check the 3D version of the FF'T is not that
simple. Actually the only method, which gives quasi 100% certainty, is to compare
it with already implemented Fourier transformation value by value. As a reference
we have chosen Matlab implementation of FFT. Another problem of our Java im-
plementation was, that it was more a tool for analysis of the smoothing technique,
than a fast implementation. Generally all computationally expensive algorithms
are slower if they are implemented in Java. That was the reason, why we have
decided to make a fast and optimized C version to achieve the best performance.

5 Java implementation

The real object-oriented approach was one of the main reasons, why to code in
Java. It was obvious from the first moment, that this will help to keep the code
clear and secure. For instance, our implementation was even more comprehensible
than the C source downloaded from the Internet [1], because of using another
class ComplexNumber, where the basic operations of complex computing were
implemented, instead of using two float arrays.

5.1 Data Structures

It is obvious that the main structures are object-instances of various classes. This
classes have implemented some methods, where the program functionality is stored.
Here is a short overview of our classes:

e MaskSmoothing (public) - The "main” class. Actually it calls the AppFrame
class and starts the application.

e AppFrame - This class is a subclass of the already implemented
java.awt.Frame class. Here the GUI is implemented, reading and writing
the data set. Therefore, all the data sets are finally stored in this class. Also
the dominant part of the data visualization is implemented here.

e CanvasSlice, CanvasPerspective - Classes derived from the java.awt.Canvas.
These are also used for the data visualization. CanvasSlice simply flushes
the input image to the canvas. CanvasPerspective shows a box and three
rectangles that represent the top, front and side slice position within the
volume.

e AppFrame_AboutBox, AppFrame SettingsBox, AppFrame_StatisticsBox -
Classes of the about, settings and statistics dialog.



e ComplexNumber - One of the things, that are in Java not yet implemented,
is the complex computing. Therefore we had to implement it ourselves, to
perform mathematical operations in the frequency domain. There are not all
of mathematical operations implemented in this class, we have implemented
just those methods we needed for the calculation.

o FilterKernel - The class creates a filter according to the settings dialog.

e FilterMaskSmoothing - This is the core of the algorithm calculation. There
are FF'T, convolution, deconvolution and gradient estimation implemented in
this class. For data representation we use one, and three dimensional arrays.
For specific operations the 1D representation is preferred, where f[z][y][2]
is equal to g[(z - mazY + y) - maxX + z]. Another problem is, that Java
assumes Little-Endian byte order, but our data set was stored in Big-Endian
byte order. Unfortunately it is not possible to specify unsigned property of
the basic types. Therefore, a short variable is read from the file as follows:

x=0x7fff&(input.readUnsignedByte () | input.readUnsignedByte ()<<8) ;

where the input is an object of class DatalnputStream, which is used for
reading. As standard input type we took Big-Endian short (16 bit integral
type). The reason is, the output of a CT contains also short integers although
only 12 bits are used.

5.2 Data Visualization

The tool used for the visualisation is slice-based. It means, it is possible to view
the separate slices in all three orthogonal directions. To use the maximal intensity
range, the minimum and maximum density values of all the data sets (original,
convoluted and deconvoluted) have to be found. Then a gray-scale ramp is divided
to the whole density range. We tried different color/intensity assignments, for
example two thresholds (for totally white and black) and between linear ramp or
a kind of colorific representation (small density bluish, big density reddish), but
the basic method was the clearest. For performance reasons, the nearest neighbor
interpolation is used for finding the appropriate density value. If some slice has to
be viewed, the values are first interpolated according to the actual canvas size and
then stored in a 1D array which is displayed by the canvas.

5.3 Functionality

The working area of the application is divided into four parts, three othogonal
views and one perspective view, where the relative position of orthogonal views is
shown (see the figure 3).

But this can be changed in the menu ”View”. In order to see some details
only in one orthogonal view, it is possible to switch to this type of view, and
it is extended to the whole working area. The orthogonal views consist of two
drawing areas to be able to see simultaneously two types of data sets. To move



within the slides in one particular direction, the user should move the slider of
the scrollbar. This is initialized to a maximal value. The slider size changes after
the filtering computation. This effect and also the label in the status bar at the
bottom indicates that the computation is finished. The scrollbar range is set to
the number of slices in the corresponding direction. This means, one click at the
scrollbar button causes that the neighboring slice of the current one will be shown.
The change of the viewed slice is immediately visible also in the perspective view
and in the status bar, where the number of visible slices is shown. This features
make the interaction with the tool user friendly, but this is not the most important
property. What makes the tool really powerful is the possibility of choosing and
setting various filters for convolution and deconvolution.

&aMask Smoothing Slice Yiewer 10 x|
File “ieww Canvas Help

Front

Perspective

Top slice: 24 Front slice: 60 Left slice: 632

Figure 3: Filtering a CT scan of a lobster. Top view shows the original and the
filtered data. Front view and left view show the corresponding convoluted and
deconvoluted slices respectively.

This is very useful for the algorithm analysis and comparison with already
existing methods used for smoothing. There are four categories of filters, where
the sum of the weights is 1:

e Basic Cubic Filter - This is the simplest type, it calculates the average value
of a cubic voxel neighborhood

e Gaussian Cubic Filter - Gaussian-like filter, where the weigth of a neigh-
boring voxel is the reciprocal of its Manhattan distance from the current
voxel.

e Gaussian Spherical Filter - Similar to the previous type, but instead of Man-
hattan distance an Euclidean distance is calculated.



o Mask Smoothing Filter - Filter kernel of the algorithm we have implemented.
The dimensions are 5 X 5 X 5. The first three filter types can be modi-
fied by changing the filter dimensions and the Mask Smoothing Filter is
parametrized by S (smoothing) and G (feature preservation) parameters.
This settings can be changed in the Settings dialog in the File menu. There
are also some gradient settings in order to improve the results of the feature-
preserving algorithm:

— Threshold - below this value the gradients are considered to be zero.
— Multiplier - scalar value used for emphasizing the gradient values.

— Type - central differences or 4D linear regression [3].

Actually only these parameters have to be set before the computation. If the
filter is already stored in a file, it is possible to reload it. This can be done by
selecting the Open Filter menu item from the File menu. Also the data file has
to be loaded analogous with Open Filter but Open Datafile menu item has to be
chosen. The computation starts by clicking on the Run menu item in the File menu.
When the computation is finished, it is possible to move slice-by-slice within the
data set. As already mentioned, it is possible to view two data sets in one direction
simultaneously (always the same slice). If one of the first three filter kernels was
chosen for the computation, there is a possibility to change the data sets to be
shown. For example in the Top view the original and the deconvolved data sets
are shown, in the Front view convolved and the deconvolved data sets and original
and the convolved data sets. All this can be customized in the Canvas menu. For
some error or computational time information, the Statistics menu item from File
menu item has to be chosen. It is also possible to save the deconvolved data set
into a file. The last menu is Help, where the Online Help and About menu item
are available.

As it can be seen, this tool gives the user a lot of possibilities for analysis,
also looking for the optimal S, G and gradient parameters. In the ”slice show”
using one magnified view the user can quickly recognize if some structures are lost
(because of smoothing) or not.

6 Matlab implementation

Matlab is a professional tool used for simulations and advanced computing. The big
advantage is the simplicity of computational programming and fast visualization
possibility using various graph representations.

In Matlab, we have modelled a couple of 2D cuts of basic objects (circle, square,
ramp). Then we computed the fast Fourier transform of these samples and com-
pared them to P.Bourke’s Fourier transformation [1] implemented in our algorithm.
We measured an average relative error lower than 0.1%.



7 C implementation

The Java version was designed for analysis of the smoothing technique. The Matlab
version was implemented to check the accuracy of our results. We also made a fast
and optimized C version to achieve the best computational time (the concept
we took over from the Java Mask Smoothing tool). The C version is a simple
non-interactive console application, so it is designed for batch mode processing,
for creating pictures for animations, with varying parameters. For the sake of
efficiency, it is a pure C language implementation. The data structures used in
this version are rather basic types as float and short arrays. The volume data as
well as the filter data are stored in 3D short arrays and processed in 3D arrays of
complex numbers. A ComplexNr is a structure with additional functions such as
divideComlexNr and multiplyComplexNr, needed to perform FF'T fast and clearly.
It consists of two floats: the real and imaginary parts of the complex number. This
application can be executed from a window command shell as follows:

msc.exe filename s g gradient_type threshold

where the parameters are:

e filename - volume data set which has to be filtered
e s - smoothing parameter of the Mask Smoothing filter

e ¢ - feature preservation parameter of the Mask Smoothing filter

gradient_type:

— 0 for central differences
— 1 for linear regression 3x3

— 2 for linear regression 5x5b.

threshold - if gradient size is smaller than this value, then it is considered to
be zero.

Comparing to the Java version the C version is approximately 4-6 times faster.
The entire filtering process took 8 minutes for a 202x152x255 resolution volume
(see Figure 1) on an 800Mhz Pentium IIT PC with 512 MB RAM.

8 Summary

In this paper an implementation of a feature-preserving volume filtering method
has been presented. This method is based on a minimization of a three-component
penalty function, so that approximation of the original values, feature preservation
and curvature minimization can be controlled efficiently. The scalability is ensured
by the weighting parameters of the three-component penalty function. Due to the
applied FFT method filtering is performed efficiently. We have implemented a tool,
written in Java, to analyze this method by setting various weighting parameters
and comparing it to other smoothing methods. Also a C version has been developed
to achieve the best computational time.



9 Future work

A further application is sharp image zooming using gradient-based interpolation.
From the original N x N gray-scale image we want to generate an (s- N) X (s- N)
zoomed image. Using traditional resampling methods, the following problems arise:

e linear interpolation would result in blurred edges

e nearest neighbor interpolation would cause staircase artifacts

Therefore the goal is to obtain smooth and sharp edges inside a cell, where
the interpolation is performed. The basic idea behind the gradient based interpo-
lation is, that the original image is interpolated in each cell on an s X s subgrid.
At the corner pixels the gradients are estimated from the original pixels (central
differences or linear regression). The gradients at the subgrid points are calculated
from the gradients of the four corner pixels using bilinear interpolation. The FFT
method is performed on the entire (s- N) X (s- V) image (the gradients are known
for each pixel and the intermediate pixel values can be defined as a constant (e.g.
the average of the four corner voxels). In the FFT method relatively high S and
G parameters are used. The penalty function is defined like in the 2D dedithering
case [4].
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